
Foreword

In 1959, I enrolled in Marc Nerlove’s graduate econometrics course at the University
of Minnesota. At the time, I was a graduate student in social psychology with no
background in economics, but I had a keen interest in the statistical analysis of social
science data.

Least-squares regression methods had been introduced to economics decades
earlier, notably in Ragnar Frisch and Henry Schultz’s studies of sugar demand in
the 1920s, and in Charles Cobb and Paul Douglas’s analysis of production. These
advances, along with the founding of the Econometric Society in 1930, laid the
groundwork for the field. The study of demand systems by Richard Stone in 1945,
the pioneering work of the Cowles Commission under Tjalling Koopmans, and the
development of two-stage least squares by Robert Basmann and Hans Theil in the
1950s, marked the beginnings of modern econometrics. These topics formed the core
of Marc’s course.

At the time, digital computers were rudimentary, requiring machine language
programming, and computing a regression was an arduous task done on a four-
function Friden calculator. Despite this, Marc assigned us to design and estimate a
simultaneous equations model with double precision. My project—a seven-variable
model of the petroleum market—took two weeks to estimate. This challenging
experience captivated me enough to switch to the economics Ph.D. program, focusing
on the econometric analysis of individual behavior.

Marc moved to Stanford in 1960, but in the summer of 1961, I worked with
him, Kenneth Arrow, and Hirofumi Uzawa on convex analysis and the theory of
production, which became the basis of my thesis. When I entered the job market in
1962, my knowledge of economics was still uneven. However, Marc instilled in me
the importance of bridging economic theory and empirical data. Although his name
did not appear on my thesis, he was in essence my advisor—and I was his first Ph.D.
student.

Our research paths diverged over the years: I gravitated toward behavioral eco-
nomics and individual choice prediction, while Marc delved into economic dynamics
and market and economy-wide applications. Nevertheless, the lessons I learned from
him remained pivotal, and parallels between our approaches to research are evident.
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vi Foreword

Throughout his long and storied career, Marc continued to refine methods for
economic data analysis. From innovations in time-series and panel data to applied
research on business expectations and the impacts of population growth, his contribu-
tions profoundly shaped the field of econometrics. The breadth and power of Marc’s
contributions are evident from his citations in econometrics textbooks, and from the
significant surveys and studies included in this volume.

University of California, Berkeley, March 26, 2025 Daniel McFadden



Preface

Marc Nerlove was a truly renaissance man in the twentieth century. Cultivated,
speaking multiple languages, freely and happily interacting with anybody with an
open mind, he was an intellectual giant. His natural curiosity, deep knowledge of a
wide range and aspects of social sciences, and the ease to present difficult problems,
led him to have a lasting impact on economics, econometrics and policy. This volume
pays tribute to his life, personality, and long-lasting influence on the profession.

The book contains high quality original research work in different areas of
theoretical and applied econometrics. Some survey type chapters are also featured
which help better understand some important areas of econometrics research. When
appropriate and relevant, a few personal paragraphs and insights into his research
are added. The chapters present cutting edge results in panel data, machine learning,
agricultural economics, spatial economics, and income inequality among others. The
variety of topics discussed reflect some of the wide range of contributions Marc
Nerlove made to the profession.

Although hard to believe these days, five to six decades ago, empirical economics
and econometrics were overwhelmingly dominated by macroeconomics. Since then,
the use of firm level and other types of micro-level data for econometric analysis have
been widely adopted, bearing results unimaginable earlier. The first chapter of the
volume provides a very personal, first-hand historical insight into Marc Nerlove’s
pioneering role in this process. It is fascinating to learn how the vision of a few
researchers and institutes helped re-shape economic practice.

The second chapter deals with the ’evergreen’ issue of sustainable development.
Although Malthus’ bleak predictions were repeatedly proven wrong, the future is
far from certain. Marc Nerlove’s approach was that we can live beyond our means
for a time only by depleting our environmental capital stock. Following his steps,
the chapter gives a thorough review of this relevant and heated discussion and,
unfortunately, its conclusions are not rosy.
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viii Preface

Marc Nerlove in his seminal work published almost seven decades ago1 explored
the relevance of price expectations in agricultural production and how these may affect
supply elasticities. Chapter 3 extends this ‘Nerlovian model’ by taking into account
some recent developments in econometrics, machine learning and data availability.
These new models are then estimated and tested using some FAO data sets. It shows
that Nerlove’s approach is still relevant these days.

Chapter 4 presents, within a historical perspective, an interesting interaction
between game theory and econometrics. A more personal approach helps to get an
insight on how Marc Nerlove operated simultaneously as an educator and a researcher
and how he inspired his students.

Chapter 5 provides a detailed study of the state of knowledge on measurement and
analysis of inequality of outcomes like income and earning. This includes the state of
art techniques for identifying the distribution of outcomes and interesting functions
of it, such as inequality measures, poverty, and mobility indices. The main aim of the
chapter is to facilitate the adoption of the latest developments in this area at a time of
heightened interest in evidence based policy analysis.

The Opportunity Zones (OZ), the largest ongoing place-based development
program in the U.S., were intended to stimulate investment and drive economic
growth in low-income areas by lowering capital gains tax rates. Chapter 6 investigates
the spatial spillover effects of the OZ due to their interconnections with high-income
neighbouring areas. The empirical results indicate that census tracts located near
more developed regions exhibit a stronger response to the OZ program due to the
presence of spillover effects. The driving factor of these policies is the number of
high-income neighbors. The chapter shows, however, that they play the role of a
double-edged sword.

Chapter 7 deals with rationality tests and the estimation of asymmetric loss
functions by using information in density forecasts. This chapter shows that often
forecasters treat underestimation of real output more dearly than over-prediction,
while the opposite is true for inflation.

In economics there are frequently cases when agents make discrete choices
depending on past outcomes and on the ones of other agents. This may create network
interdependencies. The order of the dymanics and that of the network pattern usually
is not known a prori. To deal with this, Chapter 8 parametrizes the higher order time
lag and network lag structures to estimate a response function. This chapter suggests
panel probit estimation based on control functions and studies their suitability through
detailed simulation experiments.

Chapter 9 argues that the measurement of treatment effects using panel data is
essentially an issue of predictions. In the literature there are several ways to construct
conterfactuals based on hypothetical data generating processes. The chapter proposes
a unifying framework for these based on a factor approach to conterfactuals.

Chapter 10 proposes a semiparametric method for the estimation of nonparametric
panel data models with correlated random-effects, where both the nonparametric
function and a finite-dimensional parameter associated with (potentially) observed
1 Marc Nerlove: Estimates of the Elasticities of Supply of Selected Agricultural Commodities,
Journal of Farm Economics, 1956, pp. 496-509.

https://www.jstor.org/stable/1234389
https://www.jstor.org/stable/1234389
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time-invariant regressors can be identified. Analytical and simulation results are put
forward together with an illustrative application on the relationship between firms’
research and development expenditures, current assets, and regulatory restrictions
across different industries.

Dynamic panel data models have been widely used in the literature for decades,
and Marc Nerlove has lucidly examined their problems and applications to the
study of growth convergence. One of the workhorses for their estimation is the
Generalised Method of Moments (GMM) estimator, which is mainly applied to the
first-difference model. Chapter 11 investigates the effect of maintaining the model
in levels, combined with a Correlated Random Effects (CRE) specification. Some
analytical and simulation results are provided, along with applications to R&D,
production and wage functions, to illustrate the advantages of this approach.

Chapter 12 is a tribute to Marc Nerlove’s contributions to panel data and spectral
analysis in time series. In his book titled Essays in Panel Data Econometrics,2
Marc reviews serial correlation in panel data error components models. This chapter
proposes a new estimation method based on Whittle’s approximate maximum
likelihood method3 for an ARMA(p,q) in the remainder disturbances and performs
Monte Carlo simulations to examine its performance in small samples. The results
demonstrate that this spectral method allows one to consider complex structures of
the variance-covariance matrix to account for serial correlation in the remainder error.

Chapter 13 investigates three-level dynamic panel data models with mixed coeffi-
cient structure, where one level is a group (or stratum) and the time component is
short. Identification and estimation issues are discussed in the presence of diverse
forms of heterogeneity and cases with unbalanced or missing data.

Chapter 14 reviews basic elements of the Mundlak and Chamberlain projections
which are well known classic results in panel data showing that the random effects
estimator reduces to the fixed effects estimator when the regressors are correlated
with the individual effects. This is done following a simple transformation proposed
by Manuel Arellano.4 Topics discussed include the augmented regression model, the
Hausman test, minimum-distance estimation and its link to GMM, unbalanced data,
and higher-dimensional data.

Chapter 15 generalizes the Mundlak panel data model to allow for a subset of
the variables to have heterogeneous coefficients. These are estimated using fitted
values from unit-specific regressions. An important application of this is allowing for
heterogenous trends. A simple specification test is proposed to determine whether
the usual two-way fixed effects are sufficient or whether unit-specific trends should
be added. This approach has also implications for relaxing parallel trends in a
difference-in-differences settings with staggered interventions. This is illustrated with
an empirical application.

2 Marc Nerlove: Essays in Panel Data Econometrics, Cambridge University Press, 2005.
3 Peter Whittle: Estimation and Information in Stationary Time Series, Arkiv för Matematik, 1953,
2(5), 423–434.
4 Manuel Arellano: On Testing of Correlated Effects with Panel Data, Journal of Econometrics,
1993, 59, 87-97.

https://assets.cambridge.org/97805218/15345/frontmatter/9780521815345_frontmatter.pdf
https://projecteuclid.org/journals/arkiv-for-matematik/volume-2/issue-5/Estimation-and-information-in-stationary-time-series/10.1007/BF02590998.full
https://projecteuclid.org/journals/arkiv-for-matematik/volume-2/issue-5/Estimation-and-information-in-stationary-time-series/10.1007/BF02590998.full
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x Preface

The inadequacy of standard asymptotic tests in finite samples is well known in a
simultaneous equations context. Chapter 16 proposes alternative exact and bound
procedures and shows their feasibility. Particular attention is given to identification
issues. Simulation results show that relaxing the structure under the alternative
hypothesis pays off power wise. While structures hold information, this comes at an
important cost: imposing it introduces nuisance parameters that are influenced by the
model’s identification status.

Chapter 17, the last chapter of the volume, generalizes the static log-linear
probability model originally introduced by Nerlove and Press,5 to the dynamic
analysis of qualitative processes with two or three alternatives. This modelling
approach has relevant applications in predicting future financial returns.

Syracuse, April 2025 Badi H. Baltagi
Budapest and Vienna, April 2025 László Mátyás

5 Nerlove, M. and Press, S.: Univariate and Multivariate Log-linear and Logistic Models, Rand
Corporation, 1973.

https://www.rand.org/content/dam/rand/pubs/reports/2006/R1306.pdf
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Chapter 1
Analysis of Business Surveys: The Mannheim
Years

Klaus F. Zimmermann

Abstract In 1979, Marc Nerlove and my doctoral advisor, Heinz König, launched a
groundbreaking joint project on ‘Business Survey Data Analysis’, which continued
for about 16 years. This project began during a period of transition in the economics
profession, marked by a shift from macro theory to applied microeconomics, and
from macro-econometrics to the study of qualitative micro data. Under the leadership
of Nerlove and König, an international team pioneered the use of firm-level data for
microeconometric analyses. This paper documents the team’s work, the challenges
they faced, their ambitions, and their academic achievements. It also highlights
Nerlove’s leadership, working style, and personality, as reflected in the project and
beyond. As a member of the Mannheim research team, I also had the opportunity to
become Nerlove’s academic guest at the University of Pennsylvania in 1987.

1.1 Introduction

In the late 1970s, economics as a scientific discipline was still dominated by theoretical
approaches, with macroeconomics shaping much of econometric research. Large-
scale econometric models sought to model entire national economies, driven by
the expectation that they could serve as tools for economic control. In Europe,
academic research remained underdeveloped compared to the United States. Only
a few European institutions, such as the London School of Economics (LSE) and
CORE in Louvain-la-Neuve, had achieved significant international visibility. At that
time, the University of Mannheim was emerging as a leading center for economic
research in Germany. Among the country’s foremost macroeconomists and macro-
econometricians was Heinz König of the University of Mannheim, who, alongside
Wilhelm Krelle at the University of Bonn, played a central role in shaping Germany’s
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econometric landscape. König’s influence extended beyond research, as he also served
as the Rector of the University of Mannheim from 1979 to 1982.

Marc Nerlove shared König’s interest in time-series econometrics, particularly
in spectral analysis. Despite their primary focus on macroeconomic research, they
secured funding from NATO to establish a transatlantic collaboration aimed at
creating and analyzing a new dataset based on firm-level surveys. Their efforts were
rooted in the rich survey tradition of the Ifo Institute in Munich, which had conducted
extensive monthly business surveys since the 1950s. However, the Ifo Institute only
used this data in aggregated form for macroeconomic monitoring rather than for
micro-level analysis. König’s established connections with the Ifo Institute were
instrumental in accessing this resource. He maintained regular exchanges with its
leadership, particularly at the legendary annual Ottobeurer Seminar, where Germany’s
leading economists convened to discuss pressing economic issues.

The challenge was that the Ifo business survey data existed only in paper form, mak-
ing individual firm-level records inaccessible for systematic analysis. Moreover, the
data was qualitative and discrete rather than continuous, which posed methodological
obstacles. At the time, economists largely dismissed qualitative data, favoring direct
observations of economic behavior over subjective assessments. Additionally, statist-
ical methods for analyzing qualitative data were underdeveloped. A breakthrough
came through Marc Nerlove’s methodological contributions to contingency table
analysis, which he had already advanced in 1973 but had yet to apply extensively.
The project also benefited from its connection to CIRET, an international research
network focused on business cycle survey data, in which the Ifo Institute played a
key role. This network facilitated the dissemination of new methods and research
approaches, creating an environment for advancing micro-econometric applications.

Through this collaboration, Marc Nerlove, an academic entrepreneur with a
global perspective, introduced Heinz König, a leading macroeconomist, to micro-
econometric research. Over the years, Nerlove spent frequent research periods in
Mannheim, contributing to the methodological and empirical development of firm-
level data analysis. Despite the significant contributions of König and Nerlove, little
research has focused on the methodological innovations and challenges of their
collaboration, particularly in leveraging firm-level data for econometric analysis.

This chapter examines the transformative impact of Heinz König and Marc
Nerlove’s collaboration on the development of micro-econometric methods, focusing
on their innovative use of firm-level data. It will outline the methodological innovations
introduced, assess the impact of these innovations on econometric research, and
explore the challenges and successes of their collaboration. The following sections
detail the evolution of their research endeavor. Section 1.2 introduces Marc Nerlove
and outlines my own involvement in the project. Section 1.3 provides an overview of
the Ifo data and describes the working process of the Mannheim research team. Section
1.4 presents the methodological foundations and key research findings. Section 1.5
discusses subsequent research developments within the broader network. Finally,
Section 1.6 summarizes and evaluates the overall contributions of this long-term
collaboration.
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1.2 Marc Nerlove – Visionary, Leader, Globalist, Generalist

1.2.1 Marc Nerlove

Marc Nerlove was a towering figure in economics and econometrics, whose methodo-
logical innovations and empirical investigations left a lasting imprint on the discipline.
After earning his Ph.D. from Johns Hopkins University in 1956, he embarked on
an academic career that spanned more than six decades, influencing generations of
scholars across multiple domains.

Nerlove was a pioneer in microeconometrics, particularly in the estimation
of dynamic models using panel data. His groundbreaking research on adaptive
expectations and supply responses in agriculture remains a cornerstone of empirical
work on producer behavior. His 1958 book, The Dynamics of Supply: Estimation
of Farmers’ Response to Price, was a pioneering effort to apply econometric
techniques to agricultural data, setting a precedent for the integration of economic
theory with empirical analysis (Nerlove, 1958b). His work laid the foundation for
modern empirical studies on agricultural supply and demand, influencing policies on
agricultural markets and price stabilization.

His contributions to time-series econometrics and macroeconomics are also sig-
nificant. His 1964 Econometrica paper Spectral Analysis of Seasonal Adjustment
Procedures introduced spectral methods to study economic fluctuations, demon-
strating their application in evaluating seasonal adjustment techniques (Nerlove,
1964). His later work, particularly his book Analysis of Economic Time Series: A
Synthesis, provided an extensive and rigorous framework for time-series modeling
(Nerlove, Grether & Carvalho, 1979). This work synthesized approaches to time-series
econometrics, bridging traditional econometric methods with modern spectral and
state-space models. His research advanced the understanding of economic cycles,
particularly how firms and individuals form expectations over time, and influenced
the broader study of macroeconomic fluctuations.

Nerlove was also engaged in macroeconomic research. His 1962 American
Economic Review paper, A Quarterly Econometric Model for the U.K.: A Review
Article, was an important contribution to the growing field of macroeconometric
modeling (Nerlove, 1962). His 1966 International Economic Review paper, A Tabular
Survey of Macro-Econometric Models, provided one of the first comprehensive
reviews of macroeconometric models, helping to systematize research in this field
(Nerlove, 1966).

Beyond macroeconomics, Nerlove was a significant contributor to population
economics. Together with Assaf Razin and Efraim Sadka, he explored the interplay
between household decisions, demographic trends, and economic welfare using eco-
nomic micro theory. Their joint book, Household and Economy: Welfare Economics
of Endogenous Fertility, offered a formalized economic analysis of fertility decisions,
treating fertility as an endogenous choice influenced by economic conditions, based
on many top publications (Nerlove, Razin & Sadka, 1987). This study provides a
theoretical foundation for understanding how economic incentives shape demographic
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transitions, contributing to debates on population growth, pension systems, and in-
tergenerational transfers. His work challenged traditional Malthusian perspectives by
demonstrating that population growth could be optimally managed through economic
incentives rather than coercive policies.

A further distinctive aspect of Nerlove’s research is his pioneering use of the
log-linear probability model for the analysis of categorical economic data. His
collaboration with S. James Press on Univariate and Multivariate Log-Linear
and Logistic Models (Nerlove & Press, 1973 and Nerlove & Press, 1976) laid a
foundational framework for applying these models in economics. This work provided
the methodology for analyzing contingency tables and categorical survey data, and
provided a crucial tool in the study of business test data as will be the focus in this
chapter (König, Nerlove & Oudiz, 1981, and Nerlove, 1983). The importance of this
line of research was underscored when Nerlove chose to focus on expectations, plans,
and realizations of business firms for his Presidential Address to the Econometric
Society, published as Expectations, Plans and Realizations in Theory and Practice
(Nerlove, 1983).

Throughout his career, Nerlove was a visionary, leader, globalist and generalist.
He was visionary in the sense that his methodological advances anticipated and
shaped the trajectory of modern econometrics. His emphasis on dynamic models,
expectation formation, and panel data econometrics prefigured many contemporary
approaches in applied economics. As a leader, he trained and mentored numerous
students, many of whom became leading economists and econometricians in their
own right. His work earned him numerous accolades, including the election as a
Fellow of the Econometric Society, later on even the president, and the prestigious
John Bates Clark Medal, awarded to the most promising American economist under
40.

Nerlove was globalist in both his research and academic engagement. His work
spanned multiple countries and economic contexts, from U.S. agricultural markets to
European business surveys to developing economies in Latin America and Asia. He
collaborated extensively with international researchers, reflecting on his belief that
economic knowledge should transcend national boundaries. His visiting appointments
at leading institutions across Europe, Latin America, and Asia underscored his role
as a bridge between different traditions and cultures of economic thought.

Finally, Nerlove was a generalist in the best sense. While many scientists specialize
narrowly in methodology, theory, or applied work, he has moved seamlessly between
theoretical economics and econometrics, empirical analysis, and economic policy.
His research encompassed agriculture, macroeconomics, population, expectation
formation, time-series analysis, and microeconometrics, reflecting a rare breadth of
expertise.

Even in his later years, Nerlove remained intellectually engaged and continued to
contribute to econometric methodology and applied economic research. His legacy
endures not only in the methodologies he developed, but also in the scholars he
trained and the empirical insights he provided. He passed away in 2023 at the age
of 90, leaving behind a vast intellectual legacy that continues to shape his fields of
analysis.
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1.2.2 Background Reflections

The long-time research partner of Marc Nerlove in Germany was Heinz König
(1927–2002), a leading figure in post-war German economics, a pioneer of empirical
economic research, and econometrics. König began as a macroeconomist and,
competing with Wilhelm Krelle from Bonn University, developed the first large-scale
macroeconometric models in Germany. In 1958–1959, he was a Rockefeller Fellow
at the Massachusetts Institute of Technology (MIT), Harvard University, and Stanford
University. He became a Full Professor at the University of Mannheim in 1962, where
he remained despite receiving numerous prestigious offers from other universities.
He served as Rector of the University of Mannheim from 1979 to 1982, chaired the
Verein für Socialpolitik (the German Economic Association) from 1987 to 1988, and
was the founding director of the Centre for European Economic Research (ZEW)
from 1991 to 1997. indexCentre for European Economic Research (ZEW)

Nerlove and König were both distinguished figures in their respective fields,
each commanding a strong national reputation and possessing distinct yet equally
formidable personalities. While König, whose name fittingly means ‘king’ in German,
wielded his authority in the hierarchical chair-system of German universities at the
time with an almost autocratic style, Nerlove’s influence was more understated and
diplomatic. Nevertheless, he too mentored a devoted group of PhD students and
maintained an extensive global network of established research collaborators.

Both were natural leaders, earning huge respect through their intellectual rigor
and visionary contributions. Their research interests overlapped in macroeconomic
modeling and time-series econometrics. However, Nerlove’s expertise extended into
agricultural and population economics, while König also made significant contribu-
tions to labor economics. During what I refer to as The Mannheim Years (detailed
more below), they collaborated on a project initially funded by NATO (research grant
no. 1180, 1976–1979) and later by the National Science Foundation (USA, Grant
SOC 74-21194), and Deutsche Forschungsgemeinschaft (Grant 219/10) focused on
the creation and analysis of categorical business survey data to examine firm-level
behavior. Through this collaboration, both evolved into microeconometricians.

Given their shared background, it is unsurprising that the central theme of their
joint research was the formation of business expectations. Nerlove had been engaged
with adaptive and other expectation-formation models since his doctoral work in
agricultural economics in the late 1950s, later expanding this focus within time-series
econometrics. König, in turn, explored adaptive and rational expectations in the
context of the Phillips curve, a topic that was the subject of intense international
debate at the time.

I studied economics and statistics at the University of Mannheim, earning my
master’s degree (Diplom-Volkswirt) in the fall of 1978. My diploma thesis examined
the macroeconomic debate on the effectiveness of monetary and fiscal policies in the
presence of rational expectations, including an empirical analysis of the Phillips curve
in Germany. König awarded my diploma thesis the highest distinction and offered me
a full-time position as a research assistant at his chair. This role encompassed not only
teaching and grading assistance but also, early on, involvement in the business survey
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project led by Nerlove and König. Alongside Gebhard Flaig, who had graduated from
Mannheim two years earlier, I quickly became a key figure in König’s chair system,
helping to manage and direct a substantial portion of the research and teaching
activities. Writing a dissertation was an after-hours task by university regulation
anyway, and I found all these challenges inspiring and rewarding. These experiences
later allowed me to conduct my own research with efficiency and the highest academic
rigor. The chair system also had the advantage of providing a constant presence of
colleagues who were available for guidance when needed. This system provided also
more time and support at a later stage to prepare for the academic market.

I served as a research associate until 1984 and earned my doctoral degree in 1985,
subsequently becoming a Hochschulassistent (Assistant Professor) at the University
of Mannheim. In 1986, I was a Research Fellow at CORE, Université Catholique de
Louvain in Louvain-la-Neuve, followed by a position as a Senior Research Fellow at
the Wissenschaftszentrum Berlin (Social Science Research Center, WZB). I then held
a Visiting Associate Professorship at the University of Pennsylvania in Philadelphia.
Upon returning to Mannheim in 1988, I was awarded a Heisenberg Fellowship from
the Deutsche Forschungsgemeinschaft (German Research Foundation, DFG), before
moving to the University of Munich as a Full Professor of Economic Theory and
director of the newly established Seminar for Labor and Population Economics. At
Munich, I was also responsible for liaising with the Ifo Institute and served as a
member of its supervisory board. In 1998, I declined an initiative of the Bavarian
government to become President of the Ifo Institute, opting instead to move to the
University of Bonn to establish the Institute for the Study of Labor (IZA).

This early success story owes much to Marc Nerlove and the dynamic research
environment fostered by the Faculty of Economics at the University of Mannheim,
particularly under Heinz König’s leadership. For me, the project on the analysis
of business survey data played a crucial role in this intellectual climate. Based on
early publication successes related to the project (see section 1.5.1 for more details),
Jacques Drèze invited me to join CORE, and Edmond Malinvaud to speak in his
research seminar in Paris.

Many faculty members and their doctoral students later pursued highly successful
careers in academia and beyond. Among them were Hans-Werner Sinn, who later
became a professor at the University of Munich and President of the Ifo Institute, and
Wolfgang Franz, who went on to serve as President of the ZEW following Heinz
König. Gebhard Flaig was also appointed to a faculty position in Munich, and he
eventually moved to the Ifo Institute to take over the business survey department and
joined Ifo’s executive board. Unlike Franz and Flaig, Sinn was not a student of König,
although this is sometimes claimed in the social media.

Christoph Schmidt who was a master student and student helper at the König chair,
completed his Ph.D. at Princeton University after moving the US on our advice, and
got his habilitation with me at the University of Munich. Like Franz he later became
a member and then the chair of the German Council of Economic Experts.

Other colleagues in Mannheim included my wife, Astrid Zimmermann-Trapp. A
rising star in the faculty was Horst Siebert, an environmental economist, who led a
large research center of the faculty before he moved to the University of Konstanz.
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Siebert later became President of the Kiel Institute for the World Economy, a position
that led to our renewed professional interactions when I served as President of the
German Institute for Economic Research (DIW Berlin).

Marc Nerlove was relaxed, inquisitive, and highly sociable. He was genuinely
interested in people and engaged with their work. It became my routine task to
pick him up from the airport during his annual research visits and take him to his
hotel, which was usually the Goldene Gans near Mannheim’s central station. This
location was also a frequent gathering place for König’s team, where we would often
meet in the restaurant after seminars over a glass of wine. Nerlove was a welcome
participant in these informal discussions. Small gestures of his remain in my memory:
although he somehow knew of my wife, they had not yet met. One day, when they
encountered each other in the elevator of the university building, he walked up to her
and introduced himself with the words, You must be Astrid.

Nerlove shared my interest in population economics, which I intended to make the
focus of my doctoral research. Initially, Heinz König was not particularly enthusiastic
about my idea of bringing Gary Becker’s family economics to Germany. However, he
soon changed his mind, particularly with Nerlove’s support. This openness to new
ideas was a defining trait of my doctoral advisor. König’s understandable concern that
I might be overburdened thematically dealing with household and firm decisions at
the same time ultimately proved unwarranted, as I was able to apply the econometric
techniques I had learned through the business survey project to my research in
population economics (Zimmermann, 1985a).

What impressed me about Marc Nerlove was not only his diverse academic interests
but also his exceptional ability to build and sustain research networks. For instance,
he often combined his visits to Mannheim with research meetings on population
economics with Assaf Razin and Efraim Sadka, who traveled from Israel. This early
exposure allowed me to establish professional connections with both, and later I
maintained frequent contact with Sadka. Nerlove also supported me in founding
the European Society for Population Economics (ESPE) and delivered an invited
lecture at its inaugural conference in Rotterdam. This lecture was later published
in the Journal of Population Economics (Nerlove, 1988), which I had founded and
which quickly became the leading journal in the field. Nerlove, Razin, and Sadka also
contributed to an edited volume I published, Economic Theory of Optimal Population
(Nerlove, Razin & Sadka, 1989).

A defining experience for me was the opportunity, initiated by Nerlove, to serve as
a Visiting Associate Professor at the University of Pennsylvania in the calendar year
1987. This appointment allowed me to teach introductory courses in microeconomics
and macroeconomics, as well as a lecture course on population economics. It also
provided a strong foundation for successfully launching the Journal of Population
Economics and for collaborating on research papers with his doctoral students,
including David Ross and Lorenzo Pupillo. His research infrastructure supported me
in numerous ways, and I fondly remember both professional discussions and private
gatherings with him and my family. Even later, he remained genuinely interested in
my daughter’s development.
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During my time in Philadelphia, I also met (among many other long-lasting
connections) Lars-Hendrik Röller, who was completing his doctorate there, and
Manfred Deistler, a leading scholar in time-series econometrics, who was on a
research visit. Over the years, I maintained regular contact with both. With Röller, in
his capacity as Chief Economic Advisor to Chancellor Angela Merkel, we engaged
in discussions on labor market reforms and migration policies. With Deistler, we
have frequently debated strategic questions of science policy and ways to strengthen
research in our respective countries, drawing on insights from our experiences in the
United States.

1.3 Business Test Data and the Mannheim Years

1.3.1 The Ifo Business Test

The Ifo Institute in Munich, Germany, a prominent publicly funded economic research
institution in the country, has consistently conducted business surveys since 1949,
establishing a foundation for systematic data-based economic analysis in Germany.
Analogous questionnaires were subsequently developed for Italy (1949), France
and Japan (1951), Austria (1953), Belgium, the Netherlands, Sweden, and South
Africa (1954), Switzerland (1955), Denmark (1956), Finland (1957), and the United
Kingdom (1958), and by 1995 were already available for 56 countries (Zimmermann,
1997).

The Ifo data collected in Germany initially encompassed manufacturing companies
from 1949 onward. In 1950, the monthly survey was extended to include the retail
trade sector, and in 1951, it incorporated the wholesale trade sector. The construction
industry was integrated in 1956, while the service sector was not included until 2001.

The Ifo Business Climate Index for Germany, established through surveys conduc-
ted in the 1950s, gained recognition since the 1970s as one of the most significant
indicators of economic activity in the country. This index is derived from approx-
imately 7,000 monthly responses from businesses (Becker & Wohlrabe, 2008), and
these responses were only recently stored as microdata within the Ifo Business Survey
files. Although time series data for various industries and sectors have long been
accessible through the Ifo macro database, access to the underlying microdata was
historically first impossible and later limited for research purposes only.

Several scholars have provided a comprehensive review of the history of Ifo
Business data (formerly referred to as Ifo Business Test or Ifo Konjunkturtest),
including Oppenländer and Poser (1989); Zimmermann (1997); Becker and Wohlrabe
(2008), and most recently Sauer, Schasching and Wohlrabe (2023).

Since 2004, the Ifo Institute had systematically converted its microdata inventory
into Stata format, facilitating access to these data through the Ifo Data-Pool. This
development enabled external researchers to conduct scientific analyses at the Ifo
Institute utilizing anonymized microdata from four standard Ifo surveys: the Ifo
Business Survey, the Ifo Investment Survey, the Ifo Innovation Survey, and the Ifo
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World Economic Survey. To maintain confidentiality for participating companies, the
dataset is anonymized and was accessible only under stringent criteria at a designated
Ifo-based single-user computer.

Economic tendency surveys constitute systematic instruments designed to capture
qualitative information regarding the current economic situation and future expecta-
tions from businesses and consumers. In contrast to traditional quantitative economic
indicators that rely on empirical data such as output, employment, or sales figures,
these surveys collect subjective assessments and anticipations, thereby providing
timely insights into economic trends. The European Union’s Joint Harmonised EU
Programme of Business and Consumer Surveys exemplifies this methodological
approach, conducting monthly surveys across various sectors—including manufactur-
ing, construction, retail trade, services, financial services, and among consumers—to
generate harmonized economic indicators.

The standard questions posed monthly in the Ifo Business Survey pertain to both
the current and anticipated economic circumstances of firms, differentiated across
several segments. The participating firms provide at the establishment rather than the
firm level categorical variables that can be classified into three groups: (i) ex ante
variables measuring plans or expectations; (ii) ex post variables reporting realizations;
and (iii) variables reflecting evaluations of factors like order backlogs or inventories.
Reported categories are typically trichotomous, responses are increase (+), no change
(=), or decrease (-); or greater than normal (+), normal (=), or less than normal (-);
or too large (+), about right (=), or too small (-). The +, =, - categories can also be
coded as 1, 2, 3.

The aggregated indicators derived from such data are instrumental in short-term
forecasting and identifying turning points in business cycles, thereby complementing
official statistical data that often become available only after significant delays and
are subject to subsequent revisions. Due to the categorical nature of micro-level data,
the application of regression analysis at the firm level has long been unclear.

The initial documented scientific utilization of Ifo data was carried out by Anderson
(1952). He employed time-series data (January 1950 – February 1952) to investigate
the correlation between Ifo Business Survey data and official statistics. Through
correlation analysis, he demonstrated that partial aggregates of the Business Survey,
such as those pertaining to nutrition, closely approximated official statistics. Anderson
proposed and illustrated the utility of balances calculated as the difference between
the percentage of positive responses minus the percentage of negative responses at a
specific point in time. He successfully utilized such data to forecast macroeconomic
time-series.

Theil (1955) subsequently expanded this approach, focusing particularly on the
use of balances as an aggregation method and pioneering the application of microdata
analysis for manufacturing, specifically in the leather and shoe industry. Thonstad
and Jochems (1961) further advanced the field by modeling production plans based
on company expectations and assessments of the business climate, continuing the
research initiated by Theil and applying similar methodologies to data from the
leather and shoe industry (1956–1958).
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The Centre for International Research on Economic Tendency Surveys (CIRET)
emerged as the academic entity within the business survey movement, facilitating
conferences and exchanges to promote the collection of such data globally. CIRET’s
origins can be traced to 1952, when an informal group of economists from institutions
such as the Ifo Institute (Germany), the Institut National de la Statistique et des
Études Économiques (INSEE, France), and the Association of Italian Chambers of
Commerce collaborated under the designation Comité International pour l’Étude des
Méthodes Conjuncturelles (CIMCO). This informal cooperation was formalized in
1960 with the establishment of the ‘Contact International des Recherches Economiques
Tendancielles’ (CIRET). Initially affiliated with a research group directed by Theil at
the Econometrisch Instituut in Rotterdam and later led by Anderson since 1966 at the
University of Mannheim, CIRET also maintained a documentation center at the Ifo
Institute (see also Knoche, 2025).

In 1971, CIRET and its documentation center merged and were fully integrated into
the Ifo Institute, adopting the designation ‘Centre for Economic Tendency Surveys’.
By 1999, CIRET established a new legal foundation under Belgian law and relocated
its headquarters to the KOF Swiss Economic Institute at ETH Zurich, adopting
its current designation to reflect its international scope. A study by Abberger et al.
(2022) developing a composite monthly indicator for the world business cycle (the
Global Economic Barometers) utilizes business survey data from over 50 countries
worldwide (Abberger, Graff, Müller & Sturm, 2022).

1.3.2 Marc Nerlove and the Mannheim Team

The Mannheim Years refer to the period during which our team at the University
of Mannheim was actively engaged in a research project on expectations, plans,
and realizations in economic decision-making of business firms. This project was
initially funded by NATO from 1976 to 1979. The first publication by a team member
appeared in 1979, authored by Heinz König, while the final publication co-authored
by Marc Nerlove was in 1995. This marks a span of 16 years, which can be considered
the primary project period. However, an alternative perspective extends this timeline
from the start of funding in 1976 to the publication of my handbook article in 1997,
making it a 21-year period.

The core members of the Mannheim support team included Gebhardt Flaig,
Seiichi Kawasaki, and Klaus F. Zimmermann. Flaig was involved from 1976 to 1983,
while Kawasaki joined in 1980 after completing his dissertation at Northwestern
University under Marc Nerlove in 1979. Kawasaki remained in Mannheim until 1985,
constrained by the maximum duration of temporary university contracts. I was at the
chair from 1978 to 1985, took leave from 1986 to 1987, returned to Mannheim in
1988 to direct an independent research team, and moved to the University of Munich
in 1989.

During the key Mannheim years, the presence of Flaig and Zimmermann defined
the team’s core period from 1978 to 1983 (five years). If the period is broadened to
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include years when at least one of them was present, it extends from 1976 to 1985,
covering nine years.

Within the team, roles varied. Kawasaki, already holding a Ph.D., focused on
complex theoretical and technical challenges, often involving programming or
statistical problems. His perseverance was remarkable, and he frequently returned
with solutions to problems that others could not resolve. He also contributed a
core Fortran program, already developed at Northwestern, which was integral for
analyzing data and running regressions for the project. He named this program
Tornado, signifying speed, though the team humorously dubbed it Snail.

At that time, computational work relied on the University of Mannheim’s main-
frame system. Programs were input via punch cards, which had to be manually loaded
in the cellar of our building, since the computing center was far away. The process
was cumbersome and prone to errors—cards could be misplaced or damaged, leading
to significant setbacks. Each researcher handled their own jobs, as dropping the card
decks could be disastrous. Computation times were long, sometimes taking a full
week, rapidly exhausting our annual computing quotas. Fortunately, Heinz König,
who also served as university rector, ensured that we received additional capacity
when needed.

Operational tasks fell primarily to Gebhard Flaig and me. Flaig was a highly
skilled econometrician with deep statistical expertise and programming experience.
When Marc Nerlove visited, research discussions often led to new ideas requiring
additional programming. Occasionally, this meant working overnight to ensure results
were ready before Nerlove’s departure at the end of the week.

Both König and Nerlove were demanding scholars, always pushing for the best
possible results while recognizing the challenges involved. Working with them was
intellectually stimulating and rewarding.

Despite intense work periods, there was also space for independent research. The
University of Mannheim maintained an exchange program with the University of
Western Ontario, allowing us to collaborate with visiting scholars. Through this, John
McMillan contributed significantly to our work on business survey data by providing
the right framing of the articles (Kawasaki, McMillan & Zimmermann, 1982 and
Kawasaki, McMillan & Zimmermann, 1983). Additionally, I pursued research on
correlation measures for qualitative data, leading to ideas for pseudo-R² measures,
which I later developed into publications with Mike Veall (Veall & Zimmermann,
1996). These methodological papers remain among my most highly cited works,
surpassing even my publications in top-tier economics journals.

In business surveys, variables are typically categorized as increase (+), no change
(=), or decrease (-). The challenge arises in calculating how these variables change over
time or differ from one another. Specifically, how is a change defined? For instance,
how can one effectively compare a change in price or a shift in production between
consecutive periods? Additionally, how can plans or expectations be evaluated against
actual outcomes, which is essential for assessing forecast errors, unmet plans, or
unexpected results?

After extensive internal discussions, a straightforward solution was identified in
the team by utilizing the ordered nature of the variable categories (see Nerlove, 1983,
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1259-1260), which has gained broader acceptance in the literature. This is further
elaborated upon in Figures 1.1 and 1.2.

Figure 1.1 presents a comparison between the expected or planned value (Y*) and
the actual realization (Y). In addition to conducting a regression analysis of Y* on Y,
it is pertinent to examine the difference Y-Y*, which represents the forecast error,
insufficient plan fulfillment, or unexpected outcomes. The difference Y-Y* can be
interpreted as no change (=) when situated on the main diagonal of the figure. It is
considered a decrease (-) in the upper right section of the figure and an increase (+)
in the lower left section. A Y-Y* value denoted as ‘+’ signifies a positive surprise, an
underestimation, or a development exceeding the plan, whereas a Y-Y* value denoted
as ‘–’ indicates a negative surprise, an overestimation, or a development falling short
of the plan.

𝑌𝑡

+ = −

+

=

−

= − −

+ = −

+ + =

𝑌 ∗
𝑡−1

Fig. 1.1: Realizations 𝑌𝑡 given expectations or plans 𝑌 ∗
𝑡−1 and definition of forecast

error, insufficient plan fulfillment or surprise

Simple differences between variables can be categorized in a manner similar to
the method suggested in Figure 1.1, as illustrated in Figure 1.2. Beyond regressing
a variable on its previous value, it may be interesting to examine changes in the
direction of change. In Figure 1.2, no change (=) represents situations along the main
diagonal. An increased (+) value indicates an upward trend over time, whereas a
decreased (-) value indicates a downward trend.

Although it was possible to define the (3,1) cell of the figures as +,+ and the
(1,3) cell as −,−, this approach was not adopted due to considerations of simplicity
and computational efficiency. The construction of such five-category variables was
avoided, particularly considering the substantial computation times required on the
mainframe computer, as reported above. The introduction of additional categories
would have increased computing time and significantly raised the likelihood of
encountering empty cells, thereby rendering the applied models inapplicable.
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𝑌𝑡

+ = −

+

=

−

= − −

+ = −

+ + =

𝑌𝑡−1

Fig. 1.2: Realizations 𝑌𝑡 given past values 𝑌𝑡−1 and definition of categorical change

1.4 Business Survey Data Analysis

1.4.1 The Log-linear Probability Model

In the contemporary statistical literature, the log-linear probability (LLP) model
is highly valued for its capacity to examine categorical data within an explorative
research framework. This approach allows researchers to explore and comprehend
complex relationships within contingency tables, thereby shedding light on the
interplay between multiple categorical variables. The LLP model is particularly
adept at detecting and measuring dependencies, offering a thorough understanding
of how various categories affect each other. Researchers from diverse fields such as
economics, sociology, demography, psychology, epidemiology, and marketing have
shown considerable interest in this method. Typically, LLP models are employed
to investigate associations among categorical variables. LLP models can also be
expressed as multinomial logit models. This section explains the core econometric
methodology of the Mannheim business survey data analysis project.

Drawing on Nerlove and Press (1973) and Nerlove and Press (1976), LLP models
emerged as a prominent technique for analyzing business survey data in the 1970s
and 1980s. As of March 9, 2025, the former report had garnered 668 Google Scholar
citations, while the latter had received 73, demonstrating significant interest from the
academic community.

In business surveys, the majority of variables are categorical, and the data can be
analyzed using contingency tables. Consequently, it is useful to examine the nature
of associations between these variables, or to what extent these associations deviate
from a model of statistical independence. Typically, this method assumes a nominal
scale for the variables, thereby disregarding the ordinal nature of some data. In
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addition to the work of Nerlove and Press, key references for the subsequent analysis
include Bishop, Fienberg and Holland (1988), Kawasaki and Zimmermann (1981),
and Zimmermann (1997).

Assume two categorical variables 𝐴 and 𝐵 with categories 𝑖 = 1,2, . . . , 𝐼; 𝑗 =
1,2, . . . , 𝐽. Let {𝜋𝑖 𝑗 } be the contingency table of the probabilities involving these
variables, where 𝜋𝑖 𝑗 are the probabilities. The statistical model of independence
implies

𝜋𝑖 𝑗 = 𝜋𝑖+𝜋+ 𝑗 ,

where 𝜋𝑖+ and 𝜋+ 𝑗 are the row and column marginals. The Pearson 𝜒2 statistic can
examine this specification.

To allow for non-independence, the model can be generalized by

𝜋𝑖 𝑗 = �̄�𝜋(𝑖)𝜋( 𝑗)𝜋(𝑖, 𝑗)

with ∑︁
𝑖

𝜋(𝑖) =
∑︁
𝑗

𝜋( 𝑗) =
∑︁
𝑖, 𝑗

𝜋(𝑖, 𝑗) =
∑︁
𝑖, 𝑗

𝜋𝑖 𝑗 = 1,

where 𝜋(𝑖), 𝜋( 𝑗) and 𝜋(𝑖, 𝑗) are component probabilities and �̄� is a normalization
constant. Model (1.2) nests model (1.1) if the departure from independence has
equal probability, 𝜋(𝑖, 𝑗) = 1/𝐼𝐽 for all 𝑖, 𝑗 , and one obtains �̄� = 𝐼𝐽, 𝜋(𝑖) = 𝜋𝑖+, and
𝜋( 𝑗) = 𝜋+ 𝑗 . A logarithmic transformation of (1.2) leads to the log-linear probability
model

log𝜋𝑖 𝑗 = 𝜇+𝑢𝑖 +𝑢 𝑗 +𝑢𝑖 𝑗 (1.1)

with restrictions ∑︁
𝑖

𝑢𝑖 =
∑︁
𝑗

𝑢 𝑗 =
∑︁
𝑖

𝑢𝑖 𝑗 =
∑︁
𝑗

𝑢𝑖 𝑗 = 0. (1.2)

Equations (1.2) are the so-called analysis of variance (ANOVA) restrictions. 𝜇
(= log �̄�) is a constant, while 𝑢𝑖 and 𝑢 𝑗 represent the main effects of variables 𝐴 and
𝐵, respectively. The parameters 𝑢𝑖 𝑗 denote the bivariate interaction terms, which
quantify the association between categories 𝑖 and 𝑗 of both variables. A positive
association is indicated by 𝑢𝑖 𝑗 > 0, whereas a negative association is indicated by
𝑢𝑖 𝑗 < 0. Through straightforward algebraic manipulation of equations (1.1) and (1.2),
it can be demonstrated that 𝑢𝑖 𝑗 represents the deviation of log𝜋𝑖 𝑗 from the arithmetic
means of the respective column and row logged probabilities, in addition to the
overall mean of the logged probabilities.

Consider now three categorical variables 𝐴, 𝐵,𝐶 with categories 𝑖 = 1,2, . . . , 𝐼;
𝑗 = 1,2, . . . , 𝐽; 𝑘 = 1,2, . . . ,𝐾 with contingency table {𝜋𝑖 𝑗𝑘}. Then the corresponding
LLP model is

log𝜋𝑖 𝑗𝑘 = 𝜇+𝑢𝑖 +𝑢 𝑗 +𝑢𝑘 +𝑢𝑖𝑘 +𝑢 𝑗𝑘 +𝑢𝑖 𝑗𝑘 , (1.3)

where restrictions similar to (1.2) hold. Restrictions 𝑢𝑖 𝑗𝑘 = 0 for all 𝑖, 𝑗 , 𝑘 impose
independence of association. If 𝑢𝑖 𝑗𝑘 = 0 and 𝑢𝑖 𝑗 = 0 for all 𝑖, 𝑗 , 𝑘 , variables 𝐴 and 𝐵
are conditionally independent. Equation (1.3) (like equation (1.1) in the two-variable
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case before) is nothing more than a re-parameterization of the underlying three-way
contingency table. It is therefore also called a ’saturated’ model specification.

Equation (1.3) considers joint dependence of variables 𝐴, 𝐵, and 𝐶. A conditional
probability model 𝑃𝑟 (𝐴|𝐵,𝐶), where 𝐴 is endogenous and 𝐵,𝐶 are exogenous, is
provided by

log𝜋𝑖 𝑗𝑘 = 𝜇 𝑗𝑘 +𝑢𝑖 +𝑢𝑖 𝑗 +𝑢𝑖𝑘 . (1.4)

This presumes the independence of association, a common assumption in econo-
metrics. The conditional probabilities of the categories of one or more dependent
variables, given one or more independent variables, are determined solely by the main
effects of the dependent variables, the interactions among the dependent variables,
and the interactions between the dependent and independent variables, excluding the
main effects of and the interactions among the independent variables.

Parameter estimates 𝑢 for (1.4) are obtained by assuming product multinomial
sampling and maximizing the concentrated log-likelihood function

𝐿 (𝑚𝑖 𝑗𝑘 |𝑢) =
∑︁
𝑖, 𝑗 ,𝑘

𝑚𝑖 𝑗𝑘 log𝜋𝑖 | 𝑗𝑘 ,

using standard techniques. An asymptotically valid covariance matrix Ω of the
estimates allows for the usual testing procedures. Estimation details are provided
in Nerlove and Press (1973), Kawasaki and Zimmermann (1981) and Bishop et al.
(1988).

The LLP model provides detailed category-wise associations between categorical
variables; however, it lacks an overall measure that summarizes the effects, such
as a correlation coefficient for continuous variables. (Of course, a straightforward
likelihood-ratio test can be employed to assess the significance of the entire set of
bivariate interaction parameters, as compared to a model that omits these parameters.)
Conversely, numerous nominal and ordinal association measures have been employed
in traditional contingency table analysis, independent of the LLP approach (for
references see Bishop et al., 1988). Despite this, no dominant index for discrete
data has emerged. While most variables in the business survey are ordinal, some are
nominal. The Mannheim project conducted an intensive examination of this literature
and attempted to integrate contingency table association measures into the LLP
analysis.

Following Kawasaki and Zimmermann (1981), two association measures are
examined within the framework of the LLP model. Numerous applications in the
business survey literature have used this research approach (see, for instance, Nerlove,
1983 and Kawasaki et al., 1983). It is noteworthy that the LLP model does not impose
any ordering. Thus, the detailed effect parameters capture associations solely on
a nominal scale. By connecting these parameters with association measures, the
information contained within the various parameters can be consolidated into a single
index, which can then be interpreted ordinally.

The bivariate component probabilities 𝜋(𝑖, 𝑗) and 𝜋(𝑖, 𝑘) are directly related to
the estimated interaction parameters for equation (1.7), e.g., for 𝜋(𝑖, 𝑗):
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𝜋(𝑖, 𝑗) =
exp(𝑢𝑖 𝑗 )∑

𝑖′
∑
𝑗′ exp(𝑢𝑖′ 𝑗′ )

, 𝑖, 𝑖′ = 1,2, . . . , 𝐼; 𝑗 , 𝑗 ′ = 1,2, . . . , 𝐽.

The core idea is now to apply association measures to those tables: Following
Kawasaki and Zimmermann (1981), the two measures suggested here are 𝛾 and Φ2.
The first is an ordinal measure, while the second is a nominal measure of association.
𝛾 was initially introduced by Goodman and Kruskal (1979) for standard contingency
table analysis and is highly regarded in that literature.

The first measure is defined as

𝛾 =
𝑃𝑆−𝑃𝐷
𝑃𝑆 +𝑃𝐷 ,

where

𝑃𝑆 = 2
∑︁
𝑖

∑︁
𝑗

𝜋(𝑖, 𝑗)
[∑︁
𝑖′>𝑖

∑︁
𝑗′> 𝑗

𝜋(𝑖′, 𝑗 ′)
]

𝑃𝐷 = 2
∑︁
𝑖

∑︁
𝑗

𝜋(𝑖, 𝑗)
[∑︁
𝑖′>𝑖

∑︁
𝑗′< 𝑗

𝜋(𝑖′, 𝑗 ′)
]
.

𝑃𝑆 (𝑃𝐷) is the probability of a positive (negative) association between both
variables based on the orders of the categories for both variables. Hence, 𝛾 is positive
(negative) if it is more probable to obtain a positive (negative) than a negative
(positive) association if one selects individual observations.

Φ2 quantifies the difference between a set of probabilities 𝜋(𝑖, 𝑗) and the expected
values derived from a specific probability model. When the equal probability model
(𝜋(𝑖, 𝑗) = 1/𝐼𝐽) is used as the reference, the result obtained is:

Φ2 =
∑︁
𝑖

∑︁
𝑗

[𝜋(𝑖, 𝑗) − �̂�(𝑖, 𝑗)]2
�̂�(𝑖, 𝑗) =

1
𝐼𝐽

∑︁
𝑖

∑︁
𝑗

[𝐼𝐽𝜋(𝑖, 𝑗) −1]2.

Φ2 measures how different the association for a given model specification is from a
reference model of zero bivariate interaction parameters.

Let u𝐴𝐵 represent the vector of the bivariate interaction parameters 𝑢𝑖 𝑗 between
variables A and B, and Ω𝑢𝑢 denote the corresponding covariance matrix. The
asymptotic distributions of the estimated association measures can then be derived
using the delta method. For instance, one obtains for 𝛾 the variance formula 𝛾′𝑢Ω𝑢𝑢𝛾𝑢,
where 𝛾𝑢 is the gradient of 𝛾(u𝐴𝐵). Kawasaki and Zimmermann (1981) provide
detailed formulas.

It is important to note that the LLP model primarily identifies correlations or
associations rather than establishing causality. While it provides valuable insights
into the relationships between variables, it does not inherently determine causal
links. Therefore, researchers must employ additional methods and frameworks, such
as experimental designs or causal inference techniques, to establish causality with
greater confidence. LLP models nevertheless remain an important instrument for
explorative data analysis.
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1.4.2 Formation of Price Expectations, Output Plans, and Subsequent
Realizations

The Mannheim business survey data project has resulted in a substantial number
of published research papers, which are too numerous to comprehensively review
and evaluate within this chapter, although some work will be discussed later on.
Consequently, this section concentrates on the two flagship publications of the
project, examining their efforts to reveal the microdata-based evidence concerning
the formation of price expectations, output plans, and their subsequent realizations
by business firms. The two key studies are: Marc Nerlove’s 1983 paper, Expectations,
Plans, and Realizations in Theory and Practice, published in Econometrica, and the
1981 study co-authored by Heinz König, Marc Nerlove, and Gilles Oudiz, On the
Formation of Price Expectations. An Analysis of Business Test Data by Log-Linear
Probability Models, published in the European Economic Review (König, Nerlove &
Oudiz, 1981 and Nerlove, 1983).

The paper by König et al. (1981) was presented at the prestigious International
Seminar on Macroeconomics (ISoM), held on June 23-24, 1980, in Oxford, UK. The
inclusion of a business survey paper in a macroeconomic conference underscored the
growing significance of microdata analyses in addressing macroeconomic questions.

The ISoM was initiated in 1978 as a joint venture between the National Bureau of
Economic Research (NBER) and the French École des Hautes Études en Sciences
Sociales (EHESS). At its inception, it was co-directed by Georges de Ménil, Robert
J. Gordon, and Jean Waelbroeck, who were instrumental in guiding its academic
focus. The seminar evolved into a crucial forum for the exchange of innovative
macroeconomic research, promoting collaboration among economists from Europe
and the United States. With the exception of its first year, the seminar’s proceedings
were consistently published in the European Economic Review, facilitating broad
distribution of the research presented. Although EHESS was instrumental in ISoM’s
establishment, the leadership has since 1993 become more globally inclusive, with
leading economists from various institutions assuming control. The latest ISoM event
was held on June 4–5, 2024, and was hosted by the Bank for International Settlements
in Basel, Switzerland.

Marc Nerlove delivered Nerlove (1983) as the Presidential Address at the 1981
European Meeting of the Econometric Society, which took place in Amsterdam from
August 31 to September 4, 1981. The fact that Marc selected this subject for his
address as the President of the Econometric Society indicates that, among the diverse
research areas he engaged in, he considered the outcomes of the Mannheim Business
Survey project to be of significant importance. The paper not only reviews previous
studies of the project but also considerably expands on the research questions and
findings. In the following, I will first summarize and examine the key findings of
Nerlove (1983), and then highlight the differences and additions with respect to König
et al. (1981).
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Marc Nerlove’s Presidential Address to the Econometric Society

In his 1983 research, Marc Nerlove explores the complex link between the expectations
or plans of firms regarding prices and output and the actual outcomes they experience.
Utilizing comprehensive business survey data from manufacturing companies in
France (INSEE) and Germany (Ifo data), the study examines how accurately firms
predict outcomes, the consistent biases in their forecasts, and the processes that shape
expectation formation. A major conclusion of the study is that firms often underes-
timate the probability of change, with their expectations frequently centering around
the ‘no change’ category, while actual results show more variability. Additionally,
the research highlights notable differences between countries, with German firms
demonstrating more stability in their expectation-formation processes compared to
French firms.

Expectations and plans are crucial in the economic decision-making processes
of firms, yet modeling these empirically had been challenging at the time of the
research work. The paper examines several straightforward models of expectation
formation, such as extrapolative expectations, adaptive expectations, and error-
learning mechanisms, to assess their ability to explain firm behavior. The findings
indicate that firms mainly apply error-learning models, where expectations or plans
are adjusted based on previous forecasting errors, rather than solely on extrapolative
models that simply project past trends into the future. A significant finding is
that, although price and output expectations show some persistence, firms tend
to be systematically conservative in their forecasts about future conditions. This
conservatism is evident in a strong tendency to predict ‘no change’, a pattern observed
in both French and German firms. However, the data suggest that this conservative
approach is more evident among German firms, while French firms exhibit more
variability in their expectations and plans.

The paper further explores the systematic biases present in the expectations of
firms. German companies consistently underestimate the extent of changes in demand,
production, and prices. Although they predict changes less often than they actually
occur, their forecasting errors remain relatively stable over time. This consistency
indicates that German firms use fairly uniform rules for forming expectations, making
their biases foreseeable. In contrast, French companies show significant variability
in how they form expectations. The study reveals that the connection between
planned and actual changes in production, demand, and prices is much more erratic
among French firms, suggesting that their forecasting rules are less consistent or
that they operate in a more unpredictable economic environment. The instability of
conditional distributions in the French data suggests that economy-wide factors, such
as macroeconomic shocks or policy changes, may affect firms’ expectation errors in
an inconsistent way.

How closely are firms’ price expectations linked to their production plans? If
companies determine prices based on forecasted demand and anticipated production
limitations, one would anticipate a strong connection between changes in price
expectations and adjustments in production plans. Yet, the findings in the paper
indicate a surprising level of independence between these two processes. A joint
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model estimated for price expectations and production plans shows that changes in
price expectations and production plans occur almost independently. This observation
is consistent among both French and German firms, challenging standard economic
models that suggest firms adjust prices and output simultaneously in response to
demand shocks. The observed independence might be due to rigidities in price-
setting behavior. German firms, in particular, seem to modify their production
plans in response to unexpected demand changes but do not necessarily alter their
pricing strategies accordingly. This implies that supply-side constraints or competitive
pressures might restrict firms from freely adjusting prices in response to actual shocks.

What is the role of demand shocks in plan fulfillment? The study also identifies
the elements that influence whether companies stick to their original plans. A central
hypothesis examined is that unforeseen shifts in demand significantly impact whether
companies alter their production strategies and pricing forecasts. The findings reveal a
strong link between unexpected demand changes and the inability to meet production
plans. For both French and German firms, when actual demand diverges considerably
from what was expected, they are much more inclined to modify their production
strategies. However, there are differences in how these companies adjust their pricing
strategies. German companies are more likely to change their price forecasts in
response to production deficits, whereas French companies do not show a consistent
pattern between unexpected demand and changes in price expectations. This indicates
that price-setting in France might be more inflexible, potentially due to regulatory
limitations, labor market challenges, or institutional factors that restrict firms’ ability
to adjust prices in response to demand changes.

The paper further explores an economically rich conditional probability model
that connects firms’ production strategies to crucial economic factors like demand
expectations, inventory appraisals, and recent demand fluctuations. The empirical
findings indicate that firms are more inclined to plan production increases when
(i) they have recently observed a rise in demand, (ii) they perceive their inventory
levels as insufficient, and (iii) they anticipate an increase in future demand. These
results strongly support the idea that firms’ production planning is influenced not just
by extrapolative trends but by a combination of demand conditions and inventory
assessments. Additionally, the empirical estimates for both French and German firms
are strikingly similar, implying that the fundamental economic mechanisms driving
production planning are largely consistent across different institutional settings.

In conclusion, Nerlove (1983) enhances the understanding of how expectations are
formed and their influence on the decision-making processes of firms. The research
emphasizes the systematic biases present in firms’ predictions, which often lean
towards anticipating stability in prices and output, even though actual outcomes show
significant fluctuations. While error-learning models effectively explain price and
demand expectations, production plans seem to be more closely linked to economic
fundamentals like demand expectations and inventory levels. The apparent disconnect
between price expectations and production plans indicates that firms’ pricing strategies
might be constrained, limiting their adaptability. This has significant implications for
economic modeling, especially regarding monetary and fiscal policy, as it implies
that firms might not react to demand shocks as standard equilibrium models would
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predict. The differences observed between French and German firms highlight the
impact of institutional factors on expectation formation and the execution of plans.
The more stable expectation processes of German firms suggest they operate in more
predictable market conditions, whereas the instability in the French data indicates a
more volatile economic environment.

Comparing Nerlove, 1983, with König, Nerlove and Oudiz, 1981

Marc Nerlove’s 1983 paper and the earlier 1981 study co-authored by Heinz König,
Marc Nerlove, and Gilles Oudiz analyze business survey data from German and
French firms. Both articles employ data from the Ifo Institute (Germany) and INSEE
(France) to examine how firms form expectations, revise their plans, and ultimately
adjust their business decisions in light of realized outcomes. However, while the 1981
article focuses exclusively on price expectations, the 1983 study expands the scope
to include production plans and demand forecasts, providing a broader view of firm
behavior. This comparative analysis highlights the methodological advancements,
empirical findings, and theoretical contributions of both works, while also considering
their implications for economic modeling and firm decision-making.

Methodological foundations and innovations. Both articles share a methodo-
logical commitment to using log-linear probability models to analyze categorical
business survey data. The 1981 study introduces this approach as an alternative to
traditional time-series analysis, arguing that direct survey data on firms’ expectations
provide richer insights into the expectation formation process than conventional econo-
metric models that rely on observed outcomes alone. The 1983 article builds upon this
foundation, maintaining the log-linear probability framework while further extending
it with recursive conditional probability models. This additional methodological layer
allows the later study to examine how different business expectations—such as price
anticipation, production plans, and demand forecasts—interact with one another and
evolve over time.

A significant methodological difference is how expectations are modeled. While
Nerlove (1958a) laid the groundwork with the adaptive expectations model, emphas-
izing how expectations adjust in response to forecast errors, this early work relied on
time-series macro data estimation rather than directly observed micro expectation
data. The 1981 study now focuses on price expectations using qualitative micro data,
examining them through adaptive and extrapolative models. It investigates whether
firms rely more on past realizations or on adjustments based on recent forecast errors.
The 1983 study broadens this approach, applying similar models not only to price
expectations but also to production planning and demand forecasting. In doing so,
it tests whether firms treat these different expectations as interconnected or if they
develop them in isolation from one another. The 1983 study also provides a more
refined assessment of expectation stability, comparing how German and French firms
revise their forecasts in response to past realizations.

A notable methodological advancement in the 1983 paper is its application of
recursive models to capture the sequential nature of business decision-making. By
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structuring the analysis to acknowledge the interdependencies among various decision
variables, the 1983 study offers a more nuanced view of firm behavior. This is evident
in its treatment of production plans, where the paper investigates whether firms adjust
their planned output in response to unexpected demand fluctuations.

Empirical findings. The two articles arrive at different conclusions regarding how
companies develop and adjust their expectations. The 1981 study reveals a strong
link between price expectations and past outcomes, indicating that firms often base
their future price forecasts on recent pricing patterns. However, it also highlights
notable differences in expectation formation between German and French firms.
German firms’ price expectations exhibit greater stability over time, whereas French
firms’ expectations fluctuate more widely. This implies that the process of forming
expectations is shaped not only by economic fundamentals but also by institutional
and behavioral influences.

The 1983 study builds on these findings by demonstrating that the stability of
expectations varies depending on the type of business decision. German firms show
consistency in their price and demand expectations but display more variability in
production planning, suggesting that they treat pricing and production decisions
as somewhat separate. Conversely, French firms exhibit more volatility in their
expectations for prices, demand, and production, indicating a less structured approach
to business planning.

One of the most striking findings in the 1983 paper is that production plans
and price expectations are nearly independent of one another. This contradicts
conventional economic models that assume firms jointly determine pricing and output
strategies in response to market conditions. Instead, the study finds that firms often
revise their price expectations based on past price trends, while production plans
are adjusted primarily in response to demand fluctuations. This suggests that firms
may not always coordinate their pricing and output decisions optimally, either due to
rigidities in pricing strategies or constraints in adjusting production capacity.

The differences between German and French firms are especially insightful in
this context. The 1983 paper indicates that German firms typically adjust production
in response to demand changes, whereas French firms show greater uncertainty in
revising their expectations. This instability might be attributed to macroeconomic
factors such as inflationary pressures, labor market rigidities, or variations in industrial
policy. The greater stability in German firms’ production plans suggests a reliance on
structured forecasting methods or long-term strategic planning.

Challenges of rational expectations. Both studies have added to the prevailing
debate at the time on rational expectations, a theory suggesting that economic agents
form their expectations using all available information in an unbiased statistical manner.
The 1981 study already reveals that firms’ price expectations do not entirely align
with rational expectations; instead, they are shaped by a combination of extrapolative
and adaptive processes. Firms adjust their expectations based on past outcomes
but also display systematic biases in their predictions. This finding contradicts the
rational expectations hypothesis, which assumes that economic agents will eventually
eliminate systematic forecast errors.
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The 1983 study supports this conclusion and broadens it to include other business
decisions beyond price expectations. By demonstrating that firms’ production plans
and price expectations are largely independent, the later study indicates that firms
do not always optimize their decisions in a fully coordinated way. This challenges
standard economic models that assume firms maximize profits by jointly determining
prices and output levels. Instead, it suggests a more fragmented decision-making
process, where pricing and production planning function as separate mechanisms
influenced by different sets of expectations.

An additional significant contribution of the 1983 study, beyond the earlier work, is
its examination of the stability of expectations over time. While rational expectations
theory posits that firms should gradually refine their forecasts as they gather more
information, the study finds that expectation formation remains highly variable,
particularly among French firms. This implies that firms may encounter constraints
in processing information efficiently or that they rely on heuristics rather than formal
predictive models.

1.5 Research Impact

1.5.1 Firm Price and Output Changes and Rational Expectations

Marc Nerlove inspired numerous research papers involving him and/or other members
of the Mannheim group. In relation to the key papers examined in section 3.2,
Nerlove (1983) and König et al. (1981), this section highlights four papers that
expand on these themes, authored by junior team members, specifically Kawasaki
et al. (1982) on Disequilibrium dynamics: An empirical study and Kawasaki et al.
(1983), Inventories and price inflexibility, on the development of firm price and output
changes, as well as Kawasaki and Zimmermann (1986), Testing the rationality of
price expectations for manufacturing firms, and Zimmermann (1986), On rationality
of business expectations: A micro analysis of qualitative responses, on rational
expectations. The fact that we were able to undertake this work independently was a
remarkable acknowledgment of our strong support for the general project.

Output and price flexibility

Kawasaki et al. (1982) primarily examines how firms adjust their prices and output
levels in response to disequilibrium situations. It focuses on whether these adjustments
move firms closer to or further away from equilibrium. The paper defines disequilib-
rium based on firms’ assessments of their inventory levels and unfilled orders. It finds
that firms often experience disequilibrium, with around 60 percent of observations
indicating misalignment in either inventories or order backlogs. The study also finds
that firms respond to stock disequilibrium within one month, using both price and
output adjustments, but with a notable difference in flexibility: output adjustments
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are more frequent than price changes. Contrary to conventional expectations, the
study finds no significant evidence that prices are less flexible downward than upward.
The authors also highlight that flexibility in price and quantity adjustments varies
significantly across industries.

Kawasaki et al. (1983) extends this analysis by providing a more nuanced explan-
ation of why prices appear less flexible than quantities. Developing a theoretical
model following Kirman and Sobel (1974) for orientation, it introduces a distinction
between firms’ responses to transitory versus permanent changes in demand. The
study argues that firms react differently depending on whether demand fluctuations
are perceived as short-term or long-term. Using changes in incoming orders from the
previous month as a measure of short-run demand shifts, and expected changes in
business conditions over the next six months as a proxy for long-run demand shifts,
the study demonstrates that firms adjust both price and output when responding to
permanent demand changes. In contrast, firms primarily adjust output, rather than
prices, in response to transitory changes in demand. This theoretical refinement helps
explain why price changes are observed less frequently than output adjustments in
the short run.

Overall, while Kawasaki et al. (1982) focuses on the general disequilibrium
behavior of firms and their tendency to favor output over price adjustments, Kawasaki
et al. (1983) deepens the analysis by distinguishing between different types of demand
shocks and showing that price changes are more likely to accompany long-term shifts
in demand. The latter study thus provides an explanation for the empirical finding
that price flexibility appears lower than quantity flexibility. Together, these papers
contribute to a better understanding of firm behavior in disequilibrium situations by
clarifying the role of demand expectations in shaping firms’ pricing and production
decisions.

How are Kawasaki et al. (1982) and Kawasaki et al. (1983), in the following KMZ,
related to Nerlove (1983)? Beyond common data and similar methods, a common
interest is to understand how firms adjust prices and output in response to economic
conditions, though they approach these questions with different emphases.

The 1982 finding of KMZ that firms more frequently adjust output than prices in
response to inventory imbalances and unfilled orders aligns with Nerlove’s broader
theme that expectations and realizations often diverge due to structural constraints
and uncertainties in firms’ decision-making processes. The 1983 extension by KMZ
refines this analysis by distinguishing between permanent and transitory demand
shocks, showing that price adjustments primarily occur when demand changes are
perceived as long-term, whereas short-term fluctuations tend to induce output changes
instead. This finding intersects with Nerlove’s work, which examines how firms’
expectations about future conditions shape their planning and decision-making.

Nerlove (1983) while explicitly modeling the process by which firms develop
price and production plans based on past realizations and expected future demand
demonstrates that firms systematically underestimate the volatility of their environ-
ment. Their expectations disproportionately concentrated in the ‘no-change’ category
compared to actual realizations. This tendency is consistent with the findings of KMZ
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1983, who also observe that firms exhibit inertia in their pricing behavior, preferring
to adjust output rather than prices unless they perceive demand shifts as permanent.

The findings of KMZ contributed significantly to the macroeconomic debates
of the 1980s, particularly in the discourse surrounding Keynesian and neoclassical
perspectives on price and output flexibility. In the Keynesian tradition, particularly
in the emerging New Keynesian framework, price and wage stickiness were central
tenets, implying that firms tend to adjust output rather than prices in response to
demand fluctuations. The 1982 study reinforced this view, demonstrating that firms
predominantly altered quantities rather than prices when reacting to disequilibrium.
This evidence supported Keynesian models emphasizing nominal rigidities, which
explain persistent unemployment and output fluctuations. The observation that output
is more flexible than prices bolstered the argument that aggregate demand shocks have
tangible effects on employment and production rather than being quickly neutralized
through price adjustments.

However, their 1983 study introduced a nuanced perspective, complicating the
Keynesian interpretation. By differentiating between permanent and transitory demand
shocks, the authors found that firms adjusted prices when demand shifts were perceived
as permanent but changed output levels when shifts were seen as temporary. This
behavior aligned with rational expectations theory, a core component of neoclassical
economics, which also gained prominence in the 1980s (see below). The evidence
suggested that firms acted with foresight, adjusting prices strategically based on their
expectations of future demand rather than being universally constrained by price
rigidity.

These findings also had implications for Real Business Cycle (RBC) theory,
developed by Kydland and Prescott (1982), which posited that business cycles stem
primarily from real supply-side shocks rather than demand fluctuations. The tendency
of firms to adjust output more than prices in response to short-term shocks was
consistent with RBC models, which downplayed price distortions as a driver of
economic fluctuations. However, the fact that firms adjusted prices in response to
long-term demand shifts indicated that price flexibility was conditional rather than
absolute, contradicting the RBC assumption of continuously clearing markets.

Ultimately, KMZ bridged the divide between Keynesian and neoclassical perspect-
ives. The 1982 study reaffirmed the Keynesian argument for output flexibility and
price stickiness, justifying fiscal and monetary interventions to stabilize demand.
Their 1983 research, however, highlighted the role of expectations and selective price
adjustments, incorporating elements of rational expectations into the analysis of
market behavior. By distinguishing between short- and long-term adjustments, these
studies helped refine macroeconomic modeling, influencing the evolution of New
Keynesian economics, which sought to integrate rational expectations into traditional
Keynesian frameworks.

Their work also resonated with the broader RBC literature by acknowledging that
while short-run price rigidity exists, firms adjust strategically when they anticipate
permanent shifts in demand. This insight challenged the pure RBC view that markets
always clear efficiently but suggested that elements of RBC modeling could be
reconciled with observed price-setting behavior.
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In sum, their findings provided empirical support for both Keynesian and neoclas-
sical theories, demonstrating that firm behavior is more complex than either paradigm
alone suggests. By illustrating how firms navigate disequilibrium through both output
and price adjustments based on expectations, their work contributed to the ongoing
development of macroeconomic thought in the 1980s and beyond.

Rational expectations

Kawasaki and Zimmermann (1986) analyze the rationality of price expectations
among German manufacturing firms using data from the Ifo Business Survey. Their
study examines the biases in firms’ prediction-realization tables for prices, production,
and demand, testing whether these expectations align with the rational expectations
hypothesis. Their findings suggest that firms exhibit systematic biases with a tendency
to overestimate their prices and predict price changes more conservatively than actual
realizations.

One key finding is that German firms are more likely to overestimate rather than
underestimate their future selling prices. This means that firms systematically predict
price levels to be higher than they turn out to be. This pattern contradicts the rational
expectations hypothesis, which assumes that forecasting errors should be random
rather than displaying a systematic bias. The authors quantify this bias using measures
of forecast accuracy and consistency and find that firms exhibit a clear tendency
toward over-prediction.

Another crucial result relates to firms’ expectations regarding price changes.
Firms tend to be conservative in their predictions, meaning that they systematically
underestimate the magnitude of their price fluctuations. Instead of forecasting large
shifts in prices, firms expect smaller and more gradual changes. This finding suggests
that firms may relate their expectations too heavily to recent past price movements
rather than efficiently incorporating all available information, which is another
violation of the rational expectations hypothesis.

To formally test for rationality, the study employs an efficiency test to examine
whether price forecast errors are systematically related to past price changes. If firms
were forming rational expectations, forecast errors should be uncorrelated with past
information. However, the study finds a strong and persistent relationship between
price surprises and one-period lagged price changes. This result indicates that firms’
price expectations are influenced by past trends in a way that makes their errors
predictable, another departure from rationality.

Beyond price expectations, the study also investigates production and demand
forecasts. Similar to their findings on prices, the authors observe that firms’ expecta-
tions for production and demand also exhibit systematic biases, with firms tending to
overpredict levels of demand and underpredict variability in production levels. These
biases further support the conclusion that firms do not form expectations in a fully
rational manner.

The implications of these findings extend to broader economic modeling and
policymaking. Many macroeconomic models assume that firm and individual ex-



26 Zimmermann

pectations are rational, meaning that systematic forecasting errors should not persist
over time. However, Kawasaki and Zimmermann’s results suggest that firms’ price
expectations are neither unbiased nor efficient. This challenges the assumptions
underlying many economic models and suggests that firms’ price-setting behavior
may not fully account for all available information, possibly because of adjustment
costs, informational constraints, or behavioral tendencies.

The rational expectations hypothesis was originally formulated by Muth (1961)
in his seminal paper. He argues that economic agents form their expectations in
a way that is consistent with the true underlying economic model, meaning that,
on average, their forecasts do not systematically deviate from the predictions that
would be made using all available information. This concept became central to
macroeconomics, particularly through the work of Robert E. Lucas Jr. in the 1970s,
who integrated it into macroeconomic models (Lucas, 1976 and Lucas, 1972).
His application of rational expectations laid the foundation for the New Classical
approach, which fundamentally challenged Keynesian economics by arguing that
systematic monetary policy interventions would be largely ineffective in influencing
real economic variables. This perspective was reinforced by Sargent and Wallace
(1975), who introduced the policy ineffectiveness proposition, arguing that only
unexpected policy changes could affect output and employment.

The findings of Kawasaki and Zimmermann (1986) and Zimmermann (1986) are
consistent with the research results by Nerlove (1983) and König et al. (1981) as
summarized in section 1.4.2. They had significant implications for these macroe-
conomic debates. As the rational expectations framework underpinned the policy
ineffectiveness proposition, the empirical rejection of unbiased and efficient expecta-
tions suggests that government policy could still have real effects, even if anticipated.
This provides empirical support for the emerging New Keynesian critique of the New
Classical approach. If expectations were not fully rational and exhibited systematic
biases, this implied that price and wage rigidities, as modeled in New Keynesian
frameworks, could have real economic consequences.

1.5.2 Development of the Research Field

The research output from project-related scholars and beyond experienced a significant
surge, expanding in multiple directions. Reviews of this evolution can be found in
Zimmermann (1997) and Becker and Wohlrabe (2008). Zimmermann (1997) examines
various topics, including ‘predictive performance,’ ‘the formation of anticipations,’
‘rational expectations,’ ‘output and price responses,’ ‘determinants of labor demand,’
‘innovations, patent activity, and trade,’ as well as ‘seasonality in business surveys’.
Meanwhile, Becker and Wohlrabe (2008) focus on ‘studies on expectation formation,’
‘special survey questions on innovation,’ and ‘business cycle analysis’.

For a long time, German and French datasets dominated publications in this
field. However, research soon expanded to other countries. Notable examples include
Nerlove and Zepeda Payeras (1986) for Mexico, Ghysels and Nerlove (1988) for
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Belgium, Pupillo and Zimmermann (1991) for Italy, and Nerlove and Schuermann
(1995) for Switzerland and the United Kingdom.

The project’s earliest publications include König (1979) written in German, and
Koenig and Oudiz (1979) written in French. An important milestone was König
and Nerlove (1980), initially presented at the CIRET conference in Lisbon and
later published in the conference proceedings. These early contributions laid the
groundwork for later studies such as König et al. (1981) and Nerlove (1983).

Over a span of 16 years, Marc Nerlove maintained a strong research focus on
business cycle-related topics. Of the 23 papers he published on the topic between 1979
and 1995, nine appeared in CIRET conference volumes—representing approximately
39 percent of his output in this area. This translates to an average of 1.4 papers per
year, alongside numerous other contributions across diverse fields.

In the following discussion, I highlight several key studies carried out or inspired
by the work of Marc Nerlove and his team. These studies examine various topics,
including expectation formation, labor demand, innovation, international trade, and
seasonality. Beyond expanding the range of topics, researchers have also introduced
different econometric methods, enriching the analytical approaches applied in this
field.

Expectation formation. The debate on expectation formation remains unresolved,
with findings varying depending on the measurement approach and data source. Using
a latent variable model and business survey data, Ivaldi (1992) finds that the rational
expectations hypothesis is not consistently rejected for the French manufacturing
sector. In contrast, Nerlove and Schuermann (1995), applying different latent variable
models, firmly reject rational expectations for firms in Switzerland and the UK.
However, their analysis also challenges the validity of adaptive and naive expectations
models. Further evidence from British business survey data by Low, McIntosh
and Schiantarelli (1990) reveals systematic biases in firms’ forecasts. Their study
indicates a tendency to overpredict changes in prices, costs, and new orders, while
underestimating actual production levels.

Labor demand. What drives firms’ labor demand? The Ifo business survey data
do not include direct information on wages or labor costs, and technical change is
often poorly measured. To address this, König and Zimmermann (1984) integrated
industry-level wage and nonwage labor costs from macroeconomic sources. Their
analysis, based on log-linear probability models, finds that while these costs have a
statistically significant effect on employment plans, their influence is surprisingly
weak. Instead, labor demand is primarily shaped by capacity utilization and production
expectations. To explore this further, Ross and Zimmermann (1993) use a categorical
indicator model, leveraging a specific Ifo survey question where firms identify up to
two key factors influencing their employment plans. The available options include
demand uncertainty, insufficient demand, high labor costs, a shortage of skilled
workers, and labor-saving technical progress. Their findings strongly indicate that
insufficient demand is the dominant factor driving labor demand. This result remains
robust across different model specifications, including adjustments for firms’ export
market integration and disequilibrium conditions.
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International trade. Using Italian business survey data and Probit models, Pupillo
and Zimmermann (1991) find evidence that Italian foreign and domestic markets are
segmented, as firms can set different prices, with foreign markets displaying greater
price elasticity. In a related study, Zimmermann and Pupillo (1992) analyze the
factors influencing firms’ export activities using OLS and Poisson regressions. Their
results show that firm size positively affects relative export levels and the number
of export regions, while its impact on export share variability is negative and often
insignificant. Market concentration variables yield inconclusive results.

Innovations. Business survey data often provide discrete information on a firm’s
introduction of product or process innovations, the number of patents, or innovation
expenditures. According to industrial organization research, innovative activity is
typically linked to firm size, market concentration, and demand pressure. Zimmermann
(1985b) was the first to analyze these relationships using business survey data.
Employing Ifo data and Probit models, the study integrates industry-level information
with firm-level data to capture industry structure more precisely. The results confirm
that while firm size and market concentration positively influence innovation, the
most decisive factor is firms’ expectations of long-term demand. Building on this,
König and Zimmermann (1986) merge innovation data from the German business
test with information on innovation expenditures from the Ifo innovation test. Using
Probit and Tobit models, their analysis further reinforces the conclusion that demand
expectations play the dominant role in driving innovative activity.

Seasonality. A technical challenge in analyzing business surveys is accounting
for seasonality. Firms are often instructed to exclude seasonal fluctuations from
their responses, yet seasonal effects may still persist in the data. Using log-linear
probability models and German data,Flaig and Zimmermann (1983) show that
production plans and realizations exhibit seasonal patterns, though the extent varies
across variables, potentially biasing parameter estimates. Ghysels and Nerlove (1988)
examine seasonality in business survey data from Belgium, Germany, and France,
also using log-linear probability models. They find substantial seasonal effects but
note that responses to seasonally adjusted questions generally reflect a reasonable
level of adjustment.

1.6 Conclusions

This chapter examined a significant period in the academic career of Marc Nerlove,
documenting his contributions to the economics profession and his broader influence
as a researcher and mentor using his long-term project on business test data as a
case study. In general, Nerlove’s work exemplifies visionary leadership and intel-
lectual breadth, spanning a remarkable array of subdisciplines within economics
and econometrics. His research has had a lasting impact on fields such as agricul-
tural and development economics, labor and population studies, time-series and
microeconometrics, qualitative data analysis, business cycle theory, and forecasting.
His legendary curiosity and openness to new challenges, topics, and collaborations
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made him an entrepreneurial figure in the academic world. By fostering international
networks of scholars, he shaped the careers of numerous PhD students and research
partners, many of whom have made it later into influential positions in academia and
policy institutions. His extensive publication record in top-tier journals and widely
respected books underscores his intellectual rigor but also reflects his commitment
to the broad dissemination of ideas. Unlike those who prioritize publishing only in
the most prestigious journals, Nerlove seemed to strategically chose diverse outlets,
including book chapters and lesser-ranked journals, demonstrating a strong belief in
making high-quality research widely accessible across the profession.

One of the major undertakings of the Mannheim group, the Mannheim Business
Survey project, co-directed by Heinz König, is a landmark in the early development
of microeconometrics for qualitative firm data. The project played a crucial role in
advancing qualitative data econometrics at a time when the field was still dominated by
time-series analyses of macro-data and a rapidly rising interest in creating individual
data-based household-level studies. Introducing log-linear probability models and
applying association measures and Pseudo-R²s provided methodological innovations
that expanded the possibilities for empirical research. Moreover, it was the first to
apply these techniques to business survey data, thereby integrating micro-level firm
data into econometric research in a novel and influential manner. These contributions
not only served as methodological milestones, but also influenced subsequent large-
scale survey initiatives, such as the German Socio-Economic Panel (GSOEP), which
emerged in the same period with support from members of the Mannheim group.
While access to Ifo business data was initially restricted and limited to a short time
period of the data source, the Ifo Institute has since made these data available for
researchers, reflecting a long-term impact on the accessibility and use of business
survey data in empirical economics.

The Mannheim project vitalized the CIRET research conferences, fostering an
enduring global forum for the exchange of ideas in business cycle analysis and
survey-based research. While the impact of the work has been felt across multiple
economic subfields, the research contributions of the group have been particularly
influential in shaping the microfoundations of key macroeconomic debates. Empirical
insights were provided into the evolution of firm-level output and pricing behavior,
the nature of disequilibrium adjustments in response to economic shocks, and the
role of rational expectations in shaping business decisions.

In the broader context of macroeconomic theory, the Mannheim group offered a
data-driven perspective on the Keynesian-neoclassical debate, particularly through
the lens of rational expectations. By rigorously analyzing firm-level data on price
and production expectations, their research tested the extent to which firms rationally
form expectations or whether systematic biases exist. These findings challenged
some of the prevailing assumptions in macroeconomic modeling, highlighting the
importance of micro-level heterogeneity and the limitations of aggregate models
that overlook firm-specific behaviors. These insights have had lasting implications
for both theoretical and applied research, influencing how economists conceptualize
expectation formation, policy effectiveness, and business cycle dynamics. Through
their empirical approach, the Mannheim group not only enriched the discussion on
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rational expectations but also demonstrated the necessity of grounding macroeconomic
debates in robust microeconometric evidence. The legacy of this research lies not only
in methodological contributions but also in the persistent advocacy of data-driven
economic inquiry, a principle that continues to shape the field today.
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Chapter 2
Still the ‘Dismal Science’ Two Centuries after
Malthus? Marc Nerlove’s Research on Population
and the Environment

John Rust

Abstract I discuss prescient theoretical work by Marc Nerlove and coauthors on
population and environmental dynamics, including whether world population will
eventually reach a steady state and if so, whether such a steady state will be an dystopic
one where the planet is overpopulated and environmentally degraded with low wages
and welfare per capita, or more of a utopic one, with a smaller population where higher
environmental quality and per capita wages and welfare can be sustained. I consider his
theoretical predictions in light of four decades of subsequent research and experience
on population, economic growth, and climate change. Though the future remains
highly uncertain, my reading of the evidence agrees with the pessimistic conclusion
of Nerlove and Meyer (1997) that “the unpriced nature of environmental resources
leads parents to fertility decisions which, while optimal from their own selfish point
of view, ultimately lead to environmental disaster.” I discuss the worldwide slowdown
in fertility but express doubt that the deceleration in population growth is sufficient
by itself to reduce the likelihood of environmental disaster. The biggest threat to
the biosphere is uncontrolled growth in per capita output, absent a ‘silver bullet’
technological solution to the climate crisis.

2.1 Introduction

Marc Nerlove richly deserves the title of ‘Renaissance scholar’ for his wide-ranging
contributions to economics, spanning fields from econometrics to agricultural and
resource economics, using both applied and theoretical modes of analysis. His areas of
expertise included development, demography and environmental/resource economics.
In this chapter I consider how his work influenced current research and relates to
critical problems facing the world today. Though most of Marc’s work in this area
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was theoretical rather than empirical, his concerns and conclusions were prescient
and of central relevance four decades later.

Marc’s earliest published work in this area includes Nerlove (1974) where he noted
that few of the then-existing models of economic growth accounted for endogenous
population growth, and among those that did, “few theories of population growth
and family decision-making have gone much beyond the Malthusian model” which
posited that “the development of mankind was severely limited by the pressure that
population growth exerted on the availability of food” (Abramitzky & Braggion, 2003,
p. 423). Of course, the Malthusian prediction of stagnant real wages was belied by the
exponential growth in population, total output, and per capita output and wages after
the Industrial Revolution. Marc recognized that this phenomenal growth could not be
explained solely as a result of investment in physical capital and improved agricultural
productivity. Instead, “crucial to the understanding of long-term growth, that much
investment which occurs in the economy is made in human beings rather than in
physical capital and that fertility itself is shaped in important ways by economic
considerations has led to renewed interest in the economics of household decisions.”
He offered suggestions as to how a developing theory of “new home economics”
may be “integrated in a theory of economic growth and development through an
understanding of the way in which investment in human capital increases the value of
human time and thus changes over time the resource constraints and the relative costs
and prices which ‘households’ face in their decisions on the number and quality of
children they attempt to produce.” (p. S201).

Marc also realized that the exponential economic and population growth following
the Industrial Revolution may not be sustainable, and would ultimately exact a huge
environmental toll that could potentially slow or even end the two centuries of
phenomenal population and economic growth. In 1991 Marc delivered the inaugural
Frederick V. Waugh Memorial Lecture to the American Economics Association with
a paper titled “Population and the Environment: A Parable of Firewood and Other
Tales” Nerlove (1991). Marc noted that “At bottom, many long-term environmental
problems, whether they derive proximately from use of modern agricultural technology
to augment food production or too rapid exploitation of exhaustible energy and other
natural resources, stem ultimately from the pressure of human population and
human desires for subsistence, if not greater, levels of creature comforts.” (p. 1334).
He developed a ‘planar’ (i.e., two variables) overlapping generations model with
endogenous fertility and environmental degradation, with a focus on less developed
countries where children are often treated as unpaid workers helping in household
production, and thus valued at least in part for their ability to increase household
consumption (for example, through animal husbandry or gathering firewood). In
Marc’s model, population growth degrades the environment, but the environment also
has a feedback effect on fertility. Normally we might expect a degraded environment
to reduce fertility and thus constitute an ‘automatic stabilizer’ against excessive
population growth, consistent with Malthus’s theories. However, Marc considered the
implications of the empirically justified assumption that “in much of the Third World
fertility is likely to react positively to environmental degradation because parents
perceive the benefits of having more children to be higher under environmentally
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more adverse circumstances than under more favorable ones.” Marc’s analysis lead to
the dismal conclusion that ”the possibilities for a stable equilibrium between human
population and its environment are quite limited.”

“Even given a relatively favorable relationship between population pressure and the evolution
of environmental degradation over time, a stable equilibrium can be achieved only if fertility
responds negatively to environmental degradation and then only if the response is sufficiently
large in absolute magnitude in relation to the dynamic response of the environment to
population pressure. Under exceptionally adverse environmental circumstances, rising death
rates can ultimately bring a halt to further environmental deterioration and/or lead to human
extinction.”

While Marc’s ‘parable’ was focused on developing countries rather than developed
ones, I believe his arguments apply more generally to the entire world due to our
failure to achieve a sustainable ‘ecological footprint’ and particularly our inability to
collectively limit carbon dioxide (𝐶𝑂2) emissions and the global warming it causes.
Marc noted “Hardin’s justly famous ‘The Tragedy of the Commons’ of how the
unpriced or underpriced character of environmental and other natural resources leads
to overexploitation and ultimate degradation” and the “population pressure which
lies behind such degradation and depletion especially in developing countries” but
recognized that there is no good or easy solution to this problem. Economists can
pretend that a Pigouvian carbon tax can solve the greenhouse gas externality, but
Marc was wise enough to know that the state of politics is a huge barrier to the mass
cooperation (e.g., via the Paris Climate Accords) necessary to impose and enforce
such a tax and transfer proceeds to compensate harmed individuals around the world.
This is just the Tragedy of the Commons in another form, a political tragedy.

I consider Marc’s predictions in light of more than three decades of new empirical
evidence and theoretical work on these topics. In Section 2.2 I discuss the dynamics
of world population, looking back historically at the causes of the rapid acceleration
in the populations of Europe and North America after the Industrial Revolution,
and the delayed takeoff in the populations of China and India until after the ‘Green
Revolution’. The paradox is that the rapid increase in overall population has occurred
despite falling total fertility rates.

The secular decline in total fertility has fallen to below the 2.1 child replacement
rate in most parts of the world outside Africa and other less developed countries in
the Middle East. Many forecasts predict that world population will top out at about
10 billion by 2100, but it is not clear whether this will be a stable steady state, or
will start to decline — a prospect that many observers find quite alarming. At least
in developing countries, increasingly pessimistic expectations about the future state
of the world may be one of the causes of the general decline in fertility in virtually
all developed countries around the world. Unfortunately, even if population growth
stopped immediately, it is insufficient to avoid a ‘climate crash’ and the suffering that
will cause for millions or even billions of people around the globe.

Malthusianism has been widely discredited in failing to predict the astounding
epoch of exponentially increasing population and income per capita following the
Industrial Revolution (or Green Revolutions in China and India). Malthus made the
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mistake of extrapolating that past experience would continue for the foreseeable
future, and he failed to predict the major ‘structural break’ that occurred with the
Industrial Revolution. It may be just as foolhardy to predict that exponential growth
in population and per capita income will also continue for the indefinite future as do,
for example, Tupy and Pooley (2022). We know world population growth is slowing
dramatically and is likely to level off, so the relevant question now is: can per capita
income can continue to grow exponentially without bound? Whether this is possible
depends largely on technology and whether continued growth can occur without the
huge damage to the environment it has inflicted so far. So a modern-day version of
Malthusianism could be stated as: will environmental degradation, particularly global
warming, put binding constraints on how much per capita income can grow in the
future, or can we count on technology to save us?

In Section 2.3, I argue that slowing population growth is insufficient by itself to solve
the climate problems we are facing. From the available evidence I have seen, even if
population and per capita income were to remain fixed at their current levels, humanity
will still face a growing maelstrom of increasingly severe environmental disasters
including hurricanes, floods, forest fires, droughts, and rising sea levels that make major
population zones near sea level uninhabitable. Section 2.4 considers technological
change and whether it provides a ‘silver bullet’ that can slow global warming and
environmental degradation without requiring current and future generations to endure
a substantial cut in their living standards. All of these changes could potentially be
managed if humans as a whole were able to cooperate and agree on policies (including
taxes and transfers) that could mitigate the effects of climate change, slow the rate
of environmental degradation and find ways for humans to coexist with artificial
intelligence (AI) and other advanced technologies. But international rivalries, political
tribalism, influence and lobbying by powerful business interests including the fossil
fuel industry, climate denialism, outright stupidity, and of course the Tragedy of
the Commons leave me with little hope that a silver bullet technological fix or the
necessary mass cooperation could be achieved before huge irreversible damage is
done, something Wagner and Weitzman (2015) call Climate Shock. Thus, I agree
with the prognosis that Marc reached over 3 decades ago, but not just for a handful of
developing countries, but the entire planet.

I warn that I am not a demographer and don’t claim to be an expert on these
issues. My views are based on my own reading of literatures including demography,
economics, environmental and climate science. I am trying, in my own small way, to
emulate Marc, whose work inspired me to think both broadly and deeply on a topic
of critical importance, even though unlike him, I do not use a mathematical model to
discipline my intuitive speculations. Though I agree with Marc that there are no good
or easy solutions, in Section 2.5 I discuss some limited but feasible policies that do not
require mass cooperation (e.g., subsidizing green energy, hardening infrastructure, and
making food supplies more resistant to weather and climate shocks). These policies
could help blunt some of the worst outcomes of increasingly frequent environmental
disasters if global warming can’t be halted in the coming decades.
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2.2 End of the Population Explosion?

Marc’s warning that unabated population growth could lead to environmental disaster
was not new: there were other apocalyptic predictions of this nature going back to
the controversial book ‘The Population Bomb’ (Ehrlich & Ehrlich, 1968). Outdoing
even Malthus, the Ehrlichs predicted that hundreds of millions of people would die
of starvation by the mid 1970s. Paul Ehrlich warned in 1970 that “sometime in the
next 15 years, the end will come.” By “the end” Ehrlich meant “an utter breakdown
of the capacity of the planet to support humanity.” (quoted from Haberman, 2015).

Marc’s warnings focused on developing countries such as sub-Saharan Africa
where we have seen ecological disasters such as drought resulting in famines and
mass starvation. But he also warned of human extinction, so it is not clear whether
he was making predictions applicable to the entire world as the Ehrlichs and others
had done. Regardless, Marc’s work does have implications for how global population
growth affects the environment of the entire planet, and in my comments below I take
a global perspective.

Fifty years after the publication of the The Population Bomb there is still huge
polarization and disagreement about whether the exponential population and economic
growth is sustainable, especially given the uncontrovertible evidence of substantial
environmental damage due to global warming. On one extreme there is a ‘pro-growth
lobby’ that denies that climate change is a threat to humanity and argues that the genies
of technology and human creativity will invariably overcome any such temporary
obstacles to limitless growth, and categorizing environmentalists as enemies of
progress (e.g., Tupy & Pooley, 2022). On the other is an ‘anti-growth lobby’ that
argues the world must restrain economic and population growth to avoid disaster.
Some of the most extreme incarnations of this point of view treat capitalism as the
enemy and threat to human survival, and therefore advocate for degrowth communism
(e.g., Saitō, 2020).

As usual the truth, and rational guidance on policymaking, can be found somewhere
between these two extremes. In this section, I briefly review how we got to where we
are, and discuss some of the best available forecasts of where the world population
will go in the future. While it is always hazardous to forecast far into the future, a
wide range of demographic projections predict that world population will top out at
around 10 billion before 2100. But it is an incontrovertible fact that total fertility rates
are falling all across the planet, and that an increasing number of developed countries
are now experiencing negative population growth. For example, China’s population
of 1.4 billion fell by 1.39 million over 2024, its third straight year of population
decline. The population of Korea, the nation with the world’s lowest total fertility
rate (TFR) of 0.8, has declined since 2020. Japan has been shrinking for the past 15
years. The populations of over a dozen other countries such as Italy, Greece, Poland,
Portugal, and less surprisingly, Venezuela, are all in decline.

The prospect of a falling world population is viewed as a dire threat by some. Elon
Musk tweeted that “population collapse due to low birth rates is a much bigger risk
to civilization than global warming.” Donald Trump has said that “collapsing fertility
is a bigger threat to Western civilization than Russia.” The Prime Minister of Japan
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claimed that its low birthrate leaves them “standing on the verge of whether we can
continue to function as a society” Ip and Adamy (2024). However, my guess is this
is a development Marc would have welcomed as necessary for humanity to enjoy
a sustainable and prosperous future. Speaking for myself, except for a transition to
an older world with an increase in the dependency ratio starting with the wave of
retirements by Baby Boomers (which does present a huge challenge to many countries
around the world) I think the concern about lower populations in the long run if the
decline in fertility persists is much ado about nothing. I do not view population decline
as a threat. Instead, the best evidence is that it is a consequence of improvements in
living standards in modern civilization, combined with a change in traditional social
norms. Further, who knows? the decline in TFR might reverse in the future. As I will
argue in Sections 2.3 and 2.4, climate change and artificial intelligence are the real
threats to the future well-being of humanity.

The term demographic transition is used, roughly speaking, to describe different
regimes in worldwide population growth, taking the pre-industrial ‘Malthusian’ epoch
of slow population growth as the point of departure. Though demographers have
finer distinctions of the stages or phases of the demographic transition, I will just
lump them into two: 1) the population explosion, and 2) post-industrial stagnation
and decline.

2.2.1 Demographic Transition Phase 1: Population Explosion

Let’s start by briefly reviewing the basic facts on how we got to where we currently
are, with a world population of slightly over 8 billion according to the US Census
Bureau’s population clock. As a point of comparison, I take the year 1800, two years
after Malthus published his famous essay, Malthus (1798). World population in 1800
was roughly 1 billion people, so world population has increased by a factor of 8 in the
two centuries after Malthus. The year 1800 is also significant because it was roughly at
the start of the demographic transition (i.e., start of the population explosion) and the
midpoint of what we now call the Industrial Revolution, which ignited an exponential
economic growth in Britain and later the US and other European countries (though
not China or India, which did not take off until after the Green Revolution in the
1960s as I discuss further below).

Looking back from Malthus’s vantage point in 1800, world population in 1600
was about 500 million, so world population doubled in the two centuries prior to
Malthus, but world GDP also roughly doubled over the same time (from 77 billion in
current dollars in 1600 to 175 billion in 1800 according to the Wikipedia on Gross
World Product), leaving GDP per capita essentially unchanged. This of course is
consistent with the key Malthusian hypothesis: as income and productivity grow,
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population grows proportionately to keep real output per capita (and real wages)
roughly constant.1

However, the sustained growth in total and per capita GDP and real wages after
1800 was phenomenal: by 2020 total world GDP had increased by 400-fold, and with
population increasing 8-fold, it follows that real GDP per capita increased 50-fold.
Not all of the increase in GDP per capita translated into higher real wages and
consumption per capita, though Crafts (2022) concludes while “real consumption
earnings growth was slower than the growth of labour productivity the difference is
not as large as has been suggested” (p. 11). So not only has there been a huge increase
in population, but also a huge increase in consumption per capita, which combine
multiplicatively into a unsustainable environmental impact of the human race on the
planet. Some geologists refer to the current era as the Anthropocene in recognition of
the massive impact that economic growth and human activity has had on the climate
and biodiversity.

A number of different factors lead to the population explosion, but a key explanation
is the fact that around 1800 “the average death rate decreased, from an average 30
deaths per 1000 inhabitants in the beginning of the 19th century to around 15 deaths
per 1000 citizens by the beginning of the 20th century. In the meantime, the birth rate
however stayed at its previous, high level of 30-35 births per 1000 inhabitants” (Bavel,
2013 p. 284). The improvement in mortality can be attributed to the cumulative
impact of a number of key scientific discoveries that improved health, sanitation and
agricultural output which reduced the incidence and severity of “of epidemic diseases
or failed harvests and famine, or a combination of both”. As a consequence, “Later
on in the 19th century, child survival began to improve. Vaccination against smallpox
for example led to an eradication of the disease, with the last European smallpox
pandemic dating from 1871.”

The population explosion began in Europe and North America, but in other parts of
the world it did not happen until much later, particularly in India and China, because
the Industrial Revolution did not occur in these countries. There are a multitude of
complex reasons for this lag, partly due to cultural differences as well as colonial
exploitation by European imperialists. But suffice it to say that transportation and
communication were much more costly and slower than they are now, so scientific
knowledge and technological know-how did not diffuse nearly as rapidly as they do
today. The populations of China and India did not explode until after the ‘Green
Revolution’ in the 1960s.

Prior to the 1960s the food supply in India was insecure, and imported grains
and rice were required for much of the population to attain a subsistence diet.
A combination of periodic droughts, poor crop yields, inefficient farming, and
interruptions in imports lead to periodic famines, such as the Bengal famine of 1943

1 Bouscasse, Nakamura and Steinsson (2025) argue that in England “productivity growth was zero
prior to 1600” but growth started after 1600. They estimate “productivity growth of 2% per decade
between 1600 and 1800, increasing to 5% per decade between 1810 and 1860.” Thus, there was
only small growth in real wages between 1600 and 1800 and “a large and sustained fall between
1450 and 1600, some recovery over the 17th century, stagnation during the 18th century, and finally
a sharp increase after 1800.”
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that killed 2 million. In the 1960s the Nobel Prize winner Norman Borlaug so-called
‘father of the Green Revolution’ introduced dwarf wheat into India and Pakistan,
causing production to increase enormously. He is credited with saving over 1 billion
lives in India, Mexico and elsewhere.2

However, it is not clear that increased food supply due to the Green Revolution was
the primary cause of the population explosion in India. In fact, Gollin, Hansen and
Wingender (2021) claim that the high yield grains introduced by Borlaug “increased
income and reduced population growth” (p. 2344). This mechanism behind this is not
entirely clear since the authors did not specifically model fertility choices but they
conjecture that the higher crop yields and income caused by the Green Revolution
may “make parents substitute child quantity for child quality, leading to lower fertility
and better education outcomes” (p. 2357). An alternative explanation is similar to
Marc’s Parable of Firewood: the increase in yields allowed agrarian households to
be more productive without having to rely on as many children to do chores on the
family farm, such as tending livestock or fetching water. This is particularly true
for the poorest, as Traeger (2011) notes: “Poor families are typically larger because
they use children as a source of generating income via child labor. Parents also have
children for insurance purposes because they envision needing help when they get
older” (p. 87).

But the main cause of India’s population boom is the same one that caused the
population explosion in Europe and North America after the Industrial Revolution:
improved healthcare and public health measures that significantly reduced death
rates (particularly during childhood), while birth rates remained relatively high in the
decades after the Green Revolution. TFR was 5.9 per household in 1960, gradually
decreasing to 2.2 by 2020. The slow reduction in TFR combined with the more rapid
reduction in mortality lead to a rapid increase in population despite efforts at family
planning, which was further compounded by factors such as early marriage, illiteracy,
and poverty. In 1800 the population of India was 169 million, and by 1960 it had
grown to 450 million, which is only slightly slower growth than the 3-fold increase
in world population. Today India has a population of 1.4 billion, a 311% percent
increase since 1960 compared to a 266% increase for the world as a whole over this
same period. India’s fastest population growth occurred after the Green Revolution.

In China, the population explosion was also not primarily caused by the Green
Revolution, but rather the impact of new fertility policy in China between 1950 and
1970 when Chairman Mao Zhedong promoted large families. Howden and Zhou
(2015) show that this policy change, combined with “General improvements to
healthcare did have beneficial results on population growth” especially a large decline
in infant mortality after the mid 1960s (p. 237). The authors outline another significant
cause of the boom that is consistent with Marc’s Parable of the Firewood story: “The
hukou system nationalized all the country’s lands and remunerated workers for their
labor hours instead of for their output. At the same time, the scarcity that plagued the

2 This is a good example of how technological progress can enable us to overcome what seem to be
hard environmental constraints. As Howden and Zhou (2015) note, “Ehrlich’s pessimistic forecast
was proved wrong, though due mostly to the increased crop yields from the Green Revolution, not to
an imminent reduction in the global population.”
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country after the Great Leap Forward left parents with few options to provide a better
life for their families. Paradoxically, perhaps, one way to increase family earnings
was to have additional children. Although children were remunerated less than adults,
they still provided an important source of resources for their family. Chinese parents
tried to escape poverty by having children as a source of income” (p. 246).

Mao’s fertility policies were perhaps too successful, increasing the Chinese
population by nearly 50% from 655 million in 1960 to 970 million in 1979, while TFR
fell from about 6 in the 1960s to just over 2 by 1979. In 1979 China announced a new
one child policy (1CP) that is “widely regarded as an effective piece of government
legislation that saved the country from a Malthusian fate” (Howden & Zhou, 2015
p. 227). However, the data show that GDP per capita was basically flat from 1960
to 2000, so the 1CP may have prevented excessive population growth that could
have otherwise reduced per capita output and real wages.3 Economic models have
been developed to predict the counterfactual outcome on output, wages, and welfare
without 1CP. The analysis of Liao (2013) finds that “The results suggest that imposing
the one-child policy promotes the accumulation of human capital. In addition, the
economy enjoys higher per capita output. However, output per capita fluctuates after
the policy is enforced.” Another counterfactual analysis by Gu (2022) finds that “the
one-child policy increases the human capital of affected agents by about 47% relative
to a counterfactual with no fertility restrictions. However, the effect on aggregate
income is negative as the size of the labor force falls.” It also increased individual
welfare, since “the fertility restriction is a binding policy, it is immediate that it lowers
the welfare of generations giving birth during the policy implementation. However,
for generations born under the policy, higher human capital and a higher physical
capital to labor ratio increase their welfare.”

To summarize, the population explosion was associated with a rapid change
in many countries from the ‘Malthusian era’ of pre-industrial agrarian and rural
economies to post-industrial urbanized economies due to the Industrial Revolution
in Europe and North America around 1800 and improvements in child mortality
in India during the Green Revolution and Maoist pro-fertility policies in China in
the 1960s. Cumulative scientific advances lead to improvements in sanitation and
health and increased productivity in food production that enabled mortality to rapidly
fall (particularly child mortality), while fertility remained high due to inertia from
social mores and customs. Child mortality is known to have a strong effect on fertility
decisions due to the replacement effect of families having more children when child
mortality is higher (see, e.g., Wolpin, 1984).4

3 The ‘Chinese Economic Miracle’ started after 2000, when GDP grew from roughly $1 trillion in
2000 to nearly $18 trillion by 2023.
4 Nerlove (1991) noted the “pioneering numerical work of Wolpin” for providing “a significant
break-through in the development of a satisfactory analytical characterization of the observed
empirical regularity in terms of the structure of the parent’s utility function and the existence of
ex ante costs.” In homage to Marc’s work on adaptive expectations, I speculate that there must be
lagged adjustment in households’ beliefs about child mortality, since a model such as Wolpin’s with
rational expectations predicts that TFR falls as soon as child mortality falls.
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2.2.2 Demographic Transition Phase 2: Stagnation and Decline

In the second phase, global TFR has steadily dropped from 4.8 in 1950 to 2.2 in
2021 (Fertility & Collaborators, 2024, p. 2075). According to Wikipedia the annual
growth rate in world population fell from a high of 2.1% in the baby boom year of
the 1960s to below 1% today. Currently, 47 countries in the world have negative
population growth rates due to TFR below the steady state replacement rate of 2.1.
The comprehensive study by Fertility and Collaborators (2024) finds over 100 out of
204 countries/territories have TFR below 2.1. Only 47 countries currently have TFR
above 2.1 and most are in Africa and the Middle East, but TFR has been declining in
these countries as well. The country with the world’s highest TFR, 7, is Chad and for
sub-Saharan Africa, the average is 5.

These are facts that virtually everyone agrees with, but there is less consensus on
the causes of the secular decline in fertility and effectiveness of policies to increase
it. The complexity is that there are multiple causal factors at play and these can
differ in different societies, so in many cases the decline in fertility defies simple
explanations.5 But the usual list of reasons includes, beside the reduction in child
mortality already noted above, a shift in the population from rural to urban reducing
the need for children as household laborers, higher income and wealth lead to a
greater demand for education and the quality of children than quantity of them, higher
female education and job opportunities and better contraception leading to delayed
marriage and age of first birth, changing social norms about marriage and family
size, as well as effects of government policies such as the 1CP in China and family
planning programs in India that provided low cost access to contraceptives and family
planning education.6 More recently high cost of living and education and lack of
affordable housing could be reducing fertility in many densely populated urban areas
(e.g., China, Singapore, etc). Further, as I discuss below, increasing pessimism about
future living standards due to climate change, political instability, threat of World
War, and concerns about the revolution in AI on the demand for labor may lead fewer
couples to have children.

In terms of Marc’s Parable of Firewood, it is possible that in advanced soci-
eties, parental altruism towards their children operates in the expected direction:
couples may choose to have fewer or no children if they expect a degradation in the
environment in a generalized sense (i.e., where ‘environment’ includes economic
opportunities). However, this relationship seems very context-dependent, and in de-
veloping countries where subsistence agriculture is still prevalent, Marc’s hypothesis
of a positive relationship between environmental degradation and fertility is likely to

5 Kearney and Levine (2022) analyze the causes of a pronounced decline in US TFR after the Great
Recession in 2007 and conclude that “In summary, we have had no success finding evidence in favor
of any social, economic, or policy factors being important drivers of the recent decline in the US
birth rate, other than the appearance of the Great Recession.”
6 Though TFR is above the replacement rate in Africa, it is declining too, though at a slower rate.
Barrett and et al. (2020) note that “Sub-Saharan Africa’s slower fertility decline has been traced to
many reasons, including inheritance rules, the prevalence of polygamy, lack of access to modern
methods of contraception, low education among women, and kinship obligations” p. 6304
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hold empirically. The empirical study by Haq, Chowdhury, Ahmed and Chowdhury
(2023) finds evidence of this nature, but notes “The heterogeneity observed in the
effect of the ecological footprint on TFR underscores that both the magnitude and
direction of this relationship are intricately tied to socioeconomic conditions and
cultural contexts.”Casey et al. (2019) developed an OLG model of the global economy
to study the impact of climate change on fertility to provide insight into why environ-
mental degradation has different effects on TFR in developed countries compared to
developing ones: “Near the equator, where many poor countries are located, climate
change has a larger negative effect on agriculture. The resulting scarcity in agricultural
goods acts as a force towards higher agricultural prices and wages, leading to a
labor reallocation into this sector. Since agriculture makes less use of skilled labor,
climate damage decreases the return to acquiring skills, inducing parents to invest less
resources in the education of each child and to increase fertility. These patterns are
reversed at higher latitudes, suggesting that climate change may exacerbate inequities
by reducing fertility and increasing education in richer northern countries, while
increasing fertility and reducing education in poorer tropical countries.”

Galor (2005) offered a thought-provoking theory of fertility designed to explain
both phases of the demographic transition, i.e., the population boom at the start of
the Industrial Revolution followed by the stagnation starting in the middle of the 20th
century.

“In the early stages of the transition from the Malthusian regime, the effect of technological
progress on parental income dominated, and the population growth rate as well as the average
quality increased. Ultimately, further increases in the rate of technological progress that were
stimulated by human capital accumulation induced a reduction in fertility rates, generating
a demographic transition in which the rate of population growth declined along with an
increase in the average level of education. Thus, consistent with historical evidence, the theory
suggests that prior to the demographic transition, population growth increased along with
investment in human capital, whereas the demographic transition brought about a decline in
population growth along with a further increase in human capital formation.”

Galor (2022) cast his theory in almost Darwinian terms. He describes how
humanity escaped from the pre-industrial Malthusian equilibrium by considering two
clans: the Quantys (who prefer quantity of children over quality), and Qualys (who
prefer to have fewer higher quality children by not using them as productive assets
but investing more in their education while young). He asks, “Which of the clans, the
Qualy or the Quanty, will have more descendants and thus dominate the population in
the long run?” Counterintuitively, he argues that the Qualys will because the parental
investment in their human capital pays off in terms of their future success: “This
increase in earnings capacity would place the Qualy clan at a distinct evolutionary
advantage.” That is because the higher earnings of children of the Qualy clan will
reduce their mortality and enable them to have more offspring compared to children of
the Quanty clan, and thus have fewer children of their own that survive into adulthood.

Galor’s explanation suggests that members of the richer Qualy clan should have
higher fertility than the poorer Quanty clan, but this is not consistent with the empirical
evidence in the later stages of the Industrial Revolution. His theory is less clear on
what lead to continued reductions in fertility leading to the second stagnation phase of
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the demographic transition, but overall I agree with Galor’s theory that the desire to
invest more in children’s human capital to enable them to succeed, coupled with the
high cost of these investments ultimately lead to reduced fertility. As Will Hutton’s
review of Galor’s book succinctly summarized, the Industrial Revolution ushered
an era of “gradual quickening in the introduction of technologies that required mass
education for their successful implementation. This triggered a virtuous circle of
more innovation, more investment in education, more need to invest in the quality
of children rather than quantity, so that birthrates declined sufficiently to allow
living standards and life expectancy to rise. Because it was now rational to invest in
children’s education rather than get them working, child labour and exploitation fell
away” Hutton (2022).

Thus, whether parents are motivated to invest more in their children due to altruism
or for selfish reasons (e.g., to have wealthier, educated children to support them in
old age), Galor’s theory (applicable to developed countries) predicts that economic
growth caused the decline in fertility. To the extent that economic growth degrades
the environment, Marc’s model for undeveloped countries predicts the opposite.
However, Nerlove (1991) did not allow parents to invest in their children’s human
capital, whereas his prior work Nerlove (1974) did emphasize the importance of these
investments. In any event, it is now widely recognized that higher human capital
investment is a central cause of the secular decline in TFR and is one of the ‘new
stylized facts’ about economic and population growth, see Jones and Romer (2010).

A more ominous cause of declining fertility is the increasing pessimism of younger
generations about the future. The OECD report Society at a Glance notes that fertility
decisions are affected both by real and perceived economic uncertainties, and notes
that “Most analyses generally find that birth rates react negatively to economic
downturns.” Other concerns include “for example, climate change, of energy, food
and/or housing costs” and “many people anticipate geo-political instability and
socio-economic instability and the outlook is markedly more negative over a 10-year
timeframe”. Finally, it notes that “many people who believe that today’s children will
grow up to be worse off than their parents: over 50% in most OECD countries, and
in the majority of these countries this negative sentiment strengthened over the past
decade” (OECD, 2024, p. 25).

2.2.3 Will World Population Stabilize at 10 Billion?

Marc analyzed a dynamic overlapping generations model of population and the
environment but focused on steady state outcomes. Though fertility is declining
in most countries around the world, total population is still increasing. Will world
population ultimately reach a steady state, and if so, how large will it be? The best
estimates of future population growth come from the United Nations World Population
Prospects. Their 2024 forecasts go out to 2100 and are shown in figure 2.1 along
with 80 and 95% confidence bands. Population is projected to peak at 10.4 billion in
2086 and then slowly decline to 10.3 billion by 2100. For all practical purposes, this
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constitutes a steady state, if the fertility assumptions underlying its projections are
accurate.

Fig. 2.1: UN 2024 World Population Forecasts

Data source: United Nations, Department of Economic and Social Affairs, Population Division
(2024)

However, the size of the 95% confidence bands show there is considerable
uncertainty in these forecasts, and these confidence bands do not fully reflect
substantial uncertainty about how climate change, pandemics, AI, and other economic
uncertainties that could affect future population and fertility. Spears, Vyas, Weston
and Geruso (2024) illustrated how sensitive the UN forecasts are just to assumptions
about what they call the ‘long run TFR’ to which the world converges to at the end
of the UN forecast interval in 2100: “We show that any stable, long-run size of the
world population would persistently depend on when an increase towards replacement
fertility begins. Without such an increase, the 400-year span when more than 2
billion people were alive would be a brief spike in history. Indeed, four-fifths of all
births—past, present, and future—would have already happened.” The assumption
that TFR converges to values below replacement rate by 2100 and remains there
forever results in the ‘population spikes’ illustrated in figure 2.2 (taken from Spears
et al., 2024).

The scaling of figure 2.2, from 10000BC to 4000AD, seems designed to alarm,
though who knows, humanity could be just a temporary blip when you look at things
from a longer run though not quite geological timescale. But who can predict what
TFR will be by 2100, much less 4000? There are plenty of other things that could



48 Rust

Fig. 2.2: Forecasted population spikes if TFR is below 2.1 in 2100

Data source: (Spears et al., 2024)

happen well before 2100 that are far more consequential. Many experts worry that
humanity could be wiped out by AI long before 4000, with homo sapiens having
been superseded by newer generations of super-intelligent beings. For more realistic
horizons, the UN’s projections are more relevant, but there is huge uncertainty that is
not reflected in the confidence bands in figure 2.1. For example, what about the risk
of world war, or nuclear war? All of these risks are reflected in the recent decision
by the Bulletin of Atomic Scientists to advance their doomsday clock to 89 seconds
before midnight, the closest it has ever been. There are other very hard to predict risks
to the population such as pandemics, asteroid collisions or other global calamities
that are hard to factor into stochastic projections. Another risk, climate change, is
factored into the UN population projections but in an informal way, using a more
ad hoc feedback cycle. The UN world population forecasts are used in longer run
climate models to predict climate change, but the UN uses the predictions of climate
models to adjust its predictions of future TFR in different countries.
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In any event, barring some major disaster, it seems quite unlikely that world
population will decline substantially in the next few decades but rather will continue
to increase, even given the dramatic declines in TFR around the world. To a first
approximation, we can think of the planet as approaching at least a temporary ‘steady
state’ of 10 billion sometime before 2100. How long it will stay there is anyone’s
guess, but as I discuss below, there is significant risk that such a steady state will be
an environmentally degraded dystopia. In the shorter run, slowing TFR creates major
transitional problems that need urgent attention. In particular, how well will the world
be able to deal with the wave of retirements of the baby boom generation?

2.2.4 Can Migration Mitigate the Baby Boom and Demographic Divide?

The US Census Bureau constructs ‘age pyramids’ as side by side plots of the age
distribution for males and females plotted vertically with the oldest ages at the top.
A demographically young society has a triangular age pyramid, where most of the
population is young and only a minority old. The aging baby boom generation is
apparent in how the age pyramids evolve over time, appearing as a bulge in the age
distribution that widens the upper old age part of the age distribution over time. For
example, the largest age group in the population was 35 to 39 in 2000 and of course
this group are those born toward the end of the baby boom cohort. By 2010 the “wave”
in the age distribution corresponding to this cohort appears as a bulge in the share of
people aged 45 to 49. By 2020 the widest bulge was for individuals aged 55 to 59,
so it is evident how the age distribution is becoming ‘top-heavy’ from the aging of
the baby boom generation. Another way to illustrate the aging of the population is
via the dependency ratio which is the ratio of the population over 64 to the working
age population aged 15 to 64. This ratio has increased from 15% in 1960 to 27% by
2023. The wave of baby boomers is even more pronounced in China and its old age
dependency ratio is projected to more than double in the coming decades.

Government social insurance and retirement programs around the world that are
funded on a ‘pay as you go’ basis are increasingly on shaky foundations due to
the steadily increasing dependency ratio that is partly due to the post WWII baby
boom and the decline in TFR. The US Social Security system is partly funded by a
trust fund that is projected to run out in 2035, after which tax increases or benefit
cuts will be required. According to the IMF 11 of the largest developed countries
in the world have national debt to GDP ratios greater than 100%, with the average
for G7 countries being 128%. Combined with ‘taxpayer revolt’ it is not clear how
many nations have the ‘fiscal slack’ to be able to support their elderly populations
in retirement without a significant cut in standard of living. Even countries such
as China, with its comparatively lower 77% debt GDP ratio, face these challenges
due to its shrinking workforce and underfunded public pension system. As Fertility
and Collaborators (2024) observe, “Low levels of fertility have the potential over
time to result in inverted population pyramids with growing numbers of older people
and declining working-age populations. These changes are likely to place increasing
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burdens on health care and social systems, transform labour and consumer markets,
and alter patterns of resource use” (p. 2058).

A related near term challenge is how to deal with the growing demographic divide
i.e., the already noted disparity between the aging low fertility developed countries
and the younger high fertility developing countries, especially in Africa. A rational
solution to these problems would be to allow greater migration of younger workers
from low wage developing countries to help support the elderly populations in the high
wage developed countries. In principle, this would be a win-win situation that helps
the high fertility developing countries as well. As Fertility and Collaborators (2024)
observe, the “dramatic shift in the concentration of live births from middle-income
and high-income settings to low-income settings will lead to serious challenges
related to sustaining and supporting a growing young population in some of the most
heat-stressed, politically unstable, economically vulnerable, health system-strained
locations” (p. 2091).

Kennan (2013) used an economic model of factor price equalization to predict
the welfare gains from unrestricted international labor migration. He finds that “The
estimated gains from removing immigration restrictions are huge. Using a simple
static model of migration costs, the estimated net gains from open borders are about
the same as the gains from a growth miracle that more than doubles the income level in
less-developed countries.” However, the level of immigration resulting from an ‘open
borders’ policy would also be huge: his model predicts that in the post-immigration
steady state, the US would have 354 million new immigrants, relative to its native
population of 187 million working people aged 24 to 60.

It seems abundantly clear given the worldwide political backlash to the much
more modest immigration flows in recent years that there is little hope that countries
will relax immigration restrictions to address our demographic challenges in the
foreseeable future. The inability to transcend cultural differences exacerbated by
overblown fears of loss of jobs and higher crime by immigrants, combined with the
increasingly nationalistic/tribal nature of politics in even the most advanced countries
(such as Trump and the strong support he received to “build the Wall” and mass
deport undocumented individuals from the US and the increasingly strong support for
right wing extremist parties such as AfD in Germany or Orban in Hungary), makes it
clear that we will have to look to other policy approaches to address the near-term
problems posed by the baby boom transition and demographic shift.

2.2.5 Can ‘Pro Fertility Policy’ Reverse the Decline in Birth Rates?

There is plenty of evidence that some policies designed to limit or reduce birth rates
have been effective, such as the One Child policy in China, which I noted may actually
have been ‘too successful’ in prompting the Chinese government to rescind it and
now actively promote larger families. But evidence of the effectiveness of pro-fertility
policies that either intentionally or unintentionally promote higher birth rates is much
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less clear. This is an illustration of where it is possible to ‘pull on a string’ but not to
‘push on a string’.

For example, due to concern about low birthrates China’s 1CP started to be relaxed
for certain groups in 2011 and extended to an increasing share of the population until
it was completely abolished in 2016. In 2021 China adopted a ‘3-child policy’ to
try to change cultural norms towards bigger families. However, as I noted, China’s
population has been decreasing for the last several years. An empirical study by
Lin et al. (2024) concludes that “The results suggest that lifting birth restrictions
had a short-term effect on the increase in birth rates and rates of natural population
increase. However, birth policy with lifting birth restrictions alone may not have
sustained impact on population growth in the long run” (p. 364). So far, the Chinese
government’s moral suasion has not had a measurable impact on societal attitudes
toward family size, or overcome obstacles such as the high cost of raising children in
urban areas.

Other policies try to promote fertility through financial incentives, childcare
subsidies and job protection to families having children. As Hiriscau (2024) notes,
“The research literature has identified two primary sets of policies that can influence
fertility rates. One strand of the literature examines the impact of leave policies on
fertility, considering variations in benefits, duration, job protection, and availability
for either parent. Studies have indicated that maternity and parental leave policies
have a positive effect on fertility rates” and the other strand of literature “focuses on
the effect of financial incentives on fertility, particularly on child cash transfers and
child-related taxes.” Though many studies find statistically significant positive effects,
the cost of these incentives is large but their overall impact on fertility is not big, and
not enough to reverse the general decline in TFR around the world.7

There is a third class of policies that are not directly intended to increase birth
rates but rather restrict womens’ control over their fertility such as limits on or
bans on abortion (including the use of safe drugs for medicated abortions such as
Mifipristone), and reductions in funding and access to agencies that provide family
planning and access to birth control. An example is the Dobbs ruling by the US
Supreme Court in 2022 reversing the right to abortion that women had in all states,
allowing individual states to pass restrictions. Dench, Pineda-Torres and Myers (2024)
find that “The results indicate that states with abortion bans experienced an average
increase in births of 2.3 percent relative to if no bans had been enforced.”

Overall, I agree with the conclusions of Fertility and Collaborators (2024) that
there is no silver bullet policy that can reverse the secular worldwide downward trend
in fertility since 1950 “Social policies to improve birth rates such as enhanced parental
leave, free childcare, financial incentives, and extra employment rights, may provide
a small boost to fertility rates, but most countries will remain below replacement
levels.” Even if these policies had more powerful effects, they operate too slowly (i.e.,
over generations) to reverse the decline in TFR, and hence are not viable policies for

7 For example, Hiriscau (2024) studies the effect of an extension in paid maternity leave in Romania
from 60 days to 1 year and finds that families who are eligible for this benefit experienced only a 2.5
percentage point increase in the probability of having an additional child compared to families who
were not eligible.
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addressing the more immediate challenges posed by population aging, such as how to
deal with the wave of retirements by Baby Boomers the world is experiencing. I also
believe individual families should be free to determine how many children they have,
and agree with Tupy and Pooley (2022) who are “opposed to government measures
that would coerce or otherwise incentivize people to have more children. The human
population should reflect the free choices of individual men and women.”

However, I disagree with the claim by Fertility and Collaborators (2024) that
“once nearly every country’s population is shrinking, reliance on open immigration
will become necessary to sustain economic growth. Sub-Saharan African countries
have a vital resource that aging societies are losing—a youthful population.” Slowing
population growth can reduce the growth in total GDP, but it does not necessarily
reduce the rate of growth in per capita GDP as I discuss in the next section.

2.2.6 Will Slowing Population Growth Reduce Economic Growth?

If we are speaking of total GDP, generally yes. For example, in terms of the textbook
Solow-Swan growth model, along a ‘balanced growth path’ the growth in total output
or GDP equals the sum of the population growth rate 𝑛 and the rate of growth in output
per worker, 𝑔. But along such a path output per worker grows at rate 𝑔 independent
of 𝑛. So while it is true mechanically that a reduction in the rate of population growth
reduces the rate of growth of GDP, it is not clear why we should worry if output
per worker (i.e., GDP per capita) continues to grow at rate 𝑔 despite a decrease in 𝑛.
Growth in individual output, wages, and welfare is more important than the growth
of the entire economy.

The actual experience of many developed countries with falling population growth
rates demonstrates that slowing population growth rate does not reduce wage growth
or growth in GDP per capita. For example in China, we noted that the 1CP was a
major factor causing population growth rates to fall from 2.8% annual in 1970 to 0.8%
in 2000 to slightly negative by 2023, but the China Miracle happened nonetheless,
with per capita income growing by a factor of 8.4 from 2000 to 2023, or an average
growth rate of 9.4%. Indeed, as I discussed above, the purpose of 1CP was to restrain
the growth in population precisely in order to save China from a ‘Malthusian fate’.

Despite this success, I have already noted China’s abrupt end to 1CP in 2015
followed by further measures to reverse the continued decline in its population,
including a ‘three child policy’ (3CP) in 2021. China’s leaders evidently care about
the total size of the population and GDP, even though wages and per capita GDP
have been growing at a very rapid rate. Russia has adopted a series of policies to
increase its birth rate, given that its rate of population decrease ranks 16th among the
most rapidly shrinking countries worldwide and its TFR of 1.5 ranks it as the 171st
lowest among the 204 countries in the world. The Russian fertility policies started
out with using the carrot of incentive payments for having more children (tax breaks
and payments to women who have a second or third child), but have grown to include
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the stick of criminalizing ‘child-free propaganda’ and limiting access to abortion and
contraception. As I already discussed above, these policies have had limited success.

Why does the leadership of the largest countries care about the growth in total
population and GDP versus the growth in per capita output, wages and welfare of
their citizens? I speculate that it is partly due to fear of losing influence and power if
their ‘market share’ of world population and GDP declines over time. International
rivalries drive an interest in higher population growth in part due to a belief that there
are significant ‘returns to scale’ of larger populations leads to a larger consumer base,
labor pool, and domestic markets all of which can lead to higher R&D investment
to further increase the country’s productivity growth and technological edge. For
example, there is concern in the US that China is gaining a big lead by graduating
many times more engineers with undergraduate degrees as well as PhD degrees
in science, technology, engineering and math (STEM). A report by Zwetsloot et
al. (2021) warns that “We find that China has consistently produced more STEM
doctorates than the United States since the mid-2000s, and that the gap between the
two countries will likely grow wider in the next five years. Based on current enrollment
patterns, we project that by 2025 Chinese universities will produce more than 77,000
STEM PhD graduates per year compared to approximately 40,000 in the United
States. If international students are excluded from the U.S. count, Chinese STEM
PhD graduates would outnumber their U.S. counterparts more than three-to-one.”

A number of economists also believe that rapid population growth is essential for
technological progress. A leading proponent of this point of view is the late economist
Julian Simon who believed that “population growth, contrary to Malthusian theory,
actually drives technological progress, leading to increased resource abundance and
a better standard of living as human ingenuity finds solutions to resource scarcity
through innovation and substitution” Wikipedia. Simon’s 1981 book The Ultimate
Resource (Simon, 1981) argued that “A larger population influences the production
of knowledge by creating more minds to generate new ideas (the supply side) and
more consumers to drive up prices and create the financial incentives for the creation
of new knowledge (the demand side). This creation of knowledge ultimately makes
us wealthier and solves the problems that population growth and rising income
may cause” (Ahlburg, 1998, p. 322). Similar views are also echoed in the book
SuperAbundance Tupy and Pooley (2022). One reason why large populations promote
technological progress and therefore economic growth is due to the birth of geniuses
such as Edison or Einstein who are ‘rare events’ that are more likely to occur as tail
outcomes in huge populations. Simon concluded that it was valuable to promote large
populations to increase the likelihood of new geniuses born in the future whose ideas
could radically transform science and technology, which he assumed would benefit
all humanity.

While there is some truth in Simon’s point of view, it seems less relevant today given
an explosion in knowledge brought about by the Information Revolution with massive
increases in computer power, dramatic reductions in the cost of communication, and
the rapid accumulation and dissemination of knowledge via the Internet. In the last
few year incredible breakthroughs in artificial intelligence with the emergence of
large language models (LLMs) trained on the accumulation of data available via
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the Internet makes the prospect of ‘artificial general intelligence’ (AGI) more likely
and suggests that major scientific breakthroughs and an acceleration in technological
progress can occur without the need for steadily growing human populations. We
have recently seen a number of dramatic examples of how AI, using deep neural
networks and reinforcement learning, are producing game-changing technological
breakthroughs. For example, the 2024 Nobel Prize in Chemistry was awarded to a
team of computer scientists at Google for their development of ’Alpha Fold’ that
predicts the 3-dimensional folding of proteins that has huge importance in biology.8
It is not clear that large populations are the main cause of such breakthroughs, but
rather it is an example of ‘knowledge building on knowledge’ in an accelerating
fashion. Instead of ineffectual policies to increase population growth, we can promote
technological change more effectively via targeted investments in education and
research and development.

Simon’s theory that population growth is necessary for technological improvement
seems especially questionable given that the fastest population growth is happening
in the poorest, least well-developed countries in the world, but this is not where
game-changing new technologies are being born. Many developing countries such as
in Africa are facing huge challenges just supporting their current populations and
averting famine-induced starvation due to climate change, political instability, and
wars. Children there are growing up malnourished and poorly educated, and the large
waves of emigration from many of the least developed countries suggest that these
are not places where we can expect future scientific geniuses to be born and nurtured.
In my view, a policy of promoting even higher population growth in these regions
given these challenges to slightly increase the chance that the next transformative
genius might be born in one of these countries in the future seems both logically and
morally dubious.

The view that technological growth will at some point become self-sustaining and
disembodied from its human creators was anticipated by many thinkers, including
Ray Kurzweil in his 1990 book The Age of Intelligent Machines (Kurzweil, 1990).
His predictions were remarkably on-target: he argued that humans will eventually be
able to build something more intelligent than themselves. He predicted big strides
in pattern recognition (a key part of human vision), and knowledge representation
(as embodied in language), as two key components of intelligence, and showed how
quickly computers were advancing in each of those domains. Now, with the widespread
AI advances in language recognition and translation, computer vision and image
processing, and early examples of logical reasoning by LLMs, Kurzweil’s predictions
seem remarkably prescient. He currently predicts that “Artificial intelligence will
reach human levels by around 2029. Follow that out further to, say, 2045, we will
have multiplied the intelligence, the human biological machine intelligence of our
civilization a billion-fold.”

8 A Nature article by Callaway (2024) notes that Alpha-fold “has been nothing short of transformative.
The tool has made protein structures – often, but not always, highly accurate ones – available to
researchers at the touch of a button, and enabled experiments that were unimaginable a decade ago.”
Other biologists refer to it as a ‘major revolution’ that will further accelerate progress in biology.



2 Still the ‘Dismal Science’ Two Centuries after Malthus? 55

These revolutionary developments suggest that large populations are no longer
necessary to support rapid acceleration in technological progress and knowledge.
If anything, AI and not low population is what we should be worried about. Many
leading experts and thinker (e.g. the late Nobel prize winning physicist Stephen
Hawking) worry that the ‘genie is out of the bottle’ and human livelihoods could be
endangered by AI in the future. Indeed, we are already seeing many creative and
intellectual professions quite worried that AI will take away their jobs, including
graphic artists, musicians, journalists, and lawyers. At the very least, I would agree
with the conclusion of Jones and Romer (2010) that “this century will mark a
fundamental phase shift in the growth process. Growth in the stock of ideas will likely
no longer be supported by growth in the total number of humans.”

To summarize the main takeaways from this section: 1) the population boom
has ended, 2) economic and technological growth no longer depend on population
growth (i.e., human labor is no longer the scarce factor limiting growth), and 3) most
pro-growth fertility policies have only small impact. In the next section I argue slower
population growth is not to be feared, but potentially welcomed as an ‘automatic
stabilizer’ to mitigate the damage humanity is doing to the ecosystem – but it’s not
enough.

2.3 Will Slower Population Growth Avert Ecological Disaster?

The key innovation in Nerlove (1991) was to model the dynamics of environmental
capital 𝐸 jointly with the total population, 𝑁 . Higher values of 𝐸 correspond to
a better environment.9 Marc assumed that the state of the environment evolves as
𝐸𝑡+1 = 𝑔(𝐸𝑡 , 𝑁𝑡 ) which is monotonic in both arguments, i.e., higher 𝑁𝑡 lowers 𝐸𝑡+1
and higher 𝐸𝑡 raises 𝐸𝑡+1. He also assumed that the population growth rate depends
on 𝐸 , so total population evolves as 𝑁𝑡+1 = ℎ(𝐸𝑡 )𝑁𝑡 . He argued that plausible models
of family decision-making and/or the effects of rising death rates with increasing
environmental deterioration implies that the ℎ function is likely to be U-shaped, with
high population growth rates in sufficiently low quality environments that initially
decrease as the environment 𝐸 improves but ultimately turn up, so improvement in 𝐸
leads to faster population growth when 𝐸 is sufficiently high.

Marc showed that “multiple, at least two, stationary solutions to the dynamic
system relating population and environmental quality are likely.” One steady state has
high 𝑁 but low 𝐸 and the other low 𝑁 but high 𝐸 so a “lower level of population and
better environment.” He noted that “The first of these, if there are two, is likely to be
characterized by a positive response of fertility and the rate of growth of population to
environmental deterioration and the second by a negative response. Only when there
is such a negative response is there any possibility of obtaining a stable stationary
solution under other plausible assumptions about the parameters of the system.” Marc

9 Marc actually used the variable 𝑍𝑡 to capture environmental degradation at time 𝑡 , and “Thus, the
larger 𝑍𝑡 the lower the level of environmental quality.” So we can treat 𝐸 as roughly the inverse of
Marc’s variable 𝑍 .
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showed that the low 𝑁 and high 𝐸 steady state is stable but the other high 𝑁 and low
𝐸 steady state is locally unstable. Thus, if the world was at the latter steady state, a
shock that reduces the state of the environment could lead to a dynamic of higher
population growth causing more damage to the environment which in turn generates
even higher population growth, potentially leading to an environmental disaster.

Marc showed the stability of steady states depend on the relative sizes of the slopes
of the functions ℎ with respect to 𝐸 and 𝑔 with respect to 𝑁 . If the first is large,
i.e., the environmental state rapidly deteriorates as population increases, “then the
rate of population growth must be rather insensitive to environmental deterioration”
to achieve a stable steady state. He noted that the “balance is delicate” – if the
environment deteriorates too rapidly as population increases, or population growth
rates increase too quickly as the environment deteriorates, then the result is an unstable
dynamic between population and the environment.

Marc acknowledged that to keep his analysis tractable he excluded physical and
human capital from his model and ignored consumption, saving, and investment
decisions. He noted that “There is no doubt in my mind that introduction of physical
capital formation to offset the environmentally adverse effects of population pressure
and of human capital formation to enhance the quality of individual children would
result in far more optimistic conclusions.”10

Figure 2.3, reproduced from Dasgupta et al. (2023), shows that Marc’s optimism
may have been misplaced. It shows paths for the global stocks of physical, human and
environmental capital on a per capita basis from 1992 to 2014 as estimated by Managi
and Kumar (2018). Even though this was a period of declining population growth and
rising human capital investment, the rapid rise in physical capital (and the increased
consumption associated with it) resulted in a steady decline in environmental (or
natural) capital 𝐸 (blue line in figure 2.3). This suggests that slowing population
growth by itself is not enough to arrest ecological decline. This is the main message
of the forthcoming book by Spears and Geruso (2025): “It would be easy to think that
fewer people would be better-better for the planet, better for the people who remain.
This book asks you to think again. Depopulation is not the solution we urgently need
for environmental challenges, nor will it raise living standards by dividing what the
world can offer across fewer of us.” While I agree with their first claim, I disagree with
the second. Like Marc and many other leading economists and ecologists including
Dasgupta et al. (2023), I believe humanity will live better sustainably on a less
crowded planet.

10 Nerlove, Razin and Sadka (1989) studied the question of socially optimal population size in a
model that includes land as a factor of production but not environmental capital 𝐸. They show
that even if parents care about the utility of their offspring, equilibrium population size will not
generally be optimal with respect to an intergenerational welfare function and are not even Pareto
efficient with respect to the present generation. It is known that steady state competitive solutions
in overlapping generations models need not be Pareto efficient, and inefficiencies compound if we
include 𝐸 due to the negative externality of population growth and production on the environment.
This is the usual Tragedy of the Commons: individuals ignore the environmental impact of their
fertility and consumption decisions, both within and across generations.
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Fig. 2.3: Trends in Per Capital Physical, Human and Environment Capital

Data source (Dasgupta, Dasgupta & Barrett, 2023)

2.3.1 The Secular Decline in the Environmental Capital Stock

Marc’s uni-dimensional idealization of environmental capital 𝐸 (or its inverse, envir-
onmental degradation) is useful for conceptualizing how population and economic
growth affect the environment, but it is challenging to define a single numerical
summary of the world’s environmental state in practice. The environmental state 𝐸
might be better approximated by a multidimensional vector of latent factors with a
set of observable indicators including average atmospheric and ocean temperature,
ocean acidification, frequencies of hurricanes, droughts, floods and pandemics, con-
centrations of greenhouse gases such as CO2 and methane, measures of biodiversity
including fraction of land areas covered by forests and wild areas, and measures of
the prevalence of harmful chemical pollutants such as some insecticides as well as
plastics (and microplastics) that cannot be decomposed by nature.

Almost all of the observable indicators of the Earth’s environment suggest that
it is deteriorating at an accelerating rate. The indicators that get the most attention
are atmospheric CO2 concentrations and average global temperature, both of which
are steeply rising. Current CO2 levels of 427 parts per million may seem small but
even small concentrations have powerful warming effects and the concentrations are
skyrocketing. This seemingly small concentration amounts to over 3300 gigatons
(GT) in Earth’s atmosphere, an increase of 50% since the start of the Industrial
Revolution. Of course, the reason CO2 is rising so rapidly is the burning of fossil fuels
that have powered the amazing growth in population and economic output worldwide
over the past two centuries. The oceans are also an important ‘carbon sink’ that hold
60 times more carbon than the atmosphere and absorb 30% of all CO2 emissions
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from human activities. Data from ice core samples show that the current atmospheric
CO2 concentration is 50% higher than the highest previous peak in the past 800,000
years.

Of course the concern about CO2 (and equivalents) is that it is a greenhouse
gas that traps solar radiation, increasing the Earth’s temperature. A recent report
by Hansen and et al. (2025) concludes that “Global warming has accelerated since
2010 by more than 50% over the 1970-2010 warming rate of 0.18◦C per decade.” (p.
7). More than 90% of atmospheric heat is absorbed by Earth’s oceans, a transfer of
energy equivalent to 5 Hiroshima bombs per second according to the Bulletin of the
Atomic Scientists Nuccitelli (2020).11

There is plenty of evidence that global warming and climate change, combined
with deforestation and pollution of rivers, lakes and oceans, creates severe disruptions
to the ecosystem including disruption of animal habitats at a rate too fast for most
species to be able to adapt and cope. Approximately one third of all forests and over
half of all wild grasslands that existed on Earth 10,000 years ago have been converted
into agricultural land, and two thirds of that is used for grazing of livestock which are
an important source of greenhouse gases as well as inefficient in terms of delivery of
food calories for human consumption. The loss of wild habitat has, unsurprisingly,
lead to a significant reduction in biodiversity. Kolbert (2024) documents what she
calls the ‘The Sixth Extinction’ due to the vast expansion of human impact on the
environment from the population explosion and exponential growth in economic
activity. She estimates that the extinction of fauna and flora alone constitute between
20 and 50% of all living species on Earth.

Humanity is increasingly feeling the cumulative effects of its exploitation of
the environment in the form of reduced food production due to increasingly severe
droughts and floods, depletion of fish stocks due to loss of ocean habitat from
ocean acidification and heating causing widespread destruction of coral reefs and
destruction of spawning grounds, and destruction of physical capital from hurricanes
and wildfires.

In an article on one of the last remaining hugely valuable public service websites
that the Trump administration has not yet managed to shutter, climate.gov, (Smith,
2025) notes that since 1980, the U.S. has sustained 403 weather and climate disasters
for which the individual damage costs reached or exceeded $1 billion. The cumulative
cost for these 403 events exceeds $2.915 trillion. The frequency and severity of these
disasters is increasing. Bhola, Hertelendy, Hart, Adnan and Ciottone (2023) find
“strong and increasing correlations between temperature and CO2 levels, and with the
economic cost of disasters in the US. Furthermore, the strength of the correlations
seem to be increasing with increases in temperature and CO2 levels over time. We
highlight that the economic impact of natural disasters in the US is staggering, tallying

11 This level of warming we are experiencing seems inconsistent with the Gaia hypothesis “that the
Earth’s surface is maintained in a habitable state by self-regulating feedback mechanisms involving
organisms tightly coupled to their environment” (Lenton, 2002). Though humanity is indeed an
organism, the open question is whether humanity collectively is self-regulating, or whether its
unchecked activities will heat the Earth’s surface to a point where it is no longer habitable for most
species, including itself.
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over $2.1 trillion over the last 42 years.” The website USAfacts.org documents how
costs of suppressing and fighting wildfires has risen over time, averaging $3.0 billion
in the last five years. Worldwide, the amount of land subject to wildfires increased
from 2 million hectares in 2001 to over 10 million in 2023, see (USAFacts, 2025).
Thawing of permafrost in arctic areas and drying of peat bogs are releasing huge
quantities of methane and CO2 in a dangerous global warming feedback loop. Finally,
it is well documented that almost all glaciers around the world are in retreat and
many have melted completely. Another hugely valuable government resource that has
somehow managed to avoid being shut down by the Trump Administration so far,
NASA.gov, documents that each year approximately 150 billion tons of Antarctic
ice melts and Greenland loses 270 billion tons, see (NASA, 2025).

Much about the complex ecological/climate balance on Earth is still unknown,
including how ocean overturning circulations such as the Gulf Stream in the Atlantic
are affected by global warming. Glacial melt (such as from the Greenland ice sheet)
could disrupt these circulations, affecting the climate in new, unexpected ways. Of
special concern is the possibility that at some point the world will reach a climate
tipping point. Hansen and et al. (2025) note that “Tipping points are a big concern in
popular and scientific discussion of climate change. The most dire belief is that today’s
accelerated warming is a sign of runaway feedbacks that are pushing climate beyond
multiple tipping points, thus causing global warming acceleration that threatens
eventual collapse of civilization.” This report states that “The greatest climate threat
is probably the danger of the West Antarctic ice sheet collapsing catastrophically,
raising sea level by several meters and leaving the global coastline in continual retreat
for centuries. The West Antarctic ice sheet is vulnerable to collapse because it is a
marine ice sheet sitting on bedrock hundreds of meters below sea level” (p. 25).

2.3.2 Reducing the Human Ecological Footprint

The evidence provided above is certainly cause for alarm, or at least for deep concern,
but is it proof Earth is headed towards an ecological disaster? Perhaps it depends on
how we define ‘disaster’ – we are certainly seeing an increasing frequency and severity
of localized disasters such as hurricanes, floods, droughts, forest fires but it is less
clear whether, even if we were to reach a climate tipping point, that humanity will end
up completely destroying itself in a ‘Seventh Extinction’. It seems more plausible and
possible that humanity will respond and take action to avert a widespread ecological
disaster, though so far it seems to have dragged its heels and the evidence above
suggests we are running out of time.

What are humanity’s options? I see three main ways to stop or at least slow the
depreciation of the environmental capital stock, 𝐸: 1) reduce population (or rate
of population growth), 2) reduce per capita output and consumption (or its rate of
growth), or 3) develop new technologies that reduce the amount of environmental
damage caused by production and consumption activities and/or assist nature’s ability
to regenerate. Let’s focus on CO2 as the primary cause of environmental degradation,
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global warming. The following simple equation can be viewed as production function
for the net annual global flow of CO2 equal to the difference between man-made
production of CO2 (principally via burning of fossil fuels) less removal of CO2 by a
combination of natural processes was well as technology:

Inflow of CO2 = 𝑛×
( 𝑦
𝑛

)
×

(
𝜉

𝑦

)
×

(
CO2
𝜉

)
− removal of CO2. (2.1)

In Equation (2.1) 𝑛 denotes world population, 𝑦 is world GDP (sum of consumption
and investment), and 𝜉 denotes the total energy required to produce world output 𝑦.
The final term is the sum of natural absorption of CO2 by plants via photosynthesis
(net of respiration of CO2 by humans and animals and carbon released from organic
decay and other sources), inflows into the atmosphere and oceans and other carbon
sinks, plus any additional technological reduction in CO2 through various types
of sequestration. Examples of the latter include CO2 scrubbers or ‘vacuums’ that
store atmospheric CO2 deep underground, artificial synthesis of carbohydrates via
man-made chemical reactions, or promoting natural carbon capture in oceans by
adding alkaline compounds such as calcium or magnesium hydroxide that “raise the
pH in the surrounding seawater, triggering a chemical reaction that will absorb CO2
from the atmosphere and convert it to bicarbonate, an ion that can float through the
ocean undisturbed for millennia” Cornwall (2023).

As Wagner and Weitzman (2015) pointed out, the primary damage to climate
and environment is due to the stock of CO2 in the atmosphere and oceans. Left to
natural processes, these accumulated stocks take hundreds or even thousands of years
to dissipate, even if human output of CO2 were to fall to zero. Thus, even if all
man-made fossil fuel emissions were to cease immediately, it would take hundreds
if not thousands of years for CO2 to be gradually absorbed by plants and oceanic
plankton and other natural carbon sinks before the temperature on Earth would reduce
by 1.5◦C to its average value prior to the Industrial Revolution. Currently, the gross
amount of man-made CO2 emissions is about 40 Gt annually, but netting out the
removal of CO2 the net addition to the atmosphere and oceans is about 36.8 Gt per
year.

The goal of reducing the left-hand side of equation 2.1 to zero is referred to
as net zero. Under the Paris Climate Accords, just to achieve the goal of keeping
global warming limited to 1.5◦C above pre-Industrial levels requires “conventional
mitigation techniques” that gradually reduce CO2 emissions from the current value
of 36.8 Gigatons/year to 0 by 2050. Actually reducing the huge concentration of
CO2 in the air and oceans would require decades of negative CO2 emissions via
various carbon removal technologies. Absent some amazing technological innovation,
it seems quite unrealistic that the Earth could achieve even the net zero goal by 2050
without major reductions in our standard of living.

Equation (2.1) suggests that reducing world population 𝑛 should have a powerful
impact on emissions. But given current world average CO2 emissions of 4.8 tons per
person, reducing world population by 1 billion (an impossibility in the short run)
only reduces net CO2 by 4.6 Gt, which still puts us far away from the goal of net zero.
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Meaningful reductions in total CO2 emissions seems to require truly Draconian cuts
in output per capita by citizens in the richest countries in the world. As is well known,
there is a strong income gradient in CO2 emissions: it is a ‘luxury good’. An average
US citizen contributes 15 tons per year, whereas the average Chinese citizen emits
nearly 9 tons, Europeans emit about 7, Sweden about 3.6, South America 2.6, Africa
1, and the lowest-income countries 0.3 tons per capita (Ritchie, Rosado & Roser,
2023). According to the World Bank the 26 lowest income countries contribute only
3.5% of global CO2 emissions, whereas the US alone produced nearly 14% of total
CO2 emissions. See also Cozzi, Chen and Kim (2023) who show that the world’s top
1% greenhouse gas emitters (mostly the rich) emit 1000 times more than the lowest
1% of emitters.

It follows that economic growth, far more than population growth, will be the most
important contributor to growth in CO2 emissions in coming decades. Even though
technological improvements are reducing CO2 emissions per capita, these reductions
are happening too slowly to arrest the strong overall growth in atmospheric CO2

“So, what does the data tell us? It shows that all is not well in the state of the atmosphere!
In order to prevent further warming, the carbon dioxide levels must not grow any further.
On the growth curve, this corresponds to the curve having to settle down to 0 ppm/y. There
is absolutely no hint in the data that this is happening. On the contrary, the rate of growth
is itself growing, having now reached about 2.68 ppm/y the highest growth rate ever seen
in modern times. This is not just a ’business as usual’ scenario, it is worse than that, we’re
actually moving backward, becoming more and more unsustainable with every year. This
shows unequivocally that the efforts undertaken so-far to limit greenhouse gases such as
carbon dioxide are woefully inadequate” (Rasmussen, 2025).

Dasgupta et al. (2023) calculate the size of an ecologically sustainable steady state
population under the assumption of equally distributed income at the international
price level in 2001. They find that “if humanity were to find ways to husband the
biosphere in a sustainable manner and to bring about economic equality, the human
population Earth could support at a living standard of 20,000 dollars is approximately
3.3 billion.” They also consider what equal standard of living would be to sustain a
population of 9 billion people: per capita income could only be 11,480 dollars. They
note that “If inequality in the distribution of incomes was judged to be inevitable, the
figure would be even smaller.”

Further empirical evidence on the massive cuts in standard of living that would be
required to put the planet on a path to net zero is provided by Liu and et al. (2022)
who analyze the impact of the COVID-19 pandemic on CO2 emissions. They find
that the severe cutback in activity and economic dislocations in the first year of the
pandemic, 2020, resulted in a 6.3% reduction in global CO2 emissions compared to
2019. They conclude that “The extraordinary fall in emissions during 2020 is similar
in magnitude to the sustained annual emissions reductions necessary to limit global
warming at 1.5◦C. This underscores the magnitude and speed at which the energy
transition needs to advance”.

In the early 1990s Mathis Wackernagel and William Rees introduced the concept
of ecological footprint to quantify humanity’s demand on Earth’s ecosystem. They
defined the ‘demand for biocapacity‘ as
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“the aggregate area of land and water ecosystems required by specified human populations
to produce the ecosystems goods and services they consume and to assimilate their carbon
wastes. Footprint accounting is thus based on the premise that the regenerative capacity of
the ecosphere is associated with productive ecosystem area. The production of food and fibre;
the urbanization of once agricultural or forested lands; and the sequestration of that portion
of carbon emissions from fossil fuels that is not already absorbed by oceans or by long-term
sequestration strategies in agriculture or forestry, all constitute competing or non-overlapping
uses of ecosystems. (Typically, one cannot simultaneously use paved-over land for food
production or forest products; today’s cropland and commercial forests are usually carbon
sources, not sinks). We estimate and sum these separate areas to estimate study populations’
total Ecological Footprints” (Rees & Wackernagel, 2013).

Thus, the ecological footprint can be used as a measure of how rapidly humanity
is depleting the Earth’s environmental capital stock, i.e., the ‘excess demand’ for
Earth’s resources. In 2013, they estimated that “that Earth’s biocapacity in 2008 was
12 billion hectares (ha) compared to humanity’s Footprint of 18.2 billion ha, and that
the average Ecological Footprint had reached 2.7 global hectares (gha) per capita
compared to only 1.8 gha of available biocapacity per capita”. According to the most
recent estimates, we would need about 1.7 Earths to satisfy the demands humanity is
placing on it in a sustainable manner.

To summarize the main takeaways from this section: 1) the combination of the
population explosion and exponential growth in output and consumption per capita
has resulted in unsustainable demands on Earth’s ecosystem, severely depleting its
‘environmental capital’ though whether and when this will lead to an ‘ecological
disaster’ is hard to predict, 2) absent a ‘silver bullet’ technological solution, humanity
faces very unpleasant choices if it tries to reach a sustainable level of demand for
Earth’s resources (e.g., net zero emissions) even by 2050, 3) reducing population is
not a realistic policy option, and even if it were, it is far from enough to achieve a
sustainable outcome, 4) sustainability requires massive reductions in output per capita,
primarily by the richest countries in the world that cause the overwhelming share
of environmental damage, and 5) even with technological progress and economic
growth, sustainable outcomes involve a tradeoff between population size and living
standards, just as Marc had anticipated.

Thus, the answer to the question raised at the start of this section is that slower
population growth is not enough to avert ecological disaster. Absent a technological
solution that dramatically reduces humanity’s ecological footprint, severe reductions
in economic growth – indeed negative growth (or ‘degrowth’) — will be required to
reduce living standards and the implied demands on the environment by the richest
countries by enough to achieve a sustainable long run outcome.

2.4 Will Technological Progress Avert Ecological Disaster?

It is hard to deny how amazing human ingenuity and technological is, so we can hope
that it will lead to breakthroughs that enable production and income and consumption
per capita to keep growing rapidly (potentially without bound) as Tupy and Pooley
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(2022) and others have argued, while avoiding an ecological disaster, or even more
optimistically, without further major environmental damage to the planet. There are
three main ways that technology could do this: it could 1) reduce the amount of energy
required to produce any given level of output, 2) reduce the amount of CO2 and other
environmental side effects from energy production, and 3) use bioengineering to
improve nature’s ability to absorb and process wastes. By assisting Mother Nature in
her ability to recycle waste and regenerate despite the increasing demands humanity
places on her, humans would in effect be tinkering with the ecology and changing it
to make it more to their liking.

But whether this is really possible without huge unintended side effects is a really
important open question. It is clear humanity has changed the Earth and its ecosystem
— that’s why this era is called the Anthropocene — but so far the evidence in the
last section is that these changes have not been for the better, at least as far as all
other non-human species facing the Sixth Extinction are concerned. We can hope
that growing scientific knowledge can help mankind to ‘design’ a new ‘artificially
assisted’ ecosystem, just as it has used its ingenuity to create artificial intelligence.
But at this point, mere hopes seem more like science fiction. What are the most
immediate promising areas where technology can help avert a rapidly approaching
climate crisis, and perhaps ecological disaster?

In my opinion, the most immediate crisis facing the planet is global warming
caused by uncontrolled greenhouse gas emissions. So the area where technology
could have the biggest immediate impact is by reducing the amount of CO2 and
other greenhouse gases per unit of energy generation. According to the World
Resources Institute “The energy sector produces the most greenhouse gas emissions
by far, accounting for a whopping 75.7% worldwide. The energy sector includes
emissions from electricity and heat (29.7% of all emissions), transportation (13.7%),
manufacturing and construction (12.7%) and buildings (6.6%)” (Ge, Friedrich &
Vigna, 2024). One area where technology has had huge demonstrated success is the
rise in solar power from solar photovoltaic (PV) cells. According to the International
Energy Agency (IEA), “the cost of electricity generated from solar panels (or solar
PV) has fallen dramatically in recent decades. This has contributed to a boom in solar
PV deployment, with global capacity now growing at a historic pace. From 2018
to 2023, it tripled. The electricity sector remains the brightest spot for renewables
with the strong growth of solar photovoltaics and wind in recent years, building
on the already significant contribution of hydropower. But electricity accounts for
only a fifth of global energy consumption and finding a greater role for renewable
energy sources in transportation and heating remains critical to the energy transition”
(International Energy Agency, 2024).

It is clear that we have a long way to go before solar can supplant fossil fuels (coal,
natural gas, fuel oil, etc) to power electricity generation: in 2023 it only produced
5.5% of the world’s electricity. Though studies show that in principle intermittent
renewal sources such as solar and wind power could supply 80% of all electricity,
“However, to reliably meet 100% of total annual electricity demand, seasonal cycles
and unpredictable weather events require several weeks’ worth of energy storage
and/or the installation of much more capacity of solar and wind power than is routinely
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necessary to meet peak demand” (Shaner, Davis, Lewis & Caldeira, 2018). However,
as we know, there has been tremendous progress on battery storage technology.
According to the IEA battery storage for electricity generation doubled in 2023 alone,
and it predicts that total capacity will increase 10-fold to 800 GW by 2030.

Solar is a technological success story and a tremendous reason for optimism.
Another technology that could be a game-changer for greenhouse-free electricity
generation is fusion power. Fusion tokamak chambers are essentially magnetic bottles
that keep the extreme heat of nuclear fusion from melting the generator, but this has
required more energy than what the fusion generates. Improved design of fusion
reactors have improved over the last decade to the point that many can produce a net
positive amount of electricity. However, “Most experts agree that we’re unlikely to
be able to generate large-scale energy from nuclear fusion before around 2050 (the
cautious might add on another decade)” (Ball, 2023) so the consensus is that it will
not arrive in time to avert a climate crisis.

Besides electricity generation, I noted that transportation, manufacturing and the
heating/cooling of buildings is the next largest source of greenhouse gas emissions.
Due to falling costs, improved battery capacity and more charging stations, there
has been strong growth in the number of electric vehicles, with over 40 million
plug-in electric passenger vehicles on the road, half of which are in China. However,
it is less clear whether battery powered jets are feasible for international and other
long distance travel, though there has been a proliferation of battery powered drones
and electrically powered aircraft for short range travel seems on the horizon. For
long distance air travel, there have been technological improvements in the synthesis
of sustainable aviation fuels (SAF), including via biofuels and the hydrolysis of
water that releases hydrogen that can be combined with CO2 from the atmosphere
to synthesize hydrocarbons, including various types of diesel and jet fuels. Though
use of SAF is negligible currently due to its relatively high cost, it could eventually
become another technological innovation helping the planet reach net zero.

Hydrogen fuel cells are another promising source of ‘green electricity’ for powering
cars and trucks that avoids the environmental disposal problems of batteries: they
combine hydrogen and oxygen and their only emission is water vapor (though this
is also a greenhouse gas, it is far less potent than CO2 or methane). Though they
are not yet economically viable for use at large scale, fuel cells are highly efficient,
converting between 40% to 60% of the chemical energy in hydrogen into electrical
energy, which is significantly more efficient than combustion engines that operate at
about 25% thermal efficiency.

There are numerous other areas where technological improvements have signific-
antly reduced the amount of greenhouse gases emitted per unit of energy generation.
Light emitting diodes (LED) have been a breakthrough in lighting that have dramat-
ically reduced the energy required per lumen, by 75% compared to incandescent
bulbs, and last 25 times longer. Other promising emerging technologies include
‘green cement’ that can be produced with up to 70% fewer greenhouse gas emissions
compared to regular cement.(MIT Department of Materials Science and Engineering,
2025).
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There are other technologies that could potentially provide backstop or failsafe
options if technologies like the ones discussed were unsuccessful. One such technology
is geoengineering that includes spreading aerosols high into the atmosphere to reflect
solar radiation (much as clouds or volcanic ash already do) to cool the Earth. Wagner
and Weitzman (2015) discussed the example of the explosion of Mount Pinatubo,
where “20 million tons of sulfur dioxide managed to wipe out the global warming
effects of 585 billion tons of carbon dioxide in the atmosphere.” Given this huge
leverage, they note that geoengineering would be ‘cheap’ but only in the “narrow
sense of the direct engineering costs of transporting 20 million tons of material into
the stratosphere, not necessarily cheap when looking at the full consequences.”

I could go on to list dozens of other promising new technologies that can either
a) reduce the energy required per unit of output or services produced, or b) reduces
the level of greenhouse gases per unit of output/services produced, and per unit of
energy produced. This corresponds to potentially large reductions in the ratios 𝜉/𝑦
and CO2/𝜉 in the simplified CO2 production function in Equation (2.1). However, as
I noted in the previous section, global warming is accelerating at an alarming pace.

Can these promising new technologies be rolled out and scaled up rapidly enough
to avert the worst damage from the climate crisis, and avoid sending the planet
beyond a tipping point of no return? I don’t think anyone knows the answer to this
question, but given the dire consequences we are already experiencing and the danger
of passing a tipping point, it would be prudent to follow a combined strategy of 1)
subsidizing ‘green R&D’ and production of green technology such as solar, and 2)
taxing or reducing output from fossil fuels even if this implies a temporary reduction
in standard of living. If we rely only on option 1), it seems to me that humanity is
playing a very risky game, hoping that technological breakthroughs can happen ‘just
in time’ to avert major ecological damage and human suffering.

2.5 What Policies Can Mitigate the Tragedy of the Commons?

Marc Nerlove (1991) warned of the delicate balance between quality of the environ-
ment and population growth (and by extension economic growth). His model predicted
the possibility of unstable dynamics that could potentially lead to environmental
disaster or even human extinction. Marc acknowledged that his simple model ignored
technological progress, consumption and savings, and investments in productive and
human capital. Extending his model to incorporate these features “would result in far
more optimistic conclusions.”

My review of the evidence suggests that Marc’s optimism may have been misplaced.
Despite amazing technological progress and rapid growth in green technologies such
as solar power, CO2 growth continues unabated, global warming is accelerating, and
average temperatures have broken through the 1.5◦C limit on global warming relative
to pre-Industrial times that the Paris Climate Accords determined was necessary to
mitigate the worst impacts of climate change. So should we be complacent and hope
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that a series of miraculous technological breakthroughs will turn things around, or
should we try to take additional actions to mitigate these risks?

Marc’s answer is that mitigation is possible, provided there is a government or
other type of ‘social intervention’ that can impose taxes and subsidies.

“Provided the environment can eventually recover from the effects of excessive population
growth, such a system of taxes and subsidies could be used to achieve and maintain any
specified birth rate. In particular, social intervention could induce parents to determine their
fertility in order, first, to reach a stationary solution–or example, the one with the lower level
of population and better environment-and then to maintain that equilibrium despite its local
instability.”

Of course, this is economists’ preferred solution: use Pigouvian taxes and subsidies
to deal with environmental externalities and then allow the decentralized operation of
a competitive economy to take things to a better outcome. This logic applies equally
well in models with production and atmospheric pollution and was endorsed as the
best solution to the climate crisis by Wagner and Weitzman (2015) in their book
Climate Shock

“Far from posing a fundamental problem to capitalism, it’s capitalism with all its innovative
and entrepreneurial powers that is our only hope of steering clear of the looming climate
shock. That’s not a call for letting markets run free. Laissez-faire may sound good with the
right French accent—in theory. But it can’t work in a situation where prices don’t reflect the
true costs of our actions. Unbridled human drive—erroneously bridled drive, really—is what
has gotten us into this current predicament. Properly channeled human drive and ingenuity,
guided by a high enough price on carbon to reflect its true cost to society, is our best hope for
getting us out.”

But the presumption of a benevolent, well-functioning and all powerful government
that can impose taxes and subsidies seems naive or at least unrealistic. Remember that
problems like climate change are global and require global cooperation by many if not
all governments around the world to be successful. But this degree of coordination is
not happening. How well are the Paris Climate Accords working out now that Donald
Trump is President of the United States, forcefully pushing his “Make America Great
Again” agenda? Not only has he withdrawn the US from the Paris Accords, he’s
imposed tariffs on imports of green technology such as solar panels and electric
cars from the world’s biggest producer of them, China. He is pursuing an unabashed
strategy of “drill baby drill” in order to accelerate the burning of fossil fuels and
increase America’s energy primacy, and removed subsidies for electric vehicles and
charging stations and tax breaks for solar panels. Just for good measure, he has shut
down USAID and withdrawn from the World Health Organization, putting the poor
(especially in vulnerable areas such as Africa, Gaza and other places) at higher risk
to malnutrition and starvation and making the world more susceptible to pandemics.

If we cannot expect world governments to cooperate and act in a rational, benevolent
manner, it seems even less likely that a ‘grassroots’ movement to save the environment
can be successful. As Wagner and Weitzman (2015) note, “Voluntary coordination is
out. Getting seven people to agree on anything is tough; getting seven billion to agree
is impossible. That’s where governments need to come in, and even there we find
global cooperation very difficult.”
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Global cooperation is another unstable equilibrium, easily toppled. It depends
on having strong and wise leadership, but we can’t look to Trump to provide it.
Instead, he leads the world backwards, erasing hard-won progress already made. He
undermines cooperation by asking why the US should tax its CO2 emissions if China
and Russia are not doing the same. This gives license to China and Russia to ask the
same question about the US and potentially withdraw from the Paris Accords as well.

We might hope that support for global cooperation might build as the climate crisis
becomes more and more severe and more people are directly affected by it and more
keenly aware of the ever-growing consequences of continuing to ignore the Tragedy
of the Commons. However, humanity collectively so far has behaved in an extremely
myopic fashion and for the most part seems unwilling to make even minor sacrifices in
current consumption in order to make investments to mitigate environmental damage
that will reduce consumption of future generations. For example in the US the federal
tax on gasoline has remained at just 18 cents per gallon since 1993. There would
almost certainly be intense voter opposition to any proposal to increase it that reflects
anything close to the true social cost of carbon. This sort of behavior is a recipe for
‘learning the hard way’ i.e., continuing to delay and deny, postponing or refusing to
take any costly actions to disincentivize greenhouse gas pollution.

Each year, it is getting more and more obvious to the public that global warming
is real, and millions around the globe are being harmed by it. But deprivation,
destitution, and destruction does not often bring out the best in human nature. Instead
of collective action to remedy the situation, it seems more likely to lead to conflict
over the dwindling natural resources and competition for the ability to live in the
remaining parts of the world that are less affected by environmental collapse. Thus,
while the numbers are hard to predict, we can expect a surge in ‘climate migration’
in the not too distant future. But there is already a profound lack of cooperation on
immigration policy. It seems more likely that countries will turn inward and defend
their borders than take costly joint actions such as a world-imposed carbon tax with
transfers to compensate the least well off for the higher cost of energy (and all that
depends on it). Failure to act sooner rather than later and help poorer countries in the
regions most affected by global warming will only exacerbate future levels of climate
migration.

Marc recognized the instability of collective action and cited the ‘justly famous’
Tragedy of the Commons of Hardin (1968). Though in theory it can be solved through
government taxation or other binding and strongly enforced social arrangements, there
is a regress: the problem of how governments come to agree, or social arrangements
come into effect simply opens up the Tragedy of the Commons at a higher level.
Despite these challenges, collective action is possible. Over 27 countries around the
world (including the European Union) have imposed domestic carbon taxes, and over
190 countries have signed on to the (non-binding) Paris Climate Accords. Over 190
countries have signed on to the United Nations Framework Convention on Climate
Change, and one of its provisions has been the creation of carbon offset markets.

So there is reason for hope that sufficiently many countries around the world are
willing and able to cooperate to adopt policies to limit greenhouse gases and take
other actions to arrest the destruction of the environment. But it is crucial to adopt
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policies that result in meaningful, measurable reductions in CO2 and for which a high
benefit/cost ratio can be documented to the public. Economics can play an important
role in this regard, providing analyses that can help the world to avoid adopting
ineffective policies or worse, counterproductive ones. For example, Chen, Ryan
and Xu (2024) studied the impact of the carbon offset market in China, developed
under the Clean Development Mechanism of the Kyoto Protocol. A carbon offset is
a payment by a polluting firm (the buyer of the offset) to another firm (the seller)
to undertake its own investment to reduce CO2 pollution on behalf of the buying
firm. In theory, these trades should reduce CO2 emissions by financing investments
at firms that have a comparative advantage in mitigating CO2. However, Chen et
al. (2024) find that in China the offset actually raises CO2 emissions: “We find that
offset-selling firms increase carbon emissions by 49% in the four years after starting
an offset project, relative to a matched sample of non-applicants.”

Economic models are also highly influential in policy circles for determining an
appropriate ‘social cost of carbon’ which is a starting point for setting carbon taxes. For
example, the Nobel Prize winner Nordhaus (2017) developed a so-called DICE model
(Dynamic Integrated Model of Climate and Economy) and calculated a social cost of
CO2 emissions of $31 per ton, and projects that due to continued global warming, this
amount will grow by 3% per year until 2050. However, Nordhaus’s calculations have
come under criticism for grossly underestimating the CO2 externality. For example,
Saitō (2020) notes that “The problem lies with the optimal measures he proposes in
his paper. To combat climate change, it is imperative that greenhouse gas emissions
decrease. On the other hand, if emissions reduction goals are set too high, it might
hinder economic growth. Therefore, he asserts, what we need is ‘balance.’ But in my
view, Nordhaus’s proposed ‘balance’ leans much too far toward the side of economic
growth.”

Nordhaus acknowledges that his calculations ignore several important factors
such as the loss of biodiversity, extreme events (e.g., sea level rise and impact on
ocean circulation) and catastrophic events. The DICE model also ignores endogenous
responses of population to economic growth and environmental degradation. Lupia
and Marsiglio (2021) develop the DICED model, i.e. combining DICE with endo-
genous demographics. They find that “accounting for endogenous population change
substantially increases the estimates of the social costs of environmental policies
(measured by both the social cost of carbon and social welfare)” and that fertility
policies (such as policies that incentivize female education at the cost of fertility),
can reduce the cost of climate change by as much as 16% by limiting population size
and the total human ecological footprint.

Neal, Newell and Pitman (2025) showed that the estimated social cost of carbon
from models such as DICE are sensitive to assumptions used in underlying econometric
models used to predict how weather and climate shocks affect production. “A key
assumption inherent in existing econometric models is that a country’s economic
growth is only related to its own weather shocks, whereas those of their neighbors,
trading partners, and the rest of the world are left in the error term.” The assumption
that economies are unaffected by weather shocks in other countries “causes a
mischaracterisation of global weather shocks. Generalising existing models leads
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them to predict catastrophic damages, where all countries are affected to different
degrees.” Using an adjusted ‘climate damage function’ their model predicts much
more substantial reductions in GDP per capita due to increases in global mean
temperatures compared to the DICE2023 model as shown in figure 2.4.

Fig. 2.4: Climate ‘damage functions’ – DICE vs Neal et al.
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Of course, there are huge uncertainties about predicting the future and how much
global warming could reduce GDP, leaving alone the question of valuing the damage
to the environment. Perhaps it is not productive to quibble about the precise numbers,
but rather to agree that there will be serious damage to the world economy from
allowing continued depreciation in the stock of environmental capital. Since the
world has already exceeded the target of no more than 1.5◦C warming under the Paris
Accords, we need to accept that continued global warming is fait accompli (or as
Wagner and Weitzman (2015) say, it’s “baked in”) and consider 2nd, 3rd and 4th best
damage mitigation strategies that can be undertaken quickly and unilaterally.

Examples of such investments include hardening infrastructure (undergrounding
power and communications cables against fires and storms), securing food and energy
supplies (including storage facilities and avoiding over-dependence on imported
food and energy), and diversifying economies to make them less dependent on
critical imports and more resilient in the face of interruptions in global supply chains.
Since drought is a growing problem in many parts of the world, more investment
should be made in desalination plants, and in growing more of the food supply
using green houses and low water drip agriculture. Subsidies should be provided
to farmers to incentivize them to convert more of their grazing lands to agriculture,
which can significantly raise the total caloric output from land allocated to livestock,
allowing more land to be reforested. Payments should be increased to countries with
large rainforests and other underdeveloped natural resources to incentivize them to
preserve these resources and protect biodiversity. Investments should be increased in
biotechnology to more rapidly fight future pandemics, and to increase capacity for
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synthesizing foods in the event of sustained drought. For example, more could be
invested to produce food and biofuels from massive floating islands of seaweed such
as the Great Atlantic Sargassum Belt.

However, there are technologies we may not not want to invest in. One is
geoengineering, i.e., injecting sulfur dioxide into the atmosphere as aerosols to
reflect solar radiation, similar to the effect of cloud cover or volcanic ash. I share the
reservations expressed in Wagner and Weitzman (2015) of the potential unintended
consequences of geoengineering including reduced food output and reduced solar
radiation to power solar cells. Also, if countries believe this is an effective option
they can undertake unilaterally and at relatively low cost, it reduces the incentive to
take stronger, less risky but potentially more costly measures today. I also question
whether the expansion of battery power creates more environmental problems than
it solves. The environmental problems arise from the difficulty of disposing and
recycling use batteries and other e-waste, and environmental damage from mining
the rare earths needed to produce lithium-ion and other high-performance batteries.
Proposals to scrape the ocean floor for poly-metallic nodules needed to meet the
rapidly growing demand for batteries seem to pose especially poorly understood
risks to the environment. It would be better to invest in improving the cost-efficiency
of ‘green hydrogen’ which is a much more environmentally friendly way to power
electric vehicles and store energy than batteries: a closed loop process of splitting
water into hydrogen and oxygen, then combusting them to produce electricity and
water vapor as the exhaust product.

2.6 Conclusion

Economics is known as the ‘dismal science’ largely due to the bleak predictions of
Thomas Malthus that real wages cannot increase because any overall productivity
gain will be offset by a commensurate increase in the population. Malthus’s prediction
of flat real wages turned out to be flat wrong: total population and real wages both
increased exponentially in the two centuries following his death. However, predictions
that population and real wages can continue to increase exponentially for the indefinite
future could turn out to be equally wrong. Population growth has been decreasing
for decades, and total population is predicted to peak before 2100. The real question
is whether real wages can continue to grow exponentially for the indefinite future.
Those who argue that we can go on with business as usual and count on technology to
solve our environmental challenges (as do Tupy & Pooley, 2022, for example), remind
me of something Kenneth Boulding said in testimony before Congress: “Anyone
who believes that exponential growth can go on forever in a finite world is either a
madman or an economist.”

Marc realized that humanity can live beyond its means for extended periods of time
only by depleting its environmental capital stock. If humanity manages to exhaust
its endowment of environmental capital, Mother Nature will impose a harsh budget
constraint and real wage growth could suddenly halt or even decline. Billions of
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people could suffer and millions could die. Malthus’s predictions would suddenly be
relevant again.

I certainly hope this is not the case. Picking up on Marc’s ideas, I have surveyed
decades of work in climate change, ecology, and environmental and resource eco-
nomics that paint a very uncertain picture for the planet and the future of humanity.
Due to the Tragedy of the Commons, humanity behaves myopically, as if there were
no tomorrow. An alternative rationalization for our inaction is that we are sure that
some brilliant new technology will come along just in time to rescue us from any
potential climate disaster without any major sacrifice on our part.

Though the future is highly uncertain and one should never rule out the emergence
of amazing new ‘game-changing’ technologies, it seems to me that we are following
a very risky path of being unwilling to sacrifice current consumption to increase the
precautionary investments that will reduce our ecological footprint. It’s as if humanity
is too shortsighted to buy fire insurance and unwilling to admit that it might later
regret its choice when its house burns down. Of course, it’s not as simple as that, and
while we each may care deeply about the welfare of the planet and our descendants,
the problems of collective action underlying the Tragedy of the Commons prevents
meaningful precautionary investments and mitigating actions from being undertaken.

I am not sure whether Marc would agree with my interpretation of the literature
and thinking on population and the environment, but I do believe that he would
support informed discussion that raises awareness and allows people to express their
own views about an uncertain future, even if some are dismal ones that risk bumming
people out. Marc would probably agree with Hardin (1968) who noted that “The
individual benefits as an individual from his ability to deny the truth even though
society as a whole, of which he is a part, suffers. Education can counteract the natural
tendency to do the wrong thing, but the inexorable succession of generations requires
that the basis for this knowledge be constantly refreshed.”
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Chapter 3
Re-estimating Supply Elasticities of Selected
Agricultural Commodities

Felix Chan, Elizabeth L. Jackson, Richard Dwumfour, and László Mátyás

Abstract Marc Nerlove in his seminal work published in 1956 (Nerlove, 1956)
explored the relevance of price expectations in agricultural production and how
these may affect supply elasticities. This chapter extends the ‘Nerlovian model’ by
taking into account some recent developments in panel data econometrics, volatility
modelling and data availability. These new models are then estimated and tested
using some FAO data sets. It turns out that although these fresh results shed a slightly
different and more nuanced light on Nerlove’s original model, his approach is still
relevant these days almost seven decades after its original insemination.

3.1 Introduction

In his seminal work, Nerlove (1956), Marc Nerlove highlighted the importance of
price expectations in farmers’ decision and demonstrated how these expectations may
affect the estimate of supply elasticity. Like most seminal works, it inspired many
years of future research in both economics and agricultural economics, especially
in the development of formulating price expectation. Nerlove was restricted by data
and econometric techniques available at the time. Therefore, it seems appropriate
to revisit the estimation of supply elasticities, in the spirit of Nerlove (1956), by
leveraging the recent developments in econometrics, especially in risk modelling,
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machine learning, and the open data movement, to examine if these advances can
provide further insight on the estimation of supply elasticity.

As such, this chapter has three objectives. First, it presents a survey on the supply
elasticities of selected agricultural commodities inspired by what is now known as the
Nerlovian Model. This part of the chapter can be considered an update of Askari and
Cummings (1977), which provided an excellent review of the work inspired by the
Nerlovian model until the late 1970s. Second, it extends the existing Nerlovian Model
by incorporating the effect of price risk in the formulation of price expectations, as
well as the effect on acreage from the risk of different input prices. Perhaps more
importantly, the proposed approach also incorporates the interaction between the
different agricultural commodities, which could not have been possible in the 1950s
due to a lack of data availabilities and appropriate econometric techniques. Given the
number of potential risk factors and different methods of generating risk estimates
over different time horizons, the third objective of this chapter is to re-estimate the
supply elasticities of selected commodities using the more recent feature selection
techniques to identify the appropriate risk measures that affect price expectations.

After a concise survey of the literature on supply elasticities of agricultural
commodities, the chapter considers an augmentation of price expectation as proposed
in Nerlove (1956). The main idea is to incorporate risk into the model of price
expectation. In the original formulation, the changes in price expectation are driven
only by the difference between the previous price expectation and the actual price.
From a decision viewpoint, it has been shown that risk, as reflected by price volatility
of the relevant future contracts, may also affect price expectation and farmers’
decision on the allocation of land to a particular commodity. In this chapter therefore
we also examine the impacts of price volatility on price expectation and whether
the inclusion of price risk affects the estimates of supply elasticities of selected
agricultural commodities including wheat and barley.

The dependence of prices between different agricultural commodities is important
in farmers’ decision on land use allocation, investment and product sales. As such,
this chapter also extends Nerlove (1956) by incorporating a portfolio approach to
risk modelling. Specifically, the interdependence between agricultural commodities
is considered in modelling the risk of each commodity. One approach is to utilise
the suite of time-varying models for the variance-covariance matrices, including the
multivariate Generalized Autoregressive Conditional Heteroskedasticity model as
proposed in Diebold and Nerlove (1989).

This chapter is organised as follows. Section 3.2 provides a survey on the literature
of estimating supply elasticity based on the Nerlovian model in recent times. Section
3.3 extends the price expectation formulation by incorporating risk variable as well
as introducing two risk measures that can be constructed by leveraging information
from three dimensional panel data. One of the risk measures introduced in Section
3.3 also generalises the Latent Factor ARCH model as proposed in Diebold and
Nerlove (1989), which can be estimated via Kalman Filter. Section 3.4 discusses the
data used in this chapter with a focus on the process of linking data from different
datasets. This is followed by empirical results in Section 3.5 and Section 3.6 contains
some concluding remarks.
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3.2 Estimating Supply Elasticities: A Survey

Let us first examine the impact of the Nerlove (1956) paper where he introduced price
expectations as the main driver behind farmers’ decision. Since price expectations are
not directly observed, he proposed a dynamic model that allows them to be expressed
as past observed prices. The price expectation model proposed in Nerlove (1956) has
the simple form

𝑃𝑒𝑡 −𝑃𝑒𝑡−1 = 𝛽
(
𝑃𝑡−1−𝑃𝑒𝑡−1

)
, 𝑡 = 1, . . . ,𝑇, (3.1)

where 𝑃𝑒𝑡 and 𝑃𝑡 are the expected price and the actual price of a particular commodity
at time 𝑡, respectively. Equation (3.1) can be interpreted as an exponential smoothing
model between the expected and realised price if the restriction 0 < 𝛽 < 1 is imposed.
Interestingly, the first official document that discussed exponential smoothing is
Brown (1956) and the model was again mentioned more formally in a report to the
U.S. Office of Naval Research by Professor Holt (Holt, 1957)1. Thus, it can be argued
that the econometric novelty in Nerlove (1956) is applying exponential smoothing to
model farmers’ expectations, which was the cutting edge technique at the time.

The empirical advantage of using exponential smoothing to describe the dynamic
of price expectation is that the unobserved price expectation can be expressed as a
distributed lag model of the actual prices. Specifically,

𝑃𝑒𝑡 − (1− 𝛽)𝑃𝑒𝑡−1 =𝛽𝑃𝑡−1 (3.2)

𝑃𝑒𝑡 =𝛽

∞∑︁
𝜏=1
(1− 𝛽)𝜏−1𝑃𝑡−𝜏 .

The main model of interest, however, is the relation between supply of the commodities
and price expectation. That is

𝑥𝑡 = 𝜋0 + 𝜋1𝑃
𝑒
𝑡 +𝜃𝜃𝜃′z𝑡 +𝑢𝑡 , (3.3)

where 𝑥𝑡 is the acreage, i.e., the land use of the particular commodity. The main idea
here is to develop a relation between the supply of the commodity and the expected
price of that commodity along with other explanatory variables. The use of acreage is
an interesting choice as it is closely related to the supply of the commodity. Another
natural choice is the yield of the commodity as suggested in Askari and Cummings
(1977). However, the amount of crop yield depends on the land available for growing
that particular commodity. So, acreage needs to be considered as the control variable,
i.e., an element in z𝑡 , if crop yields was to be used as 𝑥𝑡 to replace acreage.

Given Equation (3.2), Equation (3.3) implies

𝑥𝑡 = 𝜋0𝛽+ 𝜋1𝛽𝑃𝑡−1 + (1− 𝛽)𝑥𝑡−1 + (1− 𝛽)𝜃𝜃𝜃′Δz𝑡 + 𝑒𝑡 , (3.4)

1 This article is later reprinted as Holt (2004).
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where 𝑒𝑡 = 𝑢𝑡 − (1− 𝛽)𝑢𝑡−1. Note that Equation (3.4) contains information to estimate
both long and short run elasticities. As described in Nerlove and Addison (1958),
𝛽 describes the short run response, while 1− 𝛽 describes the long run response of
acreage to the differential between expected and actual prices.

Nerlove (1956) used the model as defined in Equation (3.4) for cotton, wheat and
corn in the United States of America. Given the availabilities of panel data, a natural
extension to Nerlove (1956) is to consider

𝑥𝑖𝑡 =𝜋0𝛽+ 𝜋1𝛽𝑃𝑖𝑡−1 + (1− 𝛽)𝑥𝑖𝑡−1 + (1− 𝛽)𝜃𝜃𝜃′Δz𝑖𝑡 + 𝑒𝑖𝑡
=𝛽0 + 𝛽1𝑃𝑖𝑡−1 + 𝛽2𝑥𝑖𝑡−1 +𝛽𝛽𝛽′3Δz𝑖𝑡 + 𝑒𝑖𝑡 , 𝑖 = 1, . . . , 𝑁 𝑡 = 1, . . . ,𝑇, (3.5)

where 𝑃𝑖𝑡 denotes the price of a particular commodity in country 𝑖 at time 𝑡,
and this definition applies naturally to 𝑥𝑖𝑡 , z𝑖𝑡 and 𝑤𝑖𝑡 . Note that in this case, 𝑢𝑖𝑡
may be an error components model e.g., 𝑢𝑖𝑡 = 𝛼𝑖 + 𝜆𝑡 + 𝜖𝑡 , which implies 𝑒𝑖𝑡 =
𝛽𝛼𝑖 +𝜆𝑡 − (1− 𝛽)𝜆𝑡−1 + 𝜖𝑡 − (1− 𝛽)𝜖𝑡−1. It should be clear that assuming one can
obtain consistent estimates for 𝛽1, 𝛽2 and 𝛽𝛽𝛽3, denoted 𝛽1, 𝛽2 and �̂�𝛽𝛽3, respectively,
then 𝛽 can be estimated by 𝛽 = 1− 𝛽2, the long run response 𝜋1 can be estimated by
�̂�1 = 𝛽1/(1− 𝛽2) and 𝜃𝜃𝜃 can be estimated by 𝜃𝜃𝜃 = �̂�𝛽𝛽3/(1− 𝛽2).

Equation (3.5) is a dynamic panel model and classical estimators such as Ordinary
Least Squares and Fixed Effects Estimators produce biased and inconsistent estimates
for 𝛽2, at least with short 𝑇 . Nerlove (1967) and Nerlove (1971) are often considered
to be the earliest papers to report such bias through Monte Carlo simulations. Inspired
by these observations, Nickell (1981) provided one of the first theoretical analysis on
the bias of the Fixed Effects Estimator in the content of dynamic panel data model
and earned the term Nickell effect.

Another econometric challenge associated with estimating Equation (3.5) is the fact
that, even without the unobserved heterogeneity, the residuals, 𝑒𝑖𝑡 = 𝑢𝑖𝑡 − (1− 𝛽)𝑢𝑖𝑡−1
is a moving average process of order 1. Some of the popular GMM type estimators,
such as Arellano-Bond as proposed in Arellano and Bond (1991), do not permit
serially correlated errors in general, even though they may be robust against specific
forms of serial correlation, such as moving average process, assuming that valid
instruments exist.

In general, the econometric challenges in estimating the parameters in Equation
(3.5) are (i) robust and consistent estimation of 𝛽2, the coefficient of the autoregression
term in a dynamic panel, (ii) robust estimation of a dynamic panel model in the
presence of serially correlated errors and (iii) the previous two challenges in the
presence of a possibility unbalanced panel. Section 3.5 examines the empirical
performance of some of the popular estimators for panel data model in this context.

As previously highlighted, Askari and Cummings (1977) present a thorough
review of the literature influenced by the Nerlovian model up to the late 1970s. In the
ensuing decades, Nerlove’s foundational work has inspired a diverse array of studies
across multiple disciplines. In light of this, we extend their review (see Table 3.6
for an overview of the most recent studies) to explore significant advancements in
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the Nerlovian framework, particularly concerning supply elasticities, with a focused
examination of how risk or volatility is integrated within these models.

For instance, Puga and Anderson (2024) examine changes in grape varietal mixes
in South Australia’s wine regions and their sensitivity to expected revenues. Using
the Nerlovian adaptive expectations and partial adjustment framework they analyse
changes in varietal mixes, focusing on acreage response to expected revenues. The
study found significant sensitivity of acreage decisions to revenue expectations than
to what climate conditions in a particular region may be best for the crop. Short-run
and long-run supply elasticities turned out to be heterogeneous in the region. The
short-run price and revenue elasticities were estimated to range from 0.074 to 0.089,
while the long-run elasticities ranged from 0.333 to 0.397. The authors attribute the
comparatively low short-run supply elasticities to the fact that grapes, as a perennial
crop, are capital-intensive with a longer investment horizon.

Krah (2023) extends Nerlove’s model to assess maize price variability and its
influence on land use and forest loss in Ghana. By incorporating a measure of price
variability as the ratio of the standard deviation to the mean price, he estimates a
price elasticity of 0.018. This study underscores the subdued responsiveness of maize
producers to price changes, reflective of broader structural constraints.

Diop and Traoré (2023) analyse the asymmetric supply responses in the cotton
sector in Mali using a nonlinear ARDL framework based on Nerlove’s model. By
looking at supply, the area cultivated (production), and responses to both price
increases and price decreases, the study found short-run elasticity to be symmetric
at 0.63 (0.58), while long-run elasticities differ: 0.87 (0.82) for price decreases vs.
0.43 (0.38) for price increases. These results highlight behavioural asymmetries in
response to price volatility.

Nhundu et al. (2022) estimate the supply response for sunflower yields in South
Africa using a Nerlovian partial adjustment framework by focusing on both price
and non-price incentives over an extended period (1947–2016). From the OLS
estimates, the short-run and long-run elasticities were 0.238 and 0.313, respectively.
An estimated adjustment speed of 0.272 also shows a slow adjustment to price changes
and the importance of non-price factors in influencing the supply of sunflower.

Amine M. Benmehaia (2021) analyses the aggregate supply response of 19 crops
in Algeria from 1966 to 2018. Inspired by Nerlove’s model, the authors replace the
Nerlovian partial adjustment model with an Error Correction Model (ECM). The
authors found apple growers to have the highest long-run elasticities (51.1%) among
fruit growers, whereas cauliflower had the highest long-run elasticities (99.2%) among
vegetable producers. Short-run elasticities were even lower, ranging from 0.161 for
Onion (bulb) to 0.393 for cauliflower.

Lemontzoglou and Carmona-Zabala (2024) study supply-side responses in the
Greek tobacco sector during 1953–1964, assessing the role of price incentives
and state interventions. By incorporating a two-dimensional panel autoregressive
distributed lag (ARDL) model, they allow for long-term cointegration between
output and market prices while accounting for regional and varietal differences in a
non-Nerlove model. This methodological approach enables the estimation of the price
elasticity of tobacco supply, which ranges from 1.83 to 4.98, indicating highly elastic
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responses. The inclusion of regional and varietal fixed effects reveals significant
intra-product and regional variations in elasticity, demonstrating the influence of
varietal specialization and spatial heterogeneity on supply response.

Similarly, Pates and Hendricks (2021) employ Markov transition regression to
estimate rotational supply elasticities for U.S. corn. They find a short-run elasticity
of 0.69 and a long-run elasticity of 0.54, demonstrating spatial heterogeneity in
rotational response.

Other studies have tried to incorporate climate change and government policy
programs in supply responses. These represent some of the non-market factors, 𝑍
variables, anticipated by Nerlove to be included in the supply response model to
handle identification issues (Askari & Cummings, 1977). One such recent study is
that of Okou, Keita, N’Dri and Kouakou (2023), who, using perennial crops like
cocoa and cashew nuts, forecast the cultivated area using Nerlovian models. The
study expands Nerlove’s model by integrating rainfall and multi-year lagged acreage
adjustments. Even lower than the estimates of Puga and Anderson (2024), the study
estimates short-run price elasticity to be around 0.012 for cocoa and cashew nuts.

Yu, Clark, Tian and Yan (2022), while with a non-Nerlove formulation, also
examined how climate variables and price policy influence rice yield in high-latitude
regions of China. The authors use Kalman filters and a spatial autoregressive combined
model to account for heteroscedasticity and spatial correlation. The estimated price
elasticity of rice yield using OLS was 0.194, while corn had a cross-price elasticity
of -0.097. The study found that climate change has a significant impact on rice yield;
higher-rate global warming will decrease the projected rate of increase in rice yield.
The results highlight the importance of spatial effects and price policies in yield
modelling, emphasizing climate and crop price policy interplay.

This analysis of Nerlovian model applications, although diverse in geography and
crop species, demonstrates the wide range of methodologies applied for estimating
supply elasticities. These include ordinary least squares (OLS) (Krah, 2023; Puga &
Anderson, 2024; Nhundu et al., 2022), autoregressive distributed lag (ARDL) models
(Lemontzoglou & Carmona-Zabala, 2024; Diop & Traoré, 2023), error correction
models (ECM) (Amine M. Benmehaia, 2021), and generalized method of moments
(GMM) (Qian, Ito & Zhao, 2020; Pane & Supriana, 2020; Tenaye, 2020; Zhai, Chen
& Wang, 2019; Meyer, 2018; Magrini, Balié & Morales-Opazo, 2018; Haile, Kalkuhl
& von Braun, 2015). Additionally, more specialized techniques, such as Markov
transition regression (Pates & Hendricks, 2021) and other econometric approaches
(Suh & Moss, 2018; Rude & Surry, 2014; Theriault, Serra & Sterns, 2013), have
been employed to address specific research contexts.

A notable observation from this body of literature is the predominance of country-
specific studies, which, while valuable for capturing localized dynamics, highlight a
significant gap in cross-country analyses. Addressing this gap is crucial for under-
standing broader patterns and differences in supply elasticity determinants across
diverse socio-economic and agro-climatic settings.

Despite the substantial methodological advancements and extensions of Nerlove’s
framework, the explicit incorporation of risk remains relatively limited. Among the
few studies addressing this dimension, Krah (2023) model price variability using
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measures such as the standard deviation of prices, underlining risk as a critical but
underexplored factor in supply response modeling.

This review establishes a foundation for extending Nerlove’s price expectation
model to a cross-country context by incorporating innovative methodologies, such as
constructing risk measures using multidimensional panels and Latent Factor ARCH
models, discussed in the subsequent section, offer promising avenues for addressing
these research gaps and advancing the understanding of agricultural supply responses
in a global context.

3.3 Incorporating Risk in Price Expectation

Next, in this section we augmented the price expectation model as defined in Equation
(3.1) by considering

𝑃𝑒𝑖𝑡 −𝑃𝑒𝑖𝑡−1 = 𝛽
(
𝑃𝑖𝑡−1−𝑃𝑒𝑖𝑡−1

)
+𝜆𝜎𝑖𝑡 , 𝑖 = 1, . . . , 𝑁, 𝑡 = 1, . . . ,𝑇, (3.6)

where the additional term, 𝜎𝑖𝑡 , is a measure of risk for the commodity returns at time
𝑡, based on the information up to 𝑡−1, and 𝜆 represents the sensitivity of the expected
price to market risk for a particularly commodity in country 𝑖. The sign of 𝜆 therefore
provides some indication on the risk attitude and if 𝜆 = 0 then Equation (3.6) reduces
to the original price expectation model as in (Nerlove, 1956). This section proposes
two approaches to construct 𝜎𝑖𝑡 based on the techniques from portfolio management
theory pioneered by Markowitz (1952). The main idea is to approximate risk using
the variance-covariance matrix of commodity returns, weighted by the share of each
commodity in the country’s agricultural portfolio.

The Nerlovian model as defined in Equation (3.5) can be rewritten as

𝑥𝑖𝑡 = 𝛽0 + 𝛽1𝑃𝑖𝑡−1 + 𝛽2𝑥𝑖𝑡−1 + 𝛽3𝜎𝑖𝑡 +𝛽𝛽𝛽′4Δz𝑖𝑡 + 𝑒𝑖𝑡 , (3.7)

where 𝛽0 = 𝜋0𝛽, 𝛽1 = 𝜋1𝛽, 𝛽2 = 1− 𝛽, 𝛽3 = 𝜋1𝜆 and 𝛽4 = 𝛽𝜃𝜃𝜃. It should be clear that all
parameters are identifiable but consistent and robust estimate of 𝛽2, the coefficient of
the lag dependent variable, is crucial in obtaining reliable estimates of other structural
parameters.

3.3.1 Constructing Risk Measures by Using Multi-dimensional Panels

Next, we consider a simple approach to construct 𝜎𝑖𝑡 based on some recent devel-
opments in multi-dimensional panel data modelling (see Mátyás, 2024 for further
details). The approach is both conceptually and computationally straightforward and
it is useful for benchmarking purposes.
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Let 𝑥𝑖 𝑗𝑡 and 𝑃𝑖 𝑗𝑡 denote the yield and price of commodity 𝑗 in country 𝑖 at time
𝑡 for 𝑖 = 1, . . . , 𝑁1, 𝑗 = 1, . . . , 𝑁2 and 𝑡 = 1, . . . ,𝑇 , respectively. Note that 𝑁 ≡ 𝑁1 in
the context of the notation used thus far. Define 𝑠𝑖 𝑗𝑡 = log(𝑃𝑖 𝑗𝑡 ) − log(𝑃𝑖 𝑗𝑡−1) as the
returns of commodity 𝑗 in country 𝑖 at time 𝑡 and

ΩΩΩ𝑡 = (𝑁1−𝑁2)−1
𝑁1∑︁
𝑖=1
(s𝑖◦𝑡 −𝜇𝜇𝜇𝐽𝑡 ) (s𝑖◦𝑡 −𝜇𝜇𝜇𝐽𝑡 )′, (3.8)

where s𝑖◦𝑡 =
(
𝑠𝑖1𝑡 , . . . , 𝑠𝑖𝑁2𝑡

) ′, a 𝑁2×1 vector containing the returns of commodity for
country 𝑖 at time 𝑡, 𝜇𝜇𝜇𝐽𝑡 =

(
𝜇1𝑡 , . . . , 𝜇𝑁2𝑡

) ′ is a 𝑁2×1 vector such that 𝜇 𝑗𝑡 = 𝑁−1
1

∑
𝑖 𝑠𝑖 𝑗𝑡 .

That is, 𝜇𝐽𝑡 contains the average cross section returns (over all countries) of each
commodity at time 𝑡. The weight of the portfolio, 𝛿𝛿𝛿𝑖𝑡 =

(
𝛿𝑖1𝑡 , . . . , 𝛿𝑖𝑁2𝑡

) ′, is constructed
as 𝛿𝑖 𝑗𝑡 = 𝑥𝑖 𝑗𝑡/

∑
𝑗 𝑥𝑖 𝑗𝑡 ∀ 𝑗 = 1, . . . , 𝑁2, for each 𝑖 = 1, . . . , 𝑁1, and each 𝑡 = 1, . . .𝑇 . The

risk measure 𝜎𝑖𝑡 is then defined as

𝜎𝑖𝑡 = 𝛿𝛿𝛿
′
𝑡−1ΩΩΩ𝑡−1𝛿𝛿𝛿𝑡−1. (3.9)

3.3.2 Constructing Risk Measure by Extending the Latent Factor
ARCH Model

The second approach to construct 𝜎𝑖𝑡 is to utilise the techniques from the conditional
variance literature. Since the introduction of the Autogressive Conditional Hetero-
skedasticity (ARCH) model by Engle (1982) and the Generalised ARCH (GARCH)
model in Bollerslev (1986), the study of risk through the modelling of conditional
variance have become standard in Financial Econometrics. The multivariate extension
of GARCH model has also be a focus in the early 2000s. For comprehensive surveys,
see for example, Bauwens, Laurent and Rombouts (2006) and Silvennoinen and
Teräsvirta (2008).

Despite the active developments and advances, multivariate Generalised Autore-
gressive Conditional Heteroskedasticity (M-GARCH) is known to be difficult to
estimate in practice when the number of assets is large. Diebold and Nerlove (1989)
proposed a latent factor ARCH model aiming to alleviate some of the numerical
challenges due to the curse of dimensionality in such cases. Here we extend the
model proposed by them and use the new model to create a risk measure for each
commodity, which is then used in the augmented Nerlovian Model with risk as a
factor that determines crop yield.

Let s𝑡 be a 𝑁2 ×1 vector containing the return of 𝑁2 commodities at time 𝑡 and
consider the following model for s𝑡

s𝑡 =𝜇𝜇𝜇+𝜀𝜀𝜀𝑡 , (3.10)
𝜀𝜀𝜀𝑡 =ΛΛΛF𝑡 +𝜂𝜂𝜂𝑡 , (3.11)
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where F𝑡 is a ℎ×1 vector of latent factors with ℎ << 𝑁2 and

E(𝜀𝜀𝜀𝑡 ) = E(𝜂𝜂𝜂𝑡 ) =0 ∀𝑡
E(F𝑡 ) =0 ∀𝑡

E(F′𝑡𝜂𝜂𝜂𝑡 ) =0 ∀𝑡
E(F𝑡F′𝑡 ) =I ∀𝑡
E(𝜂𝜂𝜂𝑡𝜂𝜂𝜂′𝑡 ) =ΓΓΓ ∀𝑡.

The conditions above imply that the unconditional variance-covariance matrix
of 𝜀𝜀𝜀𝑡 is E(𝜀𝜀𝜀𝑡𝜀𝜀𝜀′𝑡 ) =ΛΛΛΛΛΛ′ +ΓΓΓ. The conditional variance-covariance matrix namely, ΩΩΩ𝑡 ,
evolves following the dynamic

E(F𝑡F′𝑡 |ℑ𝑡 ) =ΩΩΩ𝑡 =ΩΩΩ+AF𝑡−1F′𝑡−1A′ +BΩΩΩ𝑡−1B′, (3.12)

where ΩΩΩ = I−AA′ −BB′, which would ensure that the unconditional variance-
covariance matrix of F𝑡 is the identify matrix.

This setup extends Diebold and Nerlove (1989) in two major ways. First, it
generalises the model in Diebold and Nerlove (1989) by including the conditional
variance-covariance matrix from pervious period in the dynamic of the conditional
variance-covariance. This is similar to how GARCH generalised ARCH by including
the conditional variance from previous periods in the dynamic. Second, it allows F𝑡
to include more than one latent factor, while the number of latent factor in Diebold
and Nerlove (1989) was restricted to 1.

Equation (3.12) can be generalised to include high order lags as well. This may not
be necessary though in practice as empirical evidence suggested that information from
a pervious period seems to be sufficient in describing the dynamic of the conditional
variance, and including high order lags does not seem to improve prediction, while
including them tend to create numerical difficulties, see for example, Wang, Xiang,
Lei and Zhou (2022). Therefore, in this chapter we focus on Equation (3.12) and
refrain from including higher order lags.

Given that F𝑡 is latent, one way to estimate this model is via Kalman Filter.
Following the approach proposed in Diebold and Nerlove (1989), the state-space
representation of the model above can be written as

F𝑡 =v𝑡 ,
𝜀𝜀𝜀𝑡 =ΛΛΛF𝑡 + e𝑡 .

Since F𝑡 is not observable, it is replaced by its estimated counterpart denoted
F𝑡 |𝑡 , with F𝑡 |𝑡−1 = 0 since F𝑡 is not auto-correlated. The estimated conditional
variance-covariance matrix, ΩΩΩ𝑡 |𝑡−1, is defined as

ΩΩΩ𝑡 |𝑡−1 =ΩΩΩ+AF𝑡−1 |𝑡−1F′
𝑡−1 |𝑡−1A′ +BΩΩΩ𝑡−1 |𝑡−1B′
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and F𝑡 |𝑡 is defined to be an update from F𝑡 |𝑡−1 following

F𝑡 |𝑡 =ΩΩΩ𝑡 |𝑡−1ΛΛΛ
′ (ΛΛΛΩΩΩ𝑡 |𝑡−1ΛΛΛ

′ +ΓΓΓ
)−1

𝜀𝜀𝜀𝑡 .

Unlike the case in Diebold and Nerlove (1989), where ΩΩΩ𝑡 |𝑡−1 does not need to be
updated, the inclusion of ΩΩΩ𝑡−1 |𝑡−1 in the generation of ΩΩΩ𝑡 |𝑡−1 means ΩΩΩ𝑡 |𝑡−1 needs to
be updated as

ΩΩΩ𝑡 |𝑡 =ΩΩΩ𝑡 |𝑡−1−ΩΩΩ𝑡 |𝑡−1ΛΛΛ
′ (ΛΛΛΩΩΩ𝑡 |𝑡−1ΛΛΛ

′ +ΓΓΓ
)−1

ΛΛΛΩΩΩ𝑡 |𝑡−1.

The derivations of the filter and its updating processes can be found in the Appendix.
The unknown parameters ΘΘΘ = (𝜇𝜇𝜇′,vec A′,vec B′,vecΛΛΛ,vec ΓΓΓ′)′ can be estimated

via maximum likelihood, i.e.,

Θ̂ΘΘ = argmax
𝜃𝜃𝜃

𝑙 (ΘΘΘ)

where

𝑙 (ΘΘΘ) := −1
2

[
𝑇∑︁
𝑡=1

log |ΛΛΛΩΩΩ𝑡 |𝑡−1ΛΛΛ
′ +ΓΓΓ| + (s𝑡 −𝜇𝜇𝜇)′

(
ΛΛΛΩΩΩ𝑡 |𝑡−1ΛΛΛ

′ +ΓΓΓ
)−1 (s𝑡 −𝜇𝜇𝜇)

]
.

Under standard assumptions, see for examples, Harvey, Ruiz and Sentana (1992) and

Harvey (2001),
√
𝑇

(
Θ̂ΘΘ−ΘΘΘ

)
𝑑∼ N(0,I−1) where I =

𝜕2𝑙

𝜕ΘΘΘ𝜕ΘΘΘ′
.

To apply the proposed Latent Factor GARCH model in the present context,
let s𝑡 =

(
𝑠◦1𝑡 , . . . , 𝑠◦𝑁2𝑡

) ′, where 𝑠◦ 𝑗𝑡 = 𝑁−1
1

∑
𝑖 𝑠𝑖 𝑗𝑡 is the cross section average of

commodity 𝑗 at time 𝑡 and the risk measure is therefore

𝜎𝑖𝑡 = 𝛿𝛿𝛿
′
𝑖𝑡−1ΩΩΩ𝑡 |𝑡−1𝛿𝛿𝛿𝑖𝑡−1 (3.13)

with the weight vector, 𝛿𝛿𝛿𝑖𝑡 defined as in Section 3.3.1.

3.4 Data

The main source of data used in this study comes from the Food and Agriculture
Organization of the United Nations (FAO, see Food and Agriculture Organisation of
the United Nations, 2024). We draw on two different FAO datasets, namely Producer
Prices (See Food and Agriculture Organization of the United Nations, 2024a) and
Crops and Livestock Products (See Food and Agriculture Organization of the United
Nations, 2024b). The crop yield data covers 108 countries from 1961 to 2022, while
the price data covers 181 countries from 1993 to 2022.

In terms of land use data, while the data sources come from FAO, it is not in a
usable format. Instead, the data is obtained via Our World in Data (see Our World in
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Data, 2024), which processed the source data from FAO into a usable format. For
further information, see Ritchie and Roser (2019).

The three datasets must be linked (combined) before the data can be used for
estimation. The process of linking the three datasets can be found in Chan, Jackson,
Duwmfour and Mátyás (2025). Given the estimation of a dynamic panel with serial
correlation, we excluded countries with less than 10 time series observations. Since
the chapter focus on barley and wheat, the final data consists of 77 countries from 1991
to 2022, which means 𝑁1 = 77, 𝑁2 = 2 and 𝑇 = 31. Note that the data is an unbalanced
panel, so not all countries share the same number of time series observations. The
distribution of the number of observations in the 𝑇 dimension can be found in Figure
3.1.

Fig. 3.1: Distribution of Observations Across Years and Countries

3.5 Empirical Results

Next, we present the estimates of the model as defined in Equation (3.7) for two
commodities namely, barley and wheat. The choice of the two crops are based on
the fact that these crops are commonly grown together and therefore the choice
ensures we have sufficient number of observations across countries and over time.
This is particularly important when constructing the risk measures which require
observations for both crops from the same countries in any given time period.

The empirical results include the case with the restriction 𝛽3 = 0, which represents
the original Nerlovian Model without the inclusion of any risk measures. This section
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also presents the results of two cases where 𝛽3 is not restricted to be 0. In these cases,
the risk measure, 𝜎𝑖𝑡 is constructed following Equations (3.9) and (3.13), respectively.

Following the suggestion from Askari and Cummings (1977), the dependent
variable, 𝑥𝑖𝑡 , in this case is defined to be the crop yield. In addition to the lag of price,
𝑃𝑖𝑡−1, and the lag of crop yield, 𝑥𝑖𝑡−1, we also include the size of land allocated
to crop production as a control variable, 𝑧𝑖𝑡 , as argued in Section 3.2. Logarithmic
transformation has been applied to 𝑥𝑖𝑡 and 𝑃𝑖𝑡 , before estimation. Thus the coefficients
of log𝑥𝑖𝑡−1 and log𝑃𝑖𝑡−1 can be interpreted as elasticities (or percentage changes).

In terms of computation, the estimation for the Latent GARCH model is conducted
via Julia Programming Language (see Bezanson, Edelman, Karpinski & Shah, 2017),
while all the panel estimation procedures are conducted via the plm Package (see
Croissant & Millo, 2018) in Julia via Rcall.jl (see Lai et al., 2024). Related code and
Jupyter notebooks can be found in Chan et al. (2025).

Tables 3.1 and 3.2 contain the estimation results for the model as defined in
Equation (3.7) for barley and wheat using some of the more conventional estimators.
This includes the Fixed Effect estimator (FE) for unbalanced panel as proposed
in Wansbeek and Kapteyn (1989),2 the Generalised Least Square (GLS) estimator,
the Arellano-Bond (AB) estimator as proposed in Arellano and Bond (1991) and
the Blundell-Bond estimator as proposed in Blundell and Bond (1998). Given the
structure of the model leads to a MA(1) process in the residual, only the second lag
and beyond are used as instruments in both GMM estimators i.e., AB and BB, to
ensure their validities. The tables also contain estimation results with the risk measure
as defined in Section 3.3.1, as well as the estimates of the long elasticity as implied
by the different estimators for each model specification.

2 See also Baltagi, 2005, Chapter 9 for details.



3 Supply Elasticities of Agricultural Commodities 89

Table 3.1: Estimation for Barley using Conventional Estimators

𝛽3 = 0 𝛽3 ≠ 0

FE AB BB GLS FE AB BB GLS

𝛽1 0.1535 0.2099 0.0379 0.2022 0.1559 0.2183 0.0383 0.2272

(10.1415) (13.3171) (17.5985) (81.3512) (10.326) (13.7294) (15.0732) (128.0209)

𝛽2 0.3327 0.0796 0.7633 0.2068 0.3332 0.0747 0.7744 0.321

(15.4408) (3.3027) (61.9479) (90.8944) (15.5136) (3.0953) (66.3997) (143.383)

𝛽3 - - - - -0.0005 -0.0004 4.983e-05 -0.0004

- - - - (-3.7279) (-4.0268) (0.533) (-40.9888)

𝛽4 3.166e-08 2.370e-08 2.531e-08 5.624e-08 3.304e-08 2.443e-08 2.630e-08 7.365e-09

(1.8082) (2.8411) (3.3177) (25.8701) (1.8934) (2.9289) (3.4505) (2.9241)

𝜋 0.23 0.228 0.1599 0.2549 0.2337 0.2359 0.1697 0.3346

(9.1138) (11.7408) (9.6686) (89.6881) (9.2608) (12.0385) (9.2046) (116.3476)
1 AB denotes the Arellano and Bond estimator as proposed in Arellano and Bond (1991).
2 BB denotes the Blundell and Bond estimator as proposed in Blundell and Bond (1998).
3 t-ratios are in the parenthesis.

Table 3.2: Estimation for Wheat using Conventional Estimators

𝛽3 = 0 𝛽3 ≠ 0

FE AB BB GLS FE AB BB GLS

𝛽1 0.1507 0.2134 0.033 0.1354 0.1611 0.2349 0.0326 0.1199

(11.7963) (12.0685) (14.1722) (26.577) (12.567) (12.9608) (11.2027) (34.5794)

𝛽2 0.3509 0.1343 0.8085 0.3497 0.329 0.1067 0.8373 0.328

(16.5427) (4.9233) (64.5181) (60.7391) (15.3517) (3.8456) (72.4479) (82.9983)

𝛽3 - - - - -0.0005 -0.0006 9.636e-05 -0.0004

- - - - (-5.4287) (-5.4123) (1.0382) (-19.3172)

𝛽4 3.881e-08 3.239e-08 4.707e-08 4.131e-08 4.007e-08 3.286e-08 4.834e-08 3.920e-08

(2.8166) (3.9002) (6.1875) (17.6245) (2.9304) (3.9568) (6.3549) (27.8341)

𝜋 0.2321 0.2465 0.1721 0.2082 0.2401 0.2629 0.2006 0.1784

(10.127) (10.3967) (7.6575) (26.3056) (10.6425) (10.9519) (6.5987) (33.5831)
1 AB denotes the Arellano and Bond estimator as proposed in Arellano and Bond (1991).
2 BB denotes the Blundell and Bond estimator as proposed in Blundell and Bond (1998).
3 t-ratios are in the parenthesis.
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As shown in Tables 3.1 and 3.2, the estimates of 𝛽2 depend heavily on the estimator,
but interestingly, the estimates of the long run elasticity, 𝜋, is relatively robust across
different estimators. In other words, while the estimates of 𝛽2 vary across different
estimators, the estimates of the ratio, 𝛽1/(1− 𝛽2), are relatively stable.

In terms of the importance of risk, it appears that risk is an important factor in
price expectation as suggested by the results in Tables 3.1 and 3.2. The coefficient
estimates, 𝛽3, are statistically significant generally across different estimators. The
negative sign of 𝛽3 estimate provides evidence of risk aversion. This seems to suggest
that, while higher than expected price may increase price expectation, the impact is
compensated, to some degrees, by the uncertainty of the increase as reflected in the
risk measure. The inclusion of risk also inflates the estimates of 𝛽2 slightly, which
also leads to slight increase in the estimate of the long run elasticity.

3.5.1 Result from Latent Factor GARCH Model

Given there are two commodities, the specification of the Latent Factor GARCH can
be written as

s𝑡 =

𝑠1𝑡

𝑠2𝑡

 =

𝜇1

𝜇2

 +

𝜀1𝑡

𝜀2𝑡


𝜀1𝑡

𝜀2𝑡

 =

𝜆1

𝜆2

 𝑓𝑡 +

𝜂1𝑡

𝜂2𝑡


ΩΩΩ𝑡 ≡ 𝜔𝑡 =𝜔+ 𝑎2 𝑓 2

𝑡 + 𝑏2𝜔𝑡−1,

where 𝑠1𝑡 and 𝑠2𝑡 denote the average cross section returns of barley and wheat at
time 𝑡, respectively. In order to reduce the number of parameters to be estimated
while retaining the ability to capture the persistence of uncertainty, the model further
imposed the restriction 𝑏 = 1−𝑎 following the Integrated GARCH (IGARCH) model
as proposed in Engle and Bollerslev (1986). For ease of numerical optimisation, the
variance-covariance matrix of 𝜂𝜂𝜂 = (𝜂1𝑡 , 𝜂2𝑡 ), ΓΓΓ, has been re-parameterized, so that
ΓΓΓ = Γ̃ΓΓΓ̃ΓΓ

′ where Γ̃ΓΓ is a lower triangular matrix. This approach ensure that ΓΓΓ is positive
definite and hence enhance stability during optimisation routine.

Table 3.3 contains the estimation result of the Latent Factor GARCH Model and
Figure 3.2 contains the plot of the estimated common factor, 𝑓𝑡 , over the sample
period.
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Table 3.3: Parameter Estimates of the Latent Factor Model

𝜇𝜇𝜇 ΛΛΛ ΩΩΩ𝑡 Γ̃ΓΓ

𝜇1 1.3632 𝜆1 0.3267 𝜔 462.0702 𝛾11 8.2362

(3.1592) (1.5095) (0.7705) (9.6765)

𝜇2 0.9025 𝜆2 0.3597 𝑎 0.7102 𝛾21 6.748

(2.0734) (1.5146) (8.1305) (6.2607)

𝛾22 2.1204

(9.7519)
1 t-ratios are in the parenthesis.

As shown in Table 3.3, the persistence parameter 𝑎 is highly significant indicating
the latent factor is sensitive to a large shock in the short run but such impact diminishes
quickly. The estimates of 𝜆1 and 𝜆2 are weakly significant (at 10%). This is perhaps not
surprising given the sampling frequency and the number of time series observations
in this case are low relative to the typical studies that used this type of models.3
Therefore, the power of the test is expected to be relatively low.

Fig. 3.2: Estimated Latent Factor

3 GARCH type models typically utilise data at the daily, or higher, frequency with more than 1000
time series observations. The number of time series observations in this case is only 31. For further
discussion see Brooks, Burke and Persand (2003).
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The dynamic of the latent factor is insightful as shown in Figure 3.2. It suggests
that the latent factor is particularly volatile just before the global financial crisis and
while it settles after 2010, it appears to increase again during the COVID-19 pandemic.
Although these observations may not be overly surprising, it is encouraging to observe
that the proposed model managed to capture such features of the data.

Tables 3.4 and 3.5 contain the estimation results of the Nerlovian model with the
risk measure generated by the Latent Factor GARCH model as defined in Equation
(3.13). As shown in the Tables, the estimates of 𝛽3 are statistically significant generally
across the different estimators. The fact these estimates are also negative re-enforces
the earlier result, indicating the importance of risk in determining the expectation of
price. It also provides evidence to support risk aversion. Interestingly, the estimated
long run elasticities seem to be generally higher with this particular risk measure than
the previous two cases across the different estimators. Their variabilities between
different estimators also seem higher. Nevertheless, the elasticity estimates from these
results are broadly consistent with earlier studies, including those reported in Askari
and Cummings (1977).

Table 3.4: Estimation for Barley including Risk from the Latent Factor Model

FE AB BB GLS

𝛽1 0.1593 0.2152 0.0679 0.2075

(10.2665) (13.8231) (8.4732) (57.1193)

𝛽2 0.3327 0.0768 0.7777 0.3649

(15.5042) (3.2591) (67.634) (85.7011)

𝛽3 -0.0005 -0.0005 -0.0006 -0.0035

(-1.8196) (-1.9732) (-3.4093) (-54.8395)

𝛽4 3.181e-08 2.408e-08 2.413e-08 7.086e-08

(1.8183) (2.9617) (3.2535) (26.3821)

𝜋 0.2387 0.2331 0.3053 0.3266

(9.2242) (12.1554) (7.0876) (53.0468)
1 AB denotes the Arellano and Bond estimator as
proposed in Arellano and Bond (1991).
2 BB denotes the Blundell and Bond estimator as
proposed in Blundell and Bond (1998).
3 t-ratios are in the parenthesis.
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Table 3.5: Estimation for Wheat including Risk from the Latent Factor Model

FE AB BB GLS

𝛽1 0.1545 0.2241 0.0609 0.116

(11.7258) (12.7647) (7.3786) (42.9281)

𝛽2 0.3516 0.1335 0.8442 0.3919

(16.6048) (5.0064) (76.4978) (130.0076)

𝛽3 -0.0003 -0.0008 -0.0007 -0.0004

(-1.3457) (-3.4417) (-3.3751) (-7.2482)

𝛽4 3.890e-08 3.297e-08 4.586e-08 4.835e-08

(2.8048) (4.0723) (6.2078) (50.0946)

𝜋 0.2383 0.2586 0.3907 0.1908

(10.1169) (10.9237) (5.9017) (42.1395)
1 AB denotes the Arellano and Bond estimator as
proposed in Arellano and Bond (1991).
2 BB denotes the Blundell and Bond estimator as
proposed in Blundell and Bond (1998).
3 t-ratios are in the parenthesis.

3.5.2 Higher Dimensional Panel

The analysis so far has treated each commodity separately, despite both risk measures
leverage the multi-dimensional nature of the data. So another natural extension is to
express the Nerlovian model empirically as a three dimensional panel data model.
Under the assumption that the parameter vector 𝛽𝛽𝛽 =

(
𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽𝛽𝛽

′
4
) ′ are the same

across all dimensions, Equation (3.6) can be expressed readily as

𝑃𝑒𝑖 𝑗𝑡 −𝑃𝑒𝑖 𝑗𝑡−1 = 𝛽
(
𝑃𝑖 𝑗𝑡−1−𝑃𝑒𝑖 𝑗𝑡

)
+𝜆𝜎𝑖 𝑗𝑡 𝑖 = 1, . . . , 𝑁1, 𝑗 = 1 . . . , 𝑁2, 𝑡 = 1, . . . ,𝑇

and by following the same arguments as those in Section 3.3, Equation (3.7) can be
rewritten as

𝑥𝑖 𝑗𝑡 = 𝛽0 + 𝛽1𝑃𝑖 𝑗𝑡 + 𝛽2𝑥𝑖 𝑗𝑡−1 + 𝛽3𝜎𝑖 𝑗𝑡 +𝛽𝛽𝛽′4Δz𝑖 𝑗𝑡 + 𝑒𝑖 𝑗𝑡 .

Recall 𝑒𝑖 𝑗𝑡 = 𝑢𝑖 𝑗𝑡 − (1− 𝛽)𝑢𝑖 𝑗𝑡−1 and if 𝑢𝑖 𝑗𝑡 represents an error component model,
then the structure of 𝑒𝑖 𝑗𝑡 becomes more complicated. The exact form of 𝑒𝑖 𝑗𝑡 would
depend on the specification of the error components. For further details and discussions,
see Balázsi, Mátyás and Wansbeek (2024) and Chan, Mátyás and Reguly (2024).

While the estimates for 𝛽 varies across different estimators as shown in previous
sections, the estimates are relatively close across the two crops within the same
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estimators. Here we explore the possibility of estimating the Nerlovian model as
a three-dimensional panel data model. For exploratory purposes, it is assumed
𝑢𝑖 𝑗𝑡 = 𝛼𝑖 + 𝛾 𝑗 +𝜆𝑡 + 𝜖𝑖 𝑗𝑡 which implies 𝑒𝑖 𝑗𝑡 = 𝛼∗𝑖 + 𝛾∗𝑗 +𝜆∗𝑡 + 𝜖∗𝑖 𝑗𝑡 such that 𝛼∗

𝑖
= 𝛽𝛼𝑖 ,

𝛾∗
𝑗
= 𝛽𝛾 𝑗 , 𝜆∗𝑡 = 𝜆𝑡 − (1− 𝛽)𝜆𝑡−1 and 𝜖∗

𝑖 𝑗𝑡
= 𝜖𝑖 𝑗𝑡 − (1− 𝛽)𝜖𝑖 𝑗𝑡−1.

Let �̂�𝛽𝛽 be the estimate of 𝛽𝛽𝛽 from the FE estimator while �̂�𝛽𝛽1 and �̂�𝛽𝛽2 be the estimates
of 𝛽𝛽𝛽 for barley and wheat, respectively. The hypothesis is therefore

𝐻0 :𝛽𝛽𝛽1 = 𝛽𝛽𝛽2

𝐻1 :𝛽𝛽𝛽1 ≠ 𝛽𝛽𝛽2.

Let 𝑅𝑆𝑆(�̂�𝛽𝛽) be the residual sum of squares based on �̂�𝛽𝛽 then one approach to test the
hypothesis above is to consider the standard F-test of restrictions

𝐹 =

[
𝑅𝑆𝑆(�̂�𝛽𝛽) −𝑅𝑆𝑆(�̂�𝛽𝛽1) −𝑅𝑆𝑆(�̂�𝛽𝛽2)

]
/𝐾[

𝑅𝑆𝑆(�̂�𝛽𝛽1) +𝑅𝑆𝑆(�̂�𝛽𝛽2
]
/(𝑁1𝑁2𝑇 −2𝐾)

∼ 𝐹 (𝐾,𝑁1𝑁2𝑇 −2𝐾),

where 𝐾 is the number of parameters. The 𝐹-test statistics in the case for barley and
wheat is 36.365. The 0.05 critical value in this case is 2.607. Thus, there are evidence
against the slope coefficients being the same between barley and wheat.

Of course, there are several factors that would affect the reliability of the results
above. First, the specification of the error components model may matter. The
result above assumed a simple additive model and this may not be valid. For further
discussion on the importance of error components model in the context of Fixed Effect
Estimator for multi-dimensional panel model see Chan et al. (2024). Second, the
Nickell effect may introduce biased estimate, at least for the AR coefficient. While the
time dimension in this case is relatively high, such effect cannot be discarded without
further investigation. If the effect turns out to be significant, then a generalisation of
the GMM estimators may be required. Thus, a more thorough investigation is required
if one is serious about estimating the Nerlovian model in a multi-dimensional panel
data setting.

3.6 Concluding Remarks

The Nerlovian model remains relevant since its introduction seven decades ago
and this chapter has updated it in two major directions. First, it incorporated two
different risk measures in the formulation of price expectation, which allowed further
investigation on the role of risk in the expectation of price. Second, it extended the
empirical version of the original Nerlovian model from a time series model into
a three dimensional panel data model. One of the risk measures proposed in this
chapter also generalised the Latent Factor ARCH model of Diebold and Nerlove
(1989). Although using data at a much lower frequency than the typical use cases,
empirical evidence suggests that risk measure based on the proposed Latent Factor



3 Supply Elasticities of Agricultural Commodities 95

GARCH model provides important insight on the role of risk in price expectation.
Specifically, both risk measures reveal that risk reduces the expectation of price in
the case of barley and wheat.

This chapter has also examined the performance of four popular estimators in
the context of their applications in estimating the Nerlovian model. The panel data
version of the Nerlovian model is a dynamic panel data model with serial correlation
in the form of an order 1 moving average process. This chapter applied the Fixed
Effect (FE) Estimator, two Generalised Method of Moments (GMM) estimators as
proposed in Arellano and Bond (1991) and the Blundell and Bond (1998) as well
as the Generalised Least Squares (GLS) estimators to estimate the Nerlovian model.
The results are consistent with the literature in that the estimate of the Autoregressive
coefficient depends heavily on the chosen estimator. However, the implied long run
elasticity estimate, which is the focus of the model, remained robust for the two crops
considered. The estimated elasticities are also broadly in line with those presented
in the literature. The implication is that while it is challenging to produce robust
estimate on the short run response of crop yield to the differential between actual and
expected price, the elasticity estimate appears to be relatively robust.

As mentioned above, the chapter also briefly discussed the possibility of extending
the Nerlovian model in the context of a three-dimensional panel data model. While
such extention may lead to more efficient use of information, there exists econometric
challenges that yet to be resolved and this could be an interesting direction for future
research.

Appendix

Summary of Elasticity Estimates

In Table 3.6 the most recent applications and extensions of the Nerlovian model are
summarised. SR stands for the short run, while LR for the long run elasticities.
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Table 3.6: Supply Elasticities by Crop

Authors Commodity, Location and Data
Source

Estimation Method Elasticity

Puga and Anderson
(2024)

Grape varieties. South Australia.
Source: Vinehealth Australia and
Wine Australia

Ordinary Least Square
(OLS)

SR: +0.074 to 0.089;
LR: +0.333 to 0.397

Lemontzoglou and
Carmona-Zabala
(2024)

Greek tobacco. Greece. National To-
bacco Board.

Panel Autoregressive Dis-
tributed lag (ARDL)

SR: +1.83 to 4.98

Okou et al. (2023) Cocoa and Cashew nuts. Côte
d’Ivoire. Source: Cotton and
Cashew Council (CCA), FAO and
SODEXAM.

OLS and MLE SR: 0.012

Diop and Traoré (2023) Cotton. Mali. Source: FAOSTAT. Non-linear ARDL SR: Area Cultivated (Pro-
duction): +0.63 (+0.58);
LR: Area Cultivated (Pro-
duction): +0.43 (+0.38)

Krah (2023) Maize. Ghana. Source: Esoko
Ghana, FAO, Global Informa-
tion and Early Warning System
(GIEWS).

Pooled OLS and FEs SR: +0.018; LR: –

Jongeneel and
Gonzalez-Martinez
(2022)

Milk and Herd. EU countries.
Source: AGMEMOD model data-
base.

OLS and Theil-Goldberger
Mixed estimator

SR: +0.2 to 0.36 (Milk),
+0.1 (Herd); LR: –

Yu et al. (2022) Rice. China. Source: Provincial Stat-
istical Yearbook of China and China
Agricultural Products Price Year-
book.

OLS SR: + 0.194; LR: –

Nhundu et al. (2022) Sunflower: South Africa. Source:
Centre of Collaboration on Econom-
ics of Agriculture Research and De-
velopment and DAFF (2017)’s Ab-
stract of Agricultural Statistics

OLS SR: +0.238; LR: +0.313

Amine M. Benmehaia
(2021)

19 crops: Algeria. Source: FAO Error Correction Model
(ECM)

SR: +0.161 to 0.393; LR:
+to 0.99

Pates and Hendricks
(2021)

Corn: U.S. Source: USDA’s Crop-
land Data Layer (CDL).

Markov transition regression SR: +0.69; LR: +0.54

Bouraima, Johnson
and Atchadé (2020)

Cotton: Benin. Source: Climatology
service of Meteo Benin.

Cointegration with structural
breaks

SR: –; LR: +0.97

Naabi and Bose (2020) Fish: Oman. Source: Various OLS SR: Export supply: +1.44;
LR: –

Qian et al. (2020) Grain (Rice and Wheat). China.
Source: China Statistical Yearbook

Generalized method of Mo-
ments (GMM)

SR: Rice: +0.069 (yield)
and +0.083 (planted area);
Wheat +0.13 (yield) and
+0.12 (planted area); LR:
–

Pane and Supriana
(2020)

Shallots: North Sumatera–
Indonesia.

OLS SR: -0.23; LR: -0.20

Malaiarasan, Parama-
sivam, Thomas Felix
and Balaji (2020)

Sugar: India. Source:ISMA [Indian
Sugar Mills Association], Cooperat-
ive Sugar, and Indian Sugar journals

3SLS SR: Production: +0.02;
LR: –

Tenaye (2020) Teff, wheat, and barley: Ethiopia.
Source: Ethiopia Rural Household
Survey (ERHS)

GMM SR: Area: Teff (+5.46),
Barley (+0.44), Wheat (0).
Yield: Teff (+11.39), Bar-
ley (+1.08), Wheat (0);
LR: Area: Teff (+7.27),
Barley (+0.40), Wheat (0).
Yield: Teff (+13.89), Bar-
ley (+0.70), Wheat (0)

Li, Liu and Song
(2020)

Wheat: China. Source: Ministry of
Agriculture and Rural Affairs of
China; News from the
Ministry of finance of China.

Three-stage
Least squares (3SLS)

SR: Planting area: 0.103;
LR: –
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Table 3.1: Cont’d — Supply Elasticities by Crop

Authors Commodity, Location and Data
Source

Estimation Method Elasticity

Zhai et al. (2019) Green fodder: China. Source: Pro-
vincial Statistical Yearbooks.

GMM SR: +0.21; LR: –

Suh and Moss (2018) Corn, Cotton, Wheat, and Soy-
beans.US. Economic Research Ser-
vice of the US Department of Ag-
riculture.

MLE SR: Corn: +0.53, Cotton:
+0.43, Wheat: +0.62, Soy-
beans: +0.63; LR: –

Meyer (2018) Corn, soybeans, and grassland.
US. Source: USDA NASS cro-
pland data layers (CDL’s) and
Iowa State’s Limnology Laborat-
ory website.

Arellano-Bond Difference-
GMM

SR: Crops (Corn and Soy-
beans): 0.05; LR: –

Iqbal and Babcock (2018) Corn, soybeans, wheat, and
rice. Panel of countries. Source:
FASOSTAT,Quandl database,
Global Economic Monitor Com-
modities database, US Bureau of
labor Statistics.

Mean Group (MG) estimator SR: Aggregate Crops
+0.02, Corn +0.13,
Soybeans +0.20, Wheat
+0.04, Rice 0; LR:
Aggregate Crops +0.14,
Corn +0.27, Soybeans
+0.79, Wheat +0.28, Rice
+0.05

Qian, Ito, Mu, Zhao and
Wang (2018)

Rice, Wheat, Corn: China. United
States Department of Agricul-
ture (USDA), China Agricultural
Development Report, National
Cost and Return of Agricultural
Products in China and China Stat-
istical Yearbook.

OLS and weighted
least squares (WLS)

SR: Area: Rice +0.07,
Wheat 0.13, Corn 0.11.
Yield: Rice +0.04, Wheat
0.13, Corn 0.05; LR: –

Magrini et al. (2018) Staple Foods :cereals (maize,
wheat, sorghum, rice, millet, and
barley); roots and tubers (cassava,
yams, and potatoes); and pulses
(beans). Ten different SSA coun-
tries. Source: FAO (MAFAP data-
base), FAOSTAT, World Bank’s
Global Economic Monitor (GEM)
Commodities Database.and WDI.

Blundell and Bond System-
GMM

SR: Acreage: farm-gate
+0.31, wholesale +0.41,
Production: farm-gate
+0.60, wholesale +0.63,
Yield: farm-gate +0.25,
wholesale +0.36; LR: –

Le Clech and Fillat-
Castejón (2017)

Aggregate grain and oilseed: bar-
ley, corn, millet, oats, rape, rice,
rye, sorghum, soybean, sunflower,
and wheat. FAOSTAT Database.
International Fertilizer Industry
Association (IFA).

OLS– Driscoll and Kraay
(1998) (OLS-DK)

SR: +0.10; LR: –

Ge and Kinnucan (2018) Cattle, sheep and goats. Inner Mon-
golia Autonomous Region (IMAR)
- China. Source: Bureau of Statist-
ics in IMAR and mainland China.

Pooled OLS SR: Cattle -0.32, Sheep 0,
Goat 0; LR: Cattle -0.45,
Sheep 0, Goat 0

Kim and Moschini (2018) Corn and Soybeans. US. Source:
National Agricultural Statistics
Service (NASS) of the U.S. De-
partment of Agriculture (USDA).

Difference GMM, SUR SR: Yield: Corn +01, Soy-
beans 0 Acreage: Corn
+0.50, Soybeans +0.38;
LR: Acreage: Corn +0.39,
Soybeans +0.26

Haile et al. (2015) Wheat, rice, corn, soybeans. Cross-
country. Source: FAO, World
Bank’s commodity price database,
Bloomberg database.

System–GMM SR: Production: Wheat
+0.11, Corn +0.23, Soy-
bean +0.37, Rice +0.06.
Acreage: Wheat +0.08,
Corn +0.07, Soybean
+0.15, Rice +0.02. Yield:
Wheat +0.17, Corn +0.09,
Soybean +0.15, Rice
+0.04; LR: Production:
Wheat +2.72, Corn +6.28,
Soybean +5.07, Rice
+0.15. Acreage: Wheat
+7.50, Corn +3.14, Soy-
bean +2.15, Rice +0.09.
Yield: Wheat +2.08, Corn
+2.35, Soybean +1.95,
Rice +0.16
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Table 3.1: Cont’d — Supply Elasticities by Crop

Authors Commodity, Location and
Data Source

Estimation Method Elasticity

Rude and Surry (2014) Hogs. Canada. Source:
Agriculture and AgriFood
Canada.

Structural time-series model
(STSM)

SR: +0.12 to +0.21; LR:
–

Boussios and Barkley
(2014)

Wheat, Corn, Sorghum, Soy-
bean. US. Source: USDA
National Agricultural Stat-
istics Service, Kansas State
Weather Data Library and the
National Climatic Data Cen-
ter (NCDC)

FE SR: Wheat +0.61, Corn
+0.42, Soybean +0.69,
Sorghum +0.36; LR:
Wheat +0.71, Corn +2.48,
Soybean +2.18, Sorghum
+0.38

Haile, Kalkuhl and von
Braun (2014)

Wheat, corn, soybeans, and
rice. Cross-Country. Source:
FAO and the United States
Department of Agriculture
(USDA)

OLS SR: Annual: Wheat
+0.09, Corn +0.18,
Soybean +0.37, Rice
+0.02. Intra-annual:
Wheat +0.07, Corn +0.11,
Soybean +0.14, Rice 0;
LR: –

Bardal (2013) Corn, soybeans, rice. Brazil.
Source:Centro de Estudos
Avançados em Economia Ap-
licada CEPEA.

GMM SR: +0.11 – 0.14; LR:
+0.66

Theriault et al. (2013) Cotton. Mali. Source: Malian
Company for Textile Devel-
opment (CMDT)

Bias-corrected
fixed-effect estimator (LS-
DVC)

SR: +0.48 – 0.51; LR:
+0.64

de Castro and Teixeira (2012) Cotton, Rice, Bean,
Corn, Soybean, Wheat.
Brazil.Source: Various

Seemingly unrelated regres-
sion (SUR)

SR: Cotton (0), Rice
(+0.32), Bean (+0.50),
Corn (+0.45), Soybean
(+0.57), Wheat (+1.31);
LR: –

Xu, Shengxiong, Zhijian
and Wei (2012)

Grape. China. Source: FAO OLS SR: +0.08; LR: +0.80

De Menezes and Piketty
(2012)

Soybean. Brazil. Source: In-
stituto Brasileiro de Geo-
grafia e Estatıstica (IBGE)
and Municipal
Agricultural Production Sur-
vey (PAM)

AB GMM SR: +0.18; LR: +0.79

Hausman (2012) Soybeans and Sugarcane.
Brazil. Source: IPEA (Insti-
tuto de Pesquisa Econômica
Aplicada)

Kiviet’s bias-corrected
estimator

SR: Soybean +0.89, Sug-
arcane 0; LR: Soybean
+2.23, Sugarcane 0

Ogundeji, Jooste and
Oyewumi (2011)

Beef. South Africa.
Source:Department of
Agriculture.

Error Correction Model
(ECM)

SR: 0; LR: +0.33

Ozkan and Karaman
(2011)

Cotton. Turkey. Source:
Union of Agricultural Sales
Cooperatives

ARDL SR: +0.02 to 0.56; LR:
+0.44 to 2.01

Asheim, Dahl,
Kumbhakar, Oglend
and Tveteras (2011)

Farmed salmon. Norway.
Source: Norwegian Seafood
Export Council, Kontali AS,
and Marine Harvest AS.

Three-stage
Least squares (3SLS)

SR: +0.09; LR: +0.14
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Derivation of the Kalman Filter

Recall the state-space representation of the model is

s𝑡 =𝜇𝜇𝜇+𝜀𝜀𝜀𝑡
𝜀𝜀𝜀𝑡 =ΛΛΛF𝑡 +u𝑡
F𝑡 =v𝑡 .

Define ΩΩΩ𝑡 := E
(
F𝑡F′𝑡

)
, ΓΓΓ := E(u𝑡u′𝑡 ), and H𝑡 |𝑡−1 := E

(
𝜀𝜀𝜀𝑡 −𝜀𝜀𝜀𝑡 |𝑡−1

) (
𝜀𝜀𝜀𝑡 −𝜀𝜀𝜀𝑡 |𝑡−1

) ′
=

ΛΛΛΩΩΩ𝑡 |𝑡−1ΛΛΛ+ΓΓΓ. Since F𝑡 = v𝑡 with E(v𝑡 ) = 0, this implies F𝑡 |𝑡−1 = 0 and given 𝜀𝜀𝜀𝑡 ,
𝐹𝑡 |𝑡−1 can be updated as

F𝑡 |𝑡 =F𝑡 |𝑡−1 +K
(
𝜀𝜀𝜀𝑡 −𝜀𝜀𝜀𝑡 |𝑡−1

)
=K𝜀𝜀𝜀𝑡

for some adjustment matrix K. In this case, K is selected based on the minimization
of ΩΩΩ𝑡 |𝑡 := E(F𝑡 −F𝑡 |𝑡 ) (F𝑡 −F𝑡 |𝑡 )′. That is

K =argmin
Q

ΩΩΩ𝑡 |𝑡 (Q)

=QH𝑡 |𝑡−1Q′ −ΩΩΩ𝑡 |𝑡−1ΛΛΛ
′Q′ −QΛΛΛΩΩΩ𝑡 |𝑡−1.

Differentiating with respect to Q′ and set it to zeros gives the First Order Condition
that must be satisfied by K, that is

KH𝑡 −ΩΩΩ𝑡 |𝑡−1ΛΛΛ
′ = 0

which gives the optimal Kalman Gain as K =ΩΩΩ𝑡 |𝑡−1ΛΛΛ
′H−1
𝑡 . This provides the update

rule for F𝑡 |𝑡−1 i.e., F𝑡 |𝑡 =ΩΩΩ𝑡 |𝑡−1ΛΛΛ
′H−1
𝑡 𝜀𝜀𝜀𝑡 .

UpdatingΩΩΩ𝑡 |𝑡−1 follows similar argument. Note thatΩΩΩ𝑡 |𝑡 = E
(
F𝑡 −F𝑡 |𝑡 ) (F𝑡 −F𝑡 |𝑡

)
and

E
(
F𝑡 −F𝑡 |𝑡 ) (F𝑡 −F𝑡 |𝑡 )

)
=E

[
(F𝑡 −F𝑡 |𝑡−1) +K(ΛΛΛF𝑡 +u𝑡 )

] [
(F𝑡 −F𝑡 |𝑡−1) +K(ΛΛΛF𝑡 +u𝑡 )

] ′
=E [(I−KΛΛΛ)F𝑡 +Ku𝑡 )] [(I−KΛΛΛ)F𝑡 +Ku𝑡 )]′

= (I−KΛΛΛ)ΩΩΩ𝑡 |𝑡−1 (I−KΛΛΛ)′ +KΓΓΓK′

and substitute K =ΩΩΩ𝑡 |𝑡−1ΛΛΛ
′H−1
𝑡 into the last expression above gives the result.
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Chapter 4
Discrete Games: A Historical Perspective

Paul A. Bjorn, Isabelle Perrigne and Quang Vuong

Abstract In the seventies, building on the statistical literature, economists have
developed interest in the empirical analysis of qualitative variables with the log-
linear probability and latent variable models, analyzing individual decisions within a
simultaneous equation setting. Starting from the eighties, they began to rely on game
theoretic formulations to account for strategic interactions among agents with random
utility. This chapter presents the first contributions to the econometrics of discrete
games through noncooperative solution concepts, namely Nash and Stackelberg
equilibria. This game theoretic approach to the empirical analysis of agents’ decisions
has led to a rich literature which continues to expand with applications to various
domains in economics such as industrial organization, labor, public and development
economics as well as beyond the economics field.

4.1 Introduction

Professor Marc Nerlove was Quang Vuong’s advisor in the late seventies at North-
western University and orientated him to work on qualitative variables. This led
to Vuong’s (1982) dissertation on log-linear probability models. Professor Nerlove
had a profound influence on Vuong’s research agenda. He recruited him first as a
teaching assistant for an undergraduate statistics course in 1977 and then as a research
assistant with classmate John Link from 1978 to 1980. Professor Nerlove asked
them to develop log-linear probability models building on Nerlove and Press (1973).
Vuong was also responsible for the proofreading and indexing of Nerlove, Grether
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and Carvalho’s (1979) monograph on time series. Professor Nerlove shared his vision
of econometrics and empirical research with his students. In particular, he gave Hood
and Koopmans (1953) Cowles Foundation monograph to Vuong. The latter still has
this book on the shelves in his office at New York University. These two books shaped
Vuong’s research on structural econometrics, which combines economic theory
and statistics. Since his graduation in 1982, he participated in the development of
econometric methods ranging from model selection tests to nonparametric estimation
procedures that were motivated by empirical questions arising mostly from industrial
organization such as auctions.

In this chapter, we present two unpublished papers by Bjorn and Vuong (1984,
1985) following closely their presentation while inserting some updating comments.
These papers rely on a game theoretical approach to the analysis of qualitative/discrete
variables. They initiated an important line of research as they account for the strategic
interactions among multiple decision makers such as spouses in a household or firms
in a market. We first put these two papers in the historical context of econometric
research in the seventies, which focuses on modeling discrete variables with the
log-linear probability and threshold-crossing latent variable models. The difficulty
of modeling decisions of two agents in a simultaneous setting called for a different
approach that combines econometrics and game theory. Bjorn and Vuong (1984)
develop an econometric model for dichotomous/binary variables where the outcome
is a Nash equilibrium of a noncooperative game of complete information between two
economic agents. Bjorn and Vuong (1985) extend it to a Stackelberg game. These two
papers also motivated the development of Vuong’s (1989) model selection test for
nonnested hypotheses. They are part of Bjorn’s (1986) dissertation. The introduction
of game theory in econometrics has been a major breakthrough for the analysis of
joint discrete decisions such as firms’ entry in markets. It further expanded into a vast
and blossoming empirical literature with incomplete information games, dynamic
games, analysis of networks and bargaining.

The chapter is organized as follows. Section 4.2 provides a historical perspective
by reviewing the early literature on qualitative endogenous variables. It also presents
a benchmark model of noncooperative game in complete information. Section
4.3 focuses on the Nash solution concept including mixed strategies and multiple
equilibria. It provides the likelihood function and discusses identification. Section 4.4
follows a similar pattern with the Stackelberg approach, while Section 4.5 reports the
empirical application to labor force participation from Bjorn and Vuong (1984, 1985).
Lastly, Section 4.6 briefly reviews four main lines of research on the econometrics of
discrete games developed since the early nineties.

4.2 Historical Perspective and Model Set-Up

The first half of this section partly draws from Bjorn’s (1986) dissertation and reviews
the early literature on qualitative variables up to the introduction of the game theoretic
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approach. The second half introduces a model with two players that is used in the
game theoretic approach in the following sections.

4.2.1 Qualitative Endogenous Variables

Economic agents, firms or individuals, frequently make discrete decisions from a
finite set of alternatives. Individuals choose their education such as dropping out
of high school, going to college or courses to take. As adults, they decide whether
to work full-time or part-time, have children but they also select their residential
location, transportation mode, insurance coverage, products they purchase, etc. Firms
decide whether to enter a market, the products they launch, their investment, research
and development, recruitment, mergers to name a few. Modeling these decisions is
crucial to understand the factors that explain or predict them. This can represent
a first step to model quantitative variables associated with individuals’ discrete
decisions. For instance, an individual chooses to work, then he has to decide how
many hours he will work; he chooses energy sources for his home and then decides
how much energy to consume, etc. This non-exhaustive list of examples relates to a
broad range of applied microeconomic fields such as labor, development, industrial
organization, health, energy or public economics. Because it is a key component for
policy recommendations, modeling agents’ decisions goes beyond the economic field
with marketing, management, finance, psychology, sociology, political science, urban
planning, environment, agronomy, public health, health sciences, etc.

The development of statistical methods to model the probability of an event dates
back from the nineteenth century with the logistic function. See Cramer (2004)
for historical references. Two models were developed in parallel. The probit model
relies on the standard normal distribution to assess the probability of an event, such
as‘success’ or ‘failure’, as a function of a linear index of some discrete/continuous
covariates. The logistic function, which was first used to model population growth,
specifies the log-odds of an event as a linear combination of variables. Both models are
estimated by maximum likelihood and were further extended to handle polychotomous
variables that can be either ordered or unordered leading to the ordered probit and logit
models and the multinomial logit and probit models, respectively. Statisticians revive
interest for these models in the thirties and research done in the fourties contributed
to their development. The logit approach quickly gained popularity because of its
simple explicit form.1

The introduction of latent variables in those models has been a major leap for
the analysis of economic agents’ decisions. A latent variable is expressed as a linear
combination of exogenous variables with an additive unobserved error term. To
generate a dichotomous variable, the sign of the latent variable is associated to each
of the two options, for instance an individual chooses to work if his latent variable is

1 An alternative approach relies on ordinary least squares with the linear probability model by
regressing a binary variable on independent variables. Though still popular in empirical studies, this
leads to inefficient estimates and imprecise predictions.
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positive and will not otherwise. In the socalled conditional logit model, McFadden
(1973) combines economic theory and statistical methods to analyze economic agents’
choices for their transportation mode. The latent variable is the agent’s random
utility associated to each transportation option, an individual chooses an option
over alternatives because it generates a higher utility. Assuming that the error terms
independently follow a Gumbel distribution gives the multinomial logit model because
the difference of two Gumbel error terms follows a logistic distribution. This model
satisfies the independence of irrelevant alternatives, an axiom from decision theory,
which relates to revealed preferences in economics. In simple terms, the choice of
an option is not altered if other options are proposed. McFadden’s (1973) seminal
paper in the analysis of qualitative variables had a profound impact in the empirical
analysis of micro data. See surveys by Amemiya (1981), Aigner, Hsiao, Kapteyn and
Wansbeek (1984), and McFadden (1984) as well as Manski and McFadden’s (1981)
monograph and Maddala’s (1983) textbook.

Professor Nerlove’s research covers a broad range of topics in econometrics. Not
surprisingly, he also contributed to the analysis of qualitative variables while adopting
a different approach that relies on the analysis of contingency tables and which has a
long history in statistics. See Haberman (1974) and Bishop, Fienberg and Holland
(1975). To analyze the relationships among variables that are all qualitative, Nerlove
and Press (1973) develop the log-linear probability model and discuss its link with
logit models. They apply their results to farming practices in a developing economy.
As its name indicates, the model decomposes the logarithm of the joint probability
of the discrete variables into a linear combination of a main effect and interaction
effects. It is especially suitable to understand conditional probabilities and to test
joint and conditional independence. See, e.g., Bouissou, Laffont and Vuong (1986)
for causality tests with qualitative panel data.

The previous models apply to single agents’ choices but individuals do not always
take decisions by themselves, they live within a family, a circle of friends. Similarly,
firms have competitors. This suggests that their decisions are dependent on other
agents’ choices. For instance, in a household, a member’s decision of working or
retiring also depends on the spouse’s working or retiring decision. In a market, a
firm’s entry depends on other firms’ entry as well as how their products compare
to their competitors in terms of quality and price. Furthermore, because of peer
effects, an individual’s decision depends on his friends’ choices to go to college,
to engage in criminal behavior, unhealthy habits, etc. Because it involves multi-
agent decisions, the analysis is reminiscent to simultaneous equations which were
developed in the mid twentieth century for estimating supply and demand equations.
See Hood and Koopmans’s (1953) Cowles Commission monograph. In line with
this framework, Heckman (1978) develops a model with two equations. The latent
variable of each agent is a linear function of the other agent’s choice and latent
variable. Heckman (1978) points out that simultaneous equations models for dummy
endogenous variables appearing as right-hand side variables must satisfy a coefficient
restriction that he calls the logical consistency/coherency condition, namely, the
product of the two coefficients of the dummy variables must equal to zero. This
condition implies that the effect of an individual choice on the other’s choice vanishes.
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There is a priori no economic reason to impose this condition. As a matter of fact,
one expects these two coefficients to be negative when considering firms’ entry as a
competitor’s entry has a negative impact on the firm’s profit.

To address this difficulty, Bjorn and Vuong (1984, 1985) introduced a game
theoretical approach to capture the interactions among two individuals. Game theory
started from the development of two-person zero-sum cooperative games with
Von Neumann and Morgenstern’s (1944) book, and rapidly found applications in
social sciences, and especially economics. The analysis of games was extended to
several players and non-zero sum noncooperative games with the Nash equilibrium.
See Nash (1950, 1951). The Nash equilibrium applies to noncooperative games
with several players under complete information by considering strategies played by
individuals who act independently, i.e., there is no binding agreements to enforce their
cooperation, and who observe other players’ preferences and strategies. Subsequently,
Harsanyi (1967) developed the Bayesian Nash equilibrium for games of incomplete
information, in which individuals do not possess full information about others. Each
player possesses some private information and forms expectations on how others
behave. This concept was key for the development of the economics of information
with auction theory, contract theory and more generally the theory of incentives with
the principal-agent model (see Laffont & Martimort, 2002 and Krishna, 2002).

The Nash and Bayesian Nash equilibria have been a stepping stone in the analysis
of relationships among economic agents. Since then, there has been an abundant
econometric and empirical literature on qualitative endogenous variables relying on
game theoretic solution concepts. We briefly review this literature in Section 4.6. In
the next subsection, we present the model set-up for a two-person noncooperative
game in complete information following Bjorn and Vuong (1984, 1985).

4.2.2 Model Set-Up: A Game Theoretic Approach

In the game theoretic approach, the endogenous variables are the outcomes of an
equilibrium. In view of the previous discussion, the model also includes latent
variables and random utility. We restrict our attention to two agents indexed by
𝑖 = 1,2, each of whom has only two possible and exclusive actions/choices 𝑦𝑖 ∈ {0,1}.
Let �̃�𝑖 (𝑦𝑖 , 𝑦 𝑗 ) be the utility/payoff that agent 𝑖 derives from taking action 𝑦𝑖 when
the other agent 𝑗 ≠ 𝑖 takes action 𝑦 𝑗 . Following McFadden (1973, 1981) the utility
�̃�𝑖 (𝑦𝑖 , 𝑦 𝑗 ) is treated as random and decomposed into a deterministic component and
an unobserved component

�̃�𝑖 (𝑦𝑖 , 𝑦 𝑗 ) = 𝑈𝑖 (𝑦𝑖 , 𝑦 𝑗 ) +𝜂𝑖 (𝑦𝑖 , 𝑦 𝑗 ).

Only some utility differences are relevant in the non-cooperative (Nash and Stackel-
berg) equilibrium concepts invoked below. Without loss of generality, we let

𝑈𝑖 (1, 𝑦 𝑗 ) −𝑈𝑖 (0, 𝑦 𝑗 ) = Δ𝑖 +𝛼𝑖𝑦 𝑗 ,
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where Δ𝑖 represents the systematic utility gain for choosing 𝑦𝑖 = 1 instead of 𝑦𝑖 = 0
irrespective of the opponent’s action 𝑦 𝑗 , whereas the structural effect of the opponent’s
choice reduces to the shift parameter 𝛼𝑖 ∈ R when 𝑦 𝑗 = 1 and 0 otherwise. Bjorn and
Vuong (1984, 1985) assume that the unobserved components satisfy

𝜂𝑖 (1, 𝑦 𝑗 ) −𝜂𝑖 (0, 𝑦 𝑗 ) = 𝜖𝑖 ,

so that such a difference does not depend on 𝑦 𝑗 = 0,1. Thus, agent 𝑖’s utility for
choosing 𝑦𝑖 = 1 instead of 𝑦𝑖 = 0 when his opponent 𝑗 chooses action 𝑦 𝑗 is

�̃�𝑖 (1, 𝑦 𝑗 ) = �̃�𝑖 (0, 𝑦 𝑗 ) +Δ𝑖 +𝛼𝑖𝑦 𝑗 + 𝜖𝑖 , (4.1)

for 𝑖 = 1,2 and 𝑗 ≠ 𝑖. In general, Δ1 and Δ2 are parameterized linear functions of the
agents’ observed discrete and/or continuous characteristics (𝑋1, 𝑋2), namely,

Δ𝑖 = 𝑋
′
𝑖 𝛽𝑖 for 𝑖 = 1,2, (4.2)

where 𝑋1 and 𝑋2 may have some variables in common and 𝛽𝑖 are some parameters.
Moreover, the pair of unobserved components (𝜖1, 𝜖2) follows a joint distribution
𝐹 (·, ·) with zero means and density 𝑓 (·, ·) with respect to Lebesgue measure and
support R2 independently from (𝑋1, 𝑋2). Following Heckman (1978) we refer to
(𝛼1, 𝛼2) as representing the structural effect of the opponent’s choice, and the
dependence between the unobserved components (𝜖1, 𝜖2) as the statistical association
between the agents’ choices. An important task for the analyst is to distinguish
these two types of association. The model structure [𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝜖1, 𝜖2] is common
knowledge, namely each agent knows the other’s preferences. The setting is a model
of complete information.2

Let agent 𝑖’s observed choice be 𝑌𝑖 ∈ {0,1} for 𝑖 = 1,2. A standard approach is to
assume that 𝑌𝑖 is generated from a latent continuous variable 𝑌 ∗

𝑖
crossing a threshold,

namely 𝑌𝑖 = 1 if 𝑌 ∗
𝑖
≥ 0 and 𝑌𝑖 = 0 if 𝑌 ∗

𝑖
< 0.3 When 𝑌 ∗

𝑖
= �̃�𝑖 (1,𝑌 𝑗 ) − �̃�𝑖 (0,𝑌 𝑗 ),

then (4.1) gives the simultaneous equation model in observed and latent variables
(𝑌1,𝑌2,𝑌

∗
1 ,𝑌

∗
2 )

𝑌 ∗1 = Δ1 +𝛼1𝑌2 + 𝜖1

𝑌 ∗2 = Δ2 +𝛼2𝑌1 + 𝜖2.
(4.3)

As is well-known from Heckman (1978), Gourieroux, Laffont and Monfort (1980)
and Schmidt (1981), the system (4.3) admits a well-defined reduced form, i.e., defines
a joint probability distribution for the agents’ observed choices (𝑌1,𝑌2) if and only
2 The difference with a model of incomplete information is that agent 𝑖 knows 𝜖𝑖 but not 𝜖 𝑗 , the
random term 𝜖 𝑗 then becomes private information, also commonly called agent’s type. However,
individual 𝑖 knows that individual 𝑗’s private information is drawn from the same distribution
𝐹 ( ·, · ) . The game is then solved relying on a Bayesian Nash equilibrium. See Liu, Vuong and Xu
(2017) for an econometric framework of such binary games. See Section 4.6.
3 When an individual is indifferent between the two alternatives, we assume that he chooses the
alternative 𝑦𝑖 = 1, hence the use of the weak inequality.
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if the coherency condition 𝛼1𝛼2 = 0 holds. As argued by Bjorn and Vuong (1984)
such a condition renders the model essentially recursive, more precisely, one agent’s
choice is structurally independent from the other agent’s choice. To avoid such a
constraint, Bjorn and Vuong (1984, 1985) assume instead that the choices (𝑌1,𝑌2)
are the equilibrium outcomes of the game played by the two agents.

From (4.1), the normal form of the game is given by the following 2× 2 table,
which displays each agent’s payoff for every pair of actions.

Table 4.1: Normal Form

𝑦2 = 0 𝑦2 = 1

𝑦1 = 0 �̃�1 (0, 0) ; �̃�2 (0, 0) �̃�1 (0, 1) ; �̃�2 (0, 0) +Δ2 + 𝜖2

𝑦1 = 1 �̃�1 (0, 0) +Δ1 + 𝜖1 ; �̃�2 (0, 1) �̃�1 (0, 1) +Δ1 + 𝛼1 + 𝜖1 ; �̃�2 (0, 1) +Δ2 + 𝛼2 + 𝜖2

Different equilibrium concepts can be invoked to solve this game of complete
information. Bjorn and Vuong (1984, 1985) use the noncooperative Nash and
Stackelberg equilibrium concepts, respectively. The major difference between the two
is that agents move simultaneously in a Nash equilibrium, whereas the Stackelberg
game is sequential with one agent, called the leader, moving first, followed by the
second agent, called the follower.4

4.3 The Nash Approach

Nash (1950, 1951) shows that every finite normal-form game has a Nash equilibrium
(NE) in mixed strategies, i.e., a mixed NE. If both mixed strategies are degenerate, the
NE is in pure strategies. See e.g., Fudenberg and Tirole (1991). Hence, the preceding
finite game (two players with two actions each) has at least one NE. Starting from
each player’s reaction function (or best response), Bjorn and Vuong (1984) determine
all its NEs in pure and mixed strategies. This depends on the signs of the parameters
(𝛼1, 𝛼2) when 𝛼1𝛼2 ≠ 0,

4 For instance, a larger firm with more market power or a spouse with a larger salary/wealth can ration-
alize the use of a Stackelberg equilibrium. Both equilibria lead to different implications/restrictions
on observations that can be tested on data. See Section 4.5 for model selection tests.
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• Case A: 𝛼1 > 0 and 𝛼2 > 0.5
A1. If 𝜖1 < −Δ1−𝛼1 and 𝜖2 < −Δ2 or if 𝜖1 < −Δ1 and 𝜖2 < −Δ2−𝛼2, there is a unique
NE, namely, the pure NE (0,0).
A2. If 𝜖1 < −Δ1−𝛼1 and −Δ2 < 𝜖2, there is a unique NE, namely, the pure NE (0,1).
A3. If −Δ1−𝛼1 < 𝜖1 < −Δ1 and −Δ2−𝛼2 < 𝜖2 < −Δ2, there are three NEs, namely,
the pure NEs (0,0) and (1,1) and a nondegenerate mixed NE.
A4. If −Δ1 < 𝜖1 and 𝜖2 < −Δ2−𝛼2, there is a unique NE, namely, the pure NE (1,0).
A5. If −Δ1−𝛼1 < 𝜖1 and −Δ2 < 𝜖2 or if −Δ1 < 𝜖1 and −Δ2−𝛼2 < 𝜖2, there is a unique
NE, namely, the pure NE (1,1).
• Case B: 𝛼1 > 0 and 𝛼2 < 0.
B1. If 𝜖1 < −Δ1 and 𝜖2 < −Δ2, there is a unique NE, namely, the pure NE (0,0).
B2. If 𝜖1 < −Δ1−𝛼1 and −Δ2 < 𝜖2, there is a unique NE, namely, the pure NE (0,1).
B3. If −Δ1−𝛼1 < 𝜖1 < −Δ1 and −Δ2 < 𝜖2 < −Δ2−𝛼2, there is a unique NE, namely,
a nondegenerate mixed NE.
B4. If −Δ1 < 𝜖1 and 𝜖2 < −Δ2−𝛼2, there is a unique NE, namely, the pure NE (1,0).
B5. If −Δ1−𝛼1 < 𝜖1 and −Δ2−𝛼2 < 𝜖2, there is a unique NE, namely, the pure NE
(1,1).
• Case C: 𝛼1 < 0 and 𝛼2 > 0.
C1: 𝜖1 < −Δ1 and 𝜖2 < −Δ2, there is a unique NE, namely, the pure NE (0,0).
C2: 𝜖1 < −Δ1−𝛼1 and −Δ2 < 𝜖2, there is a unique NE, namely, the pure NE (0,1).
C3: −Δ1 < 𝜖1 < −Δ1−𝛼1 and −Δ2−𝛼2 < 𝜖2 < −Δ2, there is a unique NE, namely, a
nondegenerate mixed NE.
C4: −Δ1 < 𝜖1 and 𝜖2 < −Δ2−𝛼2, there is a unique NE, namely, the pure NE (1,0).
C5: −Δ1 −𝛼1 < 𝜖1 and −Δ2 −𝛼2 < 𝜖2, there is a unique NE, namely, the pure NE
(1,1).
• Case D: 𝛼1 < 0 and 𝛼2 < 0.
D1. If 𝜖1 < −Δ1 and −Δ2 < 𝜖2, there is a unique NE, namely, the pure NE (0,0).
D2. If 𝜖1 < −Δ1 and −Δ2 < 𝜖2 or if 𝜖1 < −Δ1−𝛼1 and −Δ2−𝛼2 < 𝜖2, there is a unique
NE, namely, the pure NE (0,1).
D3. If −Δ1 < 𝜖1 < −Δ1−𝛼1 and −Δ2 < 𝜖2 < −Δ2−𝛼2, there are three NEs, namely,
the pure NEs (0,1) and (1,0) and a nondegenerate mixed NE.
D4. If −Δ1 < 𝜖1 and 𝜖2 < −Δ2 or if −Δ1−𝛼1 < 𝜖1 and 𝜖2 < −Δ2−𝛼2, there is a unique
NE, namely, the pure NE (1,0).
D5. If −Δ1−𝛼1 < 𝜖1 and −Δ2−𝛼2 < 𝜖2, there is a unique NE, namely, the pure NE
(1,1).
These results do not depend on the nuisance quantities [�̃�𝑖 (0,0),�̃�𝑖 (0,1)] for 𝑖 = 1,2.
Figures 1a–1d depict the 5 relevant regions in the (𝜖1, 𝜖2)-space for each case A–D.
Let A1,A2, . . . ,D5 be the regions in the (𝜖1, 𝜖2)-space defined by the inequalities
appearing in cases A1, A2, . . . , D5. For instance,A1={(𝜖1, 𝜖2) : 𝜖1<−Δ1−𝛼1 and 𝜖2<
−Δ2 or 𝜖1<−Δ1 and 𝜖2<−Δ2−𝛼2}. In 16 out of the 4×5 = 20 cases, there is a unique

5 We only consider strict inequalities in Cases A–D. Indeed, equalities arise with zero probability
because (𝜖1, 𝜖2 ) have a joint density with respect to Lebesgue measure. Unlike �̃�𝑖 (𝑦𝑖 , 𝑦 𝑗 ) where
the first and second arguments are the agent’s and opponent’s actions, we use the standard notation
(𝑦1, 𝑦2 ) for a NE with agent 1’s action coming first and agent 2’s action coming second.
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NE which is in pure strategies. In two cases B3 and C3, there is a unique NE which
is in mixed strategies. In the remaining two cases A3 and D3, there are three NEs,
namely, one in mixed strategies denoted 𝑀 and two in pure strategies. Below, we first
address mixed strategies and then the multiplicity of NEs.

𝜖1

𝜖2

−Δ2

−Δ1

−Δ2 − 𝛼2

−Δ1 − 𝛼1

(1,1)(0,1)

(1,0)(0,0)

(0,0) M (1,1)

(a) 𝛼1 > 0 and 𝛼2 > 0

𝜖1

𝜖2

−Δ2

−Δ1

−Δ2 − 𝛼2

−Δ1 − 𝛼1

(1,1)(0,1)

(1,0)(0,0)

M

(b) 𝛼1 > 0 and 𝛼2 < 0

𝜖1

𝜖2

−Δ2

−Δ1

−Δ2 − 𝛼2

−Δ1 − 𝛼1

(1,1)(0,1)

(1,0)(0,0)

M

(c) 𝛼1 < 0 and 𝛼2 > 0

𝜖1

𝜖2

−Δ2

−Δ1

−Δ2 − 𝛼2

−Δ1 − 𝛼1

(1,1)(0,1)

(1,0)(0,0)

(0,0) M (1,1)

(d) 𝛼1 < 0 and 𝛼2 < 0

Fig. 4.1: Nash Equilibria

For completeness we consider the case when 𝛼1𝛼2 = 0, i.e., when the coherency
condition is satisfied. In this case, there is always a unique NE. This equilibrium
coincides with the outcome given by the latent model (4.3) combined with the standard
dichotomization 𝑌𝑖 = 11[𝑌 ∗

𝑖
≥ 0], 𝑖 = 1,2. It is in pure strategies and dominant for

the player(s) with 𝛼𝑖 = 0 thereby providing a recursive flavor to the model since
player 𝑖’s best action does not depend on his opponent’s choice. For instance, when
{𝛼1 = 0, 𝛼2 ≠ 0}, action 𝑦1 = 0 is dominant for agent 1 if 𝜖1 < −Δ1 whereas action
𝑦1 = 1 is dominant if 𝜖1 > −Δ1. Specifically, the unique NE is

- (0,0) if 𝜖1 < −Δ1 and 𝜖2 < −Δ2,
- (0,1) if 𝜖1 < −Δ1 and 𝜖2 > −Δ2,
- (1,0) if 𝜖1 > −Δ1 and 𝜖2 < −Δ2−𝛼2
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- (1,1) if 𝜖1 > −Δ1 and 𝜖2 > −Δ2−𝛼2.
This agrees with cases A and C when 𝛼1 vanishes. The other case {𝛼1 ≠ 0, 𝛼2 = 0} is
similarly obtained by switching the players’ indices. Lastly, when {𝛼1 = 0, 𝛼2 = 0},
i.e., there is no structural effect, there is a unique NE, which is in pure (dominant)
strategies. It is obtained as above upon letting 𝛼2 = 0.

4.3.1 Nash Equilibria in Mixed Strategies

A NE in mixed strategies only arises in cases A3, B3, C3 and D3. Let 𝑝𝑖 be the
probability that agent 𝑖 plays action 𝑦𝑖 = 1. Appendix 1 provides agent 𝑖’s mixing
probability 𝑝𝑖 in a mixed Nash equilibrium. See (4.19). The probabilities (𝑝1, 𝑝2)
depend on (𝜖1, 𝜖2) but not on the nuisance quantities [�̃�𝑖 (0,0),�̃�𝑖 (0,1)], 𝑖 = 1,2. They
satisfy 0 < 𝑝𝑖 < 1 in view of the strict inequalities defining cases A3, B3, C3 and
D3. Hence, the probability that agents 1 and 2 play actions 𝑦1 and 𝑦2 in a mixed NE
is

∏
𝑖=1,2 𝑝

𝑦𝑖
𝑖
(1− 𝑝𝑖)1−𝑦𝑖 given (𝜖1, 𝜖2). As a matter of fact, the latter probability is

conditional on the mixed NE being played. In cases B3 and C3, the mixed NE is
the unique NE and thus is played by assumption. Appendix 1 gives the conditional
probabilities Pr(𝑦1, 𝑦2 |B3) and Pr(𝑦1, 𝑦2 |C3) of observing (𝑦1, 𝑦2) in cases B3 and
C3, respectively. See (4.20) and (4.21).

Because the probabilities Pr(𝑦1, 𝑦2 |B3) and Pr(𝑦1, 𝑦2 |C3) are complex nonlinear
functions of the parameters, Bjorn and Vuong (1984) introduce instead probability
weights 𝑏𝑦𝑖 𝑦 𝑗 and 𝑐𝑦𝑖 𝑦 𝑗 for (𝑦𝑖 , 𝑦 𝑗 ) ∈ {0,1}2 as additional parameters so that

Pr[𝑦𝑖 , 𝑦 𝑗 |B3] = 𝑏𝑦𝑖 𝑦 𝑗 and Pr[𝑦𝑖 , 𝑦 𝑗 |C3] = 𝑐𝑦𝑖 𝑦 𝑗 , (4.4)

where 𝑏00 + 𝑏01 + 𝑏10 + 𝑏11 = 1, 𝑏𝑦𝑖 𝑦 𝑗 ≥ 0, 𝑐00 + 𝑐01 + 𝑐10 + 𝑐11 = 1 and 𝑐𝑦𝑖 𝑦 𝑗 ≥ 0.
This allows the analyst to test the model validity, in particular by testing whether
players use the equilibrium mixing probabilities (4.20) and (4.21) through a flexible
parameterization of the probability weights 𝑏𝑦𝑖 𝑦 𝑗 and 𝑐𝑦𝑖 𝑦 𝑗 that depends on the
characteristics (𝑋1, 𝑋2).

4.3.2 Multiple Nash Equilibria

Multiple NEs arise in cases A3 and D3 with two equilibria in pure strategies and
one in mixed strategies in each case. As pointed out by Jovanovic (1989), multiple
equilibria raise issues about identification and predictive content of a structural model.
To mitigate such a difficulty, Bjorn and Vuong (1984) first eliminate the mixed NE by
invoking Pareto dominance.6 Let Δ�̃�0

𝑖
≡ �̃�𝑖 (0,0) −�̃�𝑖 (0,1). Appendix 2 shows that

6 A NE Pareto dominates another NE if one player is strictly better off and the other player is not
worse off. Bjorn and Vuong (1984) show that the mixed NE is always Pareto dominated by a pure
NE or a bargaining solution. Appendix 2 completes their analysis.
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the mixed NE is Pareto dominated by at least one pure NE in cases A3 and D3 under
some assumptions on (Δ�̃�0

1 ,Δ�̃�
0
2 ). More recently, Echenique and Edlin (2004) show

that, when they coexist in supermodular games, mixed equilibria are unstable and
converging to a pure NE under various adjustment processes. This applies here as the
games in cases A3 and D3 are supermodular.7

There remain two pure NEs in each case A3 or D3. Appendix 2 shows that
a pure NE Pareto dominates the other pure NE (and the mixed NE) under some
assumptions on (Δ�̃�0

1 ,Δ�̃�
0
2 ) given (𝜖1, 𝜖2). See (4.22) and (4.24). To illustrate, a

frequent assumption in empirical work is Δ�̃�0
𝑖
= 0 for 𝑖 = 1,2, i.e., each player’s

utility from choosing action 𝑦𝑖 = 0 does not depend on the opponent’s choice.8 When
combined with the normalization �̃�𝑖 (0,0) = 0 for 𝑖 = 1,2, the normal formal of the
game reduces to that given on Table (4.2).

Table 4.2: Normal Form when �̃�𝑖 (0,0) = �̃�𝑖 (0,1) = 0 for 𝑖 = 1,2

𝑦2 = 0 𝑦2 = 1

𝑦1 = 0 0 ; 0 0 ; Δ2 + 𝜖2

𝑦1 = 1 Δ1 + 𝜖1 ; 0 Δ1 + 𝛼1 + 𝜖1 ; Δ2 + 𝛼2 + 𝜖2

In case A3, where 𝛼𝑖 > 0 for 𝑖 = 1,2, (4.22) is satisfied and Figure 4.2a indicates
that the pure NE (1,1) Pareto dominates the other pure NE (0,0) and the mixed NE,
which are equivalent in expected payoffs for both players. In contrast, in case D3,
where 𝛼𝑖 < 0 for 𝑖 = 1,2, (4.24) is not satisfied and Figure 4.2d indicates that the
mixed NE is Pareto dominated by both pure NEs (0,1) and (1,0) which cannot be
Pareto ranked.

Alternatively, the differences (Δ�̃�0
1 ,Δ�̃�

0
2 ) can be random with a joint distribu-

tion 𝐻 (·, ·|𝜖1, 𝜖2) conditional on (𝜖1, 𝜖2) that is absolutely continuous with respect
to Lebesgue measure. When the support of 𝐻 (·, ·|𝜖1, 𝜖2) given (𝜖1, 𝜖2) ∈ A3 is
{∏𝑖=1,2 [Δ�̃�0

𝑖
− (Δ𝑖 +𝛼𝑖 + 𝜖𝑖)] ≥ 0}, then a pure NE, which alternates between (0,0)

and (1,1), Pareto dominates the other pure and mixed NEs. See (4.23) which
provides the probabilities Pr(0,0|A3) and Pr(1,1|A3) of observing the Pareto dom-
inant NE (0,0) and (1,1) given A3. A similar result holds in case D3 when the
support of 𝐻 (·, ·|𝜖1, 𝜖2) given (𝜖1, 𝜖2) ∈ D3 is {∏𝑖=1,2 [Δ�̃�0

𝑖
+ (Δ𝑖 + 𝜖𝑖)] ≤ 0}. See

7 In case A3, the game is supermodular because [�̃�𝑖 (1, 1) −�̃�𝑖 (0, 1) ]− [�̃�𝑖 (1, 0) −�̃�𝑖 (0, 0) ] =
𝛼𝑖 > 0, i.e., �̃�𝑖 (𝑦𝑖 , 𝑦 𝑗 ) exhibits increasing differences in (𝑦𝑖 , 𝑦 𝑗 ) . See Milgrom and Roberts
(1990). In case D3, the game is supermodular by reversing the order of agent 2’s choices so that
action 1 ≺ action 0. This gives [�̃�1 (1, 0) − �̃�1 (0, 0) ] − [�̃�1 (1, 1) − �̃�1 (0, 1) ] = −𝛼1 > 0 and
[�̃�2 (0, 1) − �̃�2 (1, 1) ] − [�̃�2 (0, 0) − �̃�2 (1, 0) ] = −𝛼2 > 0.
8 See e.g., Bresnahan and Reiss (1990) and Tamer (2003) in entry models.
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Δ�̃�0
1

Δ�̃�0
2

0

Δ2 + 𝛼2 + 𝜖2

𝛼2

Δ1 + 𝛼1 + 𝜖1 𝛼1

�̃�1 (0, 0) < Π1 < �̃�1 (1, 1)
�̃�2 (1, 1) < Π2 < �̃�2 (0, 0)

Π1 < �̃�1 (0, 0) < �̃�1 (1, 1)
�̃�2 (1, 1) < Π2 < �̃�2 (0, 0)

𝑀 <𝑝 (0, 0)

Π1 < �̃�1 (1, 1) < �̃�1 (0, 0)
�̃�2 (1, 1) < Π2 < �̃�2 (0, 0)
{𝑀& (1, 1) } <𝑝 (0, 0)

�̃�1 (1, 1) < Π1 < �̃�1 (0, 0)
�̃�2 (1, 1) < Π2 < �̃�2 (0, 0)
(1, 1) <𝑝 𝑀 <𝑝 (0, 0)

�̃�1 (0, 0) < Π1 < �̃�1 (1, 1)
Π2 < �̃�2 (1, 1) < �̃�2 (0, 0)

𝑀 <𝑝 (1, 1)

Π1 < �̃�1 (0, 0) < �̃�1 (1, 1)
Π2 < �̃�2 (1, 1) < �̃�2 (0, 0)
𝑀 <𝑝 { (0, 0)& (1, 1) }

Π1 < �̃�1 (1, 1) < �̃�1 (0, 0)
Π2 < �̃�2 (1, 1) < �̃�2 (0, 0)
𝑀 <𝑝 (1, 1) <𝑝 (0, 0)

�̃�1 (1, 1) < Π1 < �̃�1 (0, 0)
Π2 < �̃�2 (1, 1) < �̃�2 (0, 0)
{𝑀& (1, 1) } <𝑝 (0, 0)

�̃�1 (0, 0) < Π1 < �̃�1 (1, 1)
Π2 < �̃�2 (0, 0) < �̃�2 (1, 1)
{𝑀& (0, 0) } <𝑝 (1, 1)

Π1 < �̃�1 (0, 0) < �̃�1 (1, 1)
Π2 < �̃�2 (0, 0) < �̃�2 (1, 1)
𝑀 <𝑝 (0, 0) <𝑝 (1, 1)

Π1 < �̃�1 (1, 1) < �̃�1 (0, 0)
Π2 < �̃�2 (0, 0) < �̃�2 (1, 1)
𝑀 <𝑝 { (0, 0)& (1, 1) }

�̃�1 (1, 1) < Π1 < �̃�1 (0, 0)
Π2 < �̃�2 (0, 0) < �̃�2 (1, 1)

𝑀 <𝑝 (0, 0)

�̃�1 (0, 0) < Π1 < �̃�1 (1, 1)
�̃�2 (0, 0) < Π2 < �̃�2 (1, 1)
(0, 0) <𝑝 𝑀 <𝑝 (1, 1)

Π1 < �̃�1 (0, 0) < �̃�1 (1, 1)
�̃�2 (0, 0) < Π2 < �̃�2 (1, 1)
{𝑀& (0, 0) } <𝑝 (1, 1)

Π1 < �̃�1 (1, 1) < �̃�1 (0, 0)
�̃�2 (0, 0) < Π2 < �̃�2 (1, 1)

𝑀 <𝑝 (1, 1)

�̃�1 (1, 1) < Π1 < �̃�1 (0, 0)
�̃�2 (0, 0) < Π2 < �̃�2 (1, 1)

(a) Case A3

𝛼2

−Δ2 − 𝜖2

0−Δ1 − 𝜖1𝛼1

Δ�̃�0
2

Δ�̃�0
1

�̃�1 (1, 0) < Π1 < �̃�1 (0, 1)
�̃�2 (0, 1) < Π2 < �̃�2 (1, 0)
(1, 0) <𝑝 𝑀 <𝑝 (0, 1)

Π1 < �̃�1 (1, 0) < �̃�1 (0, 1)
�̃�2 (0, 1) < Π2 < �̃�2 (1, 0)
{𝑀& (1, 0) } <𝑝 (0, 1)

Π1 < �̃�1 (0, 1) < �̃�1 (1, 0)
�̃�2 (0, 1) < Π2 < �̃�2 (1, 0)

𝑀 <𝑝 (0, 1)

�̃�1 (1, 1) < Π1 < �̃�1 (0, 0)
�̃�2 (1, 1) < Π2 < �̃�2 (0, 0)

�̃�1 (1, 0) < Π1 < �̃�1 (0, 1)
Π2 < �̃�2 (0, 1) < �̃�2 (1, 0)
{𝑀& (1, 0) } <𝑝 (0, 1)

Π1 < �̃�1 (1, 0) < �̃�1 (0, 1)
Π2 < �̃�2 (0, 1) < �̃�2 (1, 0)
𝑀 <𝑝 (1, 0) <𝑝 (0, 1)

Π1 < �̃�1 (0, 1) < �̃�1 (1, 0)
Π2 < �̃�2 (0, 1) < �̃�2 (1, 0)
𝑀 <𝑝 { (1, 0)& (0, 1) }

�̃�1 (0, 1) < Π1 < �̃�1 (1, 0)
Π2 < �̃�2 (0, 1) < �̃�2 (1, 0)

𝑀 <𝑝 (1, 0)

�̃�1 (1, 0) < Π1 < �̃�1 (0, 1)
Π2 < �̃�2 (1, 0) < �̃�2 (0, 1)

𝑀 <𝑝 (0, 1)

Π1 < �̃�1 (1, 0) < �̃�1 (0, 1)
Π2 < �̃�2 (1, 0) < �̃�2 (0, 1)
𝑀 <𝑝 { (1, 0)& (0, 1) }

Π1 < �̃�1 (0, 1) < �̃�1 (1, 0)
Π2 < �̃�2 (1, 0) < �̃�2 (0, 1)
𝑀 <𝑝 (0, 1) <𝑝 (1, 0)

�̃�1 (0, 1) < Π1 < �̃�1 (1, 0)
Π2 < �̃�2 (1, 0) < �̃�2 (0, 1)
{𝑀& (0, 1) } <𝑝 (1, 0)

�̃�1 (1, 0) < Π1 < �̃�1 (0, 1)
�̃�2 (1, 0) < Π2 < �̃�2 (0, 1)

Π1 < �̃�1 (1, 0) < �̃�1 (0, 1)
�̃�2 (1, 0) < Π2 < �̃�2 (0, 1)

𝑀 <𝑝 (1, 0)

Π1 < �̃�1 (0, 1) < �̃�1 (1, 0)
�̃�2 (1, 0) < Π2 < �̃�2 (0, 1)
{𝑀& (0, 1) } <𝑝 (1, 0)

�̃�1 (0, 1) < Π1 < �̃�1 (1, 0)
�̃�2 (1, 0) < Π2 < �̃�2 (0, 1)
(0, 1) <𝑝 𝑀 <𝑝 (1, 0)

(b) Case D3

Fig. 4.2: Pareto Dominance
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(4.25) which provides the probabilities Pr(0,1|D3) and Pr(1,0|D3) of observing the
Pareto-dominant NE (0,1) and (1,0) given D3.

The preceding derivation assumes that the players coordinate through preplay
communications on the Pareto dominant equilibrium when it exists. See, however,
Fudenberg and Tirole (1991, Section 1.2.4). Moreover, (4.22) and (4.24) may fail so
the two pure NEs in case A3 or D3 cannot be Pareto ranked such as when Δ�̃�𝑜

𝑖
= 0

and 𝛼𝑖 < 0 for 𝑖 = 1,2. In order not to select a priori one of the pure NE, Bjorn and
Vuong (1984) introduce instead probability weights 𝑎𝑦1𝑦2 and 𝑑𝑦𝑖 𝑦 𝑗 over the pure NE
(𝑦𝑖 , 𝑦 𝑗 ) in cases A3 and D3, respectively, as additional parameters. Specifically, they
let

Pr[0,0|A3] = 𝑎00 and Pr[1,1|A3] = 𝑎11 (4.5)
Pr[0,1|D3] = 𝑑01 and Pr[1,0|D3] = 𝑑10, (4.6)

where 𝑎00 + 𝑎11 = 1, 𝑎𝑦𝑖 𝑦 𝑗 ≥ 0, 𝑑01 + 𝑑10 = 1 and 𝑑𝑦𝑖 𝑦 𝑗 ≥ 0.9 Similarly to (4.4), the
analyst can use these weights to test (4.23) and (4.25) and hence the validity of
a selection based on Pareto dominance. More generally, in the absence of a well-
accepted theory of NE refinements, (4.5)-(4.6) allow for an empirical understanding
of how players choose a pure NE through a logit parameterization of the probability
weights (𝑎00, 𝑎11) or (𝑑01, 𝑑10) that depends on the characteristics (𝑋1, 𝑋2). Bajari,
Hong and Ryan (2010) develop this idea in a setting with 𝐼 ≥ 2 players and 𝐾 ≥ 2
actions for each player.

4.3.3 Likelihood Functions

The observations are (𝑌1ℓ ,𝑌2ℓ , 𝑋1ℓ , 𝑋2ℓ) for ℓ = 1, . . . , 𝐿 pairs of players, where
(𝑌1ℓ ,𝑌2ℓ) is the NE outcome of the game theoretic model (4.1)–(4.2) completed
with (4.4)–(4.6). The error terms (𝜖1ℓ , 𝜖2ℓ) are jointly normally distributed N2 (0, 𝜌)
with mean zeros, unit variances and correlation 𝜌. Let Φ2 (·, ·; 𝜌) denote the cdf.
The parameter vector is 𝜃 = (𝛼, 𝛽, 𝜌, 𝑎, 𝑏, 𝑐, 𝑑) where 𝛼 ≡ (𝛼1, 𝛼2), 𝛽 ≡ (𝛽1, 𝛽2),
𝑎 ≡ (𝑎00, 𝑎11), 𝑏 ≡ (𝑏00, 𝑏01, 𝑏10, 𝑏11), 𝑐 ≡ (𝑐00, 𝑐01, 𝑐10, 𝑐11) and 𝑑 ≡ (𝑑01, 𝑑10).10

The random vector (𝑌1ℓ ,𝑌2ℓ , 𝑋1ℓ , 𝑋2ℓ , 𝜖1ℓ , 𝜖2ℓ) is assumed independent across pairs.
Bjorn and Vuong (1984) show that the likelihood function of the model is

L(𝜃) =
𝐿∏
ℓ=1

Pr(𝑌1ℓ ,𝑌2ℓ |𝑋1ℓ , 𝑋2ℓ ;𝜃), (4.7)

9 When 𝛼𝑖 < 0 for 𝑖 = 1, 2 Bresnahan and Reiss (1990) adopt another approach by using the game
theoretic model to explain instead the number of entrants 𝑌1 +𝑌2 in entry models thereby collapsing
cases D2, D3 and D4 into a single region with one entrant. See Figure 4.1d. Finding an observable
that is common to all equilibria is a general strategy for dealing with multiple equilibria. See also
Berry (1992) in a setting with more than 2 potential entrants.
10 Within each pair, one individual/firm is designated as player 1, while the other is player 2. The
parameter vector 𝜃 , which includes the structural effects (𝛼1, 𝛼2 ) , is constant across pairs.
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where

Pr(0,0|𝑋1ℓ , 𝑋2ℓ ;𝜃) = Φ2 (−𝑋 ′1ℓ 𝛽1,−𝑋 ′2ℓ 𝛽2; 𝜌) + 𝐼00
ℓ (4.8)

Pr(0,1|𝑋1ℓ , 𝑋2ℓ ;𝜃) = Φ2 (−𝑋 ′1ℓ 𝛽1−𝛼1, 𝑋
′
2ℓ 𝛽2;−𝜌) + 𝐼01

ℓ (4.9)
Pr(1,0|𝑋1ℓ , 𝑋2ℓ ;𝜃) = Φ2 (𝑋 ′1ℓ 𝛽1,−𝑋 ′2ℓ 𝛽2−𝛼2;−𝜌) + 𝐼10

ℓ (4.10)
Pr(1,1|𝑋1ℓ , 𝑋2ℓ ;𝜃) = Φ2 (𝑋 ′1ℓ 𝛽1 +𝛼1, 𝑋

′
2ℓ 𝛽2 +𝛼2; 𝜌) + 𝐼11

ℓ (4.11)

with

𝐼00
ℓ =

[
− 𝑎1111(𝛼1 > 0, 𝛼2 > 0) + 𝑏0011(𝛼1 > 0, 𝛼2 < 0) + 𝑐0011(𝛼1 < 0, 𝛼2 > 0)

]
𝐼ℓ ,

𝐼01
ℓ =

[
𝑏0111(𝛼1 > 0, 𝛼2 < 0) + 𝑐0111(𝛼1 < 0, 𝛼2 > 0) − 𝑑1011(𝛼1 < 0, 𝛼2 < 0)

]
𝐼ℓ ,

𝐼10
ℓ =

[
𝑏1011(𝛼1 > 0, 𝛼2 < 0) + 𝑐1011(𝛼1 < 0, 𝛼2 > 0) − 𝑑0111(𝛼1 < 0, 𝛼2 < 0)

]
𝐼ℓ ,

𝐼11
ℓ =

[
− 𝑎0011(𝛼1 > 0, 𝛼2 > 0) + 𝑏1111(𝛼1 > 0, 𝛼2 < 0) + 𝑐1111(𝛼1 < 0, 𝛼2 > 0)

]
𝐼ℓ .

The integral 𝐼ℓ is the probability that (𝜖1, 𝜖2) belong to the region A3,B3,C3 or
D3, i.e.,

𝐼ℓ =

∫ −𝑋′1ℓ𝛽1−min{𝛼1 ,0}

−𝑋′1ℓ𝛽1−max{𝛼1 ,0}

∫ −𝑋′2ℓ𝛽2−min{𝛼2 ,0}

−𝑋′2ℓ𝛽2−max{𝛼2 ,0}
𝑑Φ2 (𝜖1, 𝜖2; 𝜌).

See Figures 4.1a–4.1d. For instance, when 𝛼1 > 0 and 𝛼2 > 0, the outcome (0,0)
can be obtained as a single pure NE in case A1 or from one of the two pure
NEs with probability 𝑎00 in case A3. From Figure 4.1a, this gives the probability
Φ2 (−𝑋 ′1ℓ 𝛽1,−𝑋 ′2ℓ 𝛽2; 𝜌) − 𝑎11𝐼ℓ . Similarly, when 𝛼1 > 0 and 𝛼2 < 0, the outcome
(0,0) can be obtained as a single pure NE in case B1 or from a realization with
probability 𝑏00 of the mixed NE in case B3. From Figure 4.1b, this gives the
probability Φ2 (−𝑋 ′1ℓ 𝛽1,−𝑋 ′2ℓ 𝛽2; 𝜌) + 𝑏00𝐼ℓ . When the coherency condition 𝛼1𝛼2 = 0
holds, the additional terms 𝐼00

ℓ
, 𝐼01
ℓ

, 𝐼10
ℓ

and 𝐼11
ℓ

all vanish because 𝐼ℓ = 0. Hence, the
four probabilities (4.8)–(4.11) reduce to those derived by Heckman (1978) for the
simultaneous equation model (4.3) with at most one structural shift. The latter is also
Maddala and Lee’s (1976) recursive model for two dichotomous variables.

An important special case arises when agents’ utilities exhibit strategic comple-
mentarity, i.e., when 𝛼𝑖 > 0 for 𝑖 = 1,2. This is often assumed in models of social
interactions and network formation. See e.g., Brock and Durlauf (2001) and Jackson
and Wolinsky (1996), respectively, where (𝛼1, 𝛼2) and 𝜌 represent peer effects and
homophily – or endogenous and correlated effects according to Manski (1993a).
These effects provide complementary explanations for the common fact that friends
tend to behave similarly. From Case A, there is a unique NE, which is in pure
strategies, except when (𝜖1, 𝜖2) ∈ A3 in which case there are two pure NEs left after
eliminating the mixed NE. See Figure 4.1a. The likelihood function is given by (4.7)
where (4.8)–(4.11) reduce to
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Pr(0,0|𝑋1ℓ , 𝑋2ℓ ;𝜃) = Φ2 (−𝑋 ′1ℓ 𝛽1,−𝑋 ′2ℓ 𝛽2; 𝜌) − 𝑎11𝐼ℓ

Pr(0,1|𝑋1ℓ , 𝑋2ℓ ;𝜃) = Φ2 (−𝑋 ′1ℓ 𝛽1−𝛼1, 𝑋
′
2ℓ 𝛽2;−𝜌)

Pr(1,0|𝑋1ℓ , 𝑋2ℓ ;𝜃) = Φ2 (𝑋 ′1ℓ 𝛽1,−𝑋 ′2ℓ 𝛽2−𝛼2;−𝜌)
Pr(1,1|𝑋1ℓ , 𝑋2ℓ ;𝜃) = Φ2 (𝑋 ′1ℓ 𝛽1 +𝛼1, 𝑋

′
2ℓ 𝛽2 +𝛼2; 𝜌) − 𝑎00𝐼ℓ

with 𝐼ℓ =
∫ −𝑋′1ℓ𝛽1
−𝑋′1ℓ𝛽1−𝛼1

∫ −𝑋′2ℓ𝛽2
−𝑋′2ℓ𝛽2−𝛼2

𝑑Φ2 (𝜖1, 𝜖2; 𝜌) and 𝜃= (𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝜌, 𝑎00, 𝑎11).
Another important special case arises when agents’ utilities exhibit strategic

substitutability, i.e., when 𝛼𝑖 < 0 for 𝑖 = 1,2. This is satisfied in entry models as
initiated by Bresnahan and Reiss (1990, 1991) since duopoly profits are lower than
monopoly profits. From Case D, there is a unique NE, which is in pure strategies,
except when (𝜖1, 𝜖2) ∈ D3 in which case there are two pure NEs left after eliminating
the mixed NE. See Figure 4.1d. The likelihood function is given by (4.7) where
(4.8)–(4.11) reduce to

Pr(0,0|𝑋1ℓ , 𝑋2ℓ ;𝜃) = Φ2 (−𝑋 ′1ℓ 𝛽1,−𝑋 ′2ℓ 𝛽2; 𝜌)
Pr(0,1|𝑋1ℓ , 𝑋2ℓ ;𝜃) = Φ2 (−𝑋 ′1ℓ 𝛽1−𝛼1, 𝑋

′
2ℓ 𝛽2;−𝜌) − 𝑑10𝐼ℓ

Pr(1,0|𝑋1ℓ , 𝑋2ℓ ;𝜃) = Φ2 (𝑋 ′1ℓ 𝛽1,−𝑋 ′2ℓ 𝛽2−𝛼2;−𝜌) − 𝑑01𝐼ℓ

Pr(1,1|𝑋1ℓ , 𝑋2ℓ ;𝜃) = Φ2 (𝑋 ′1ℓ 𝛽1 +𝛼1, 𝑋
′
2ℓ 𝛽2 +𝛼2; 𝜌)

with 𝐼ℓ =
∫ −𝑋′1ℓ𝛽1−𝛼1
−𝑋′1ℓ𝛽1

∫ −𝑋′2ℓ𝛽2−𝛼2
−𝑋′2ℓ𝛽2

𝑑Φ2 (𝜖1, 𝜖2; 𝜌) and 𝜃= (𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝜌, 𝑎00, 𝑎11).

4.3.4 Identification

The likelihood function (4.7) takes four different functional forms depending on the
signs of the structural effects 𝛼1 and 𝛼2. In particular, some parameters (𝑎, 𝑏, 𝑐, 𝑑)
disappear within each case A–D, e.g., the probability weights (𝑏, 𝑐, 𝑑) when𝛼1 > 0 and
𝛼2 > 0 (case A). Bjorn and Vuong (1984) and Bjorn (1986) study the (local) parametric
identification of the game theoretic model by deriving a rank condition under which
the information matrix is non-singular for each case. See Rothenberg (1971). To this
end, they focus on the identification of the parameters 𝜃 = (𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝜌) upon
setting equal probability weights in cases A3, B3, C3 and D3 so that 𝑎00 = 𝑎11 = 1/2,
𝑏00 = 𝑏01 = 𝑏10 = 𝑏11 = 1/4, 𝑐00 = 𝑐01 = 𝑐10 = 𝑐11 = 1/4 and 𝑑01 = 𝑑10 = 1/2. Relying
on the chosen functional forms, the authors show that 𝜃 is identified except for
particular values of the characteristics (𝑋1ℓ , 𝑋2ℓ). This holds even when the same
covariates appear in (4.2), i.e., when 𝑋1 = 𝑋2, thereby suggesting that identification
in game theoretic models differ from identification in linear simultaneous equation
models where exclusion restrictions are required. See Hood and Koopmans (1953).
As in the latter, however, some covariates must be present to achieve identification. If
not, there are five parameters which are (𝛼1, 𝛼2, 𝜌) and two constant terms in (4.2),
whereas there are only three independent probabilities among the four observed
probabilities Pr(𝑦1, 𝑦2), (𝑦1, 𝑦2) ∈ {0,1}2.
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In a general setting with 𝐼 ≥ 2 players and 𝐾 ≥ 2 actions for each player, Bajari,
Hong and Ryan (2010) study identification when the distribution of the unobserved
random utility components is known. They consider both pure and mixed NEs
which are determined by a software package. See McKelvey and McLennan (1996)
for a survey of available algorithms. Using an identification-at-infinity argument,
they provide general conditions for identifying the parameters in a linear index
specification of the deterministic utility components as well as the probability weights
of equilibrium selection. Alternatively, they show how exclusion restrictions leading
to some covariates appearing exclusively in agents’ deterministic utility components
can help identify nonparametrically the deterministic components and the equilibrium
selection probabilities. They also propose a computationally convenient Method of
Moments based on simulating the conditional probabilities Pr(𝑦1, . . . , 𝑦𝐾 |𝑋1, . . . 𝑋𝐾 ).
See McFadden (1989) and Pakes and Pollard (1989).

4.4 The Stackelberg Approach

An alternative to the NE concept is the Stackelberg equilibrium (SE) in which one
player moves first. See e.g., Fudenberg and Tirole (1991). Without loss of generality,
let player 1 be the leader and player 2 the follower. Using the same notation as before
�̃�𝑖 (𝑦𝑖 , 𝑦 𝑗 ), where the first and second argument are the agent’s and opponent’s actions,
respectively, the extensive form of the game is displayed in Figure 4.3.

Player 1

Player 2

(�̃�1 (0, 0) ,�̃�2 (0, 0) )

0

(�̃�1 (0, 1) ,�̃�2 (1, 0) )

1

0

Player 2

(�̃�1 (1, 0) ,�̃�2 (0, 1) )

0

(�̃�1 (1, 1) ,�̃�2 (1, 1) )

1

1

Fig. 4.3: Stackelberg Extensive Form

Because he can commit, player 1 chooses his preferred action taking into account
player 2’s reaction function (or best response). Bjorn and Vuong (1985) determine the
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SE in pure strategies of the above extensive-form game.11 The outcome (𝑦1, 𝑦2) arises
as a SE depending on (Δ𝑖 , 𝛼𝑖 , 𝜖𝑖), 𝑖 = 1,2 in view of (4.1). However, because player
1’s optimal choice depends on some utility comparisons that are not entertained in
a NE, namely �̃�1 (1,1) −�̃�1 (0,0) and �̃�1 (1,0) −�̃�1 (0,1), additional parameters can
be identified when the outcome (𝑦1, 𝑦2) is a SE. Specifically, let

�̃�𝑖 (0, 𝑦 𝑗 )=Δ0
𝑖 +𝛼0

𝑖 𝑦 𝑗+𝜖0
𝑖 and �̃�𝑖 (1, 𝑦 𝑗 )=Δ1

𝑖 +𝛼1
𝑖 𝑦 𝑗+𝜖1

𝑖 for 𝑖=1,2. (4.12)

This generalizes (4.1) since taking the difference gives (4.1) with Δ𝑖 = Δ1
𝑖
−Δ0

𝑖
,

𝛼𝑖 = 𝛼
1
𝑖
−𝛼0

𝑖
and 𝜖𝑖 = 𝜖1

𝑖
− 𝜖0

𝑖
. The new quantity Δ0

𝑖
and parameter 𝛼0

𝑖
∈ R represent

the systematic utility and the structural effect of the opponent’s choice when player 𝑖
chooses action 𝑦𝑖 = 0, respectively. A similar interpretation applies to Δ1

𝑖
and 𝛼1

𝑖
∈ R

when player 𝑖 chooses action 𝑦𝑖 = 1. In general, Δ0
𝑖

and Δ1
𝑖

are parameterized linear
functions of the observed agents’ characteristics (𝑋1, 𝑋2) as in

Δ0
𝑖 = 𝑋

′
𝑖 𝛽

0
𝑖 and Δ1

𝑖 = 𝑋
′
𝑖 𝛽

1
𝑖 for 𝑖 = 1,2, (4.13)

where 𝑋1 and 𝑋2 may have some variables in common and (𝛽0
𝑖
, 𝛽1
𝑖
), 𝑖 = 1,2 are some

parameters. This implies (4.2) where 𝛽𝑖 = 𝛽1
𝑖
− 𝛽0

𝑖
.

Four cases are distinguished depending on player 2’s reaction function.
• Case E: 𝜖2 < −Δ2−max{0, 𝛼2}.12

E1. If 𝜖1 < −Δ1, there is a unique pure SE, namely, (0,0).
E2. If 𝜖1 > −Δ1, there is a unique pure SE, namely, (1,0).
• Case F: −Δ2−max{0, 𝛼2} < 𝜖2 < −Δ2.
F1. If 𝜖1 < −Δ1−𝛼1

1, there is a unique pure SE, namely, (0,0).
F2. If 𝜖1 > −Δ1−𝛼1

1, there is a unique pure SE, namely, (1,1).
• Case G: −Δ2 < 𝜖2 < −Δ2−min{0, 𝛼2}.
G1. If 𝜖1 < −Δ1−𝛼0

1, there is a unique pure SE, namely, (0,1).
G2. If 𝜖1 > −Δ1−𝛼0

1, there is a unique pure SE, namely, (1,0).
• Case H: 𝜖2 > −Δ2−min{0, 𝛼2}.
H1. If 𝜖1 < −Δ1−𝛼1, there is a unique pure SE, namely, (0,1).
H2. If 𝜖1 > −Δ1−𝛼1, there is a unique pure SE, namely, (1,1).
From (4.1) these SEs do not depend on the nuisance quantities [�̃�2 (0,0), �̃�2 (0,1)]
as only the utility difference �̃�2 (1, 𝑦1) −�̃�2 (0, 𝑦1) matters to player 2 given player 1’s
action 𝑦1 = 0,1. For instance, case F corresponds to player 2’s reaction function of
choosing 𝑦2 = 0 if 𝑦1 = 0 and 𝑦2 = 1 if 𝑦1 = 1 irrespective of [�̃�2 (0,0),�̃�2 (0,1)]. In
contrast, accounting for player 2’s reaction function, player 1 compares the resulting
utilities �̃�1 (1,1) and �̃�1 (0,0) when choosing his optimal action. Such a comparison

11 Mixed strategies for the follower occur with zero probability. Mixed strategies for the leader
are excluded as they raise commitment issues because player 2 sees player 1’s realized action
before moving. See Conitzer (2016). Recently, SE with mixed strategies for the leader have received
attention in security games with applications to airport safety. See Korzhyk, Yin, Kiekintveld,
Conitzer and Tambe (2011).
12 See footnote 5.
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then involves 𝛼1
1 . A similar situation applies to case G which involves 𝛼0

1 given player
2’s reaction function of choosing 𝑦2 = 1 if 𝑦1 = 0 and 𝑦2 = 0 if 𝑦1 = 1.

It is worth noting that cases F and G happen with zero probability if 𝛼2 ≤ 0 or
𝛼2 ≥ 0, respectively, because 𝜖2 has a density with respect to Lebesgue measure.
Hence, when 𝛼2 ≤ 0, only cases E, G and H can occur with 𝜖2-thresholds −Δ2
and −Δ2−𝛼2. Figures 4a depicts the regions E00,E01,E10,E11 in the (𝜖1, 𝜖2)-space
corresponding to the SE (0,0), (0,1), (1,0) and (1,1). For instance, the region
E00={(𝜖1, 𝜖2) : 𝜖1<−Δ1 and 𝜖2<−Δ2} leads to the SE (0,0). Similarly, when 𝛼2 ≥ 0,
only cases E, F and H can occur with 𝜖2-thresholds −Δ2 −𝛼2 and −Δ2. Figures 4b
depicts the regions F00,F01,F10,F11 in the (𝜖1, 𝜖2)-space corresponding to the SE
(0,0), (0,1), (1,0) and (1,1). Without loss of generality, these figures are drawn when
𝛼0

1 < 0 < 𝛼1
1. In contrast to NE, there always exists a unique SE in pure strategies.

4.4.1 Likelihood Functions

The observations are (𝑌1ℓ ,𝑌2ℓ , 𝑋1ℓ , 𝑋2ℓ) for ℓ = 1, . . . , 𝐿 pairs of players, where
(𝑌1ℓ ,𝑌2ℓ) is the SE outcome of the extensive-form game of Figure 4.3 with payoffs
(4.12)–(4.13). As in the previous section, the error terms (𝜖1ℓ , 𝜖2ℓ) are jointly normally
distributedN2 (0, 𝜌) with mean zeros, unit variances and correlation 𝜌. The parameter
vector is 𝜃 = (𝛼, 𝛽, 𝜌) where 𝛼 ≡ (𝛼0

1, 𝛼
1
1, 𝛼

0
2, 𝛼

1
2) and 𝛽 ≡ (𝛽0

1, 𝛽
1
1, 𝛽

0
2, 𝛽

1
2).

13 The
random vector (𝑌1ℓ ,𝑌2ℓ , 𝑋1ℓ , 𝑋2ℓ , 𝜖1ℓ , 𝜖2ℓ) is assumed independent across pairs.

Bjorn and Vuong (1985) show that the likelihood function of the model is

L(𝜃) =
𝐿∏
ℓ=1

Pr(𝑌1ℓ ,𝑌2ℓ |𝑋1ℓ , 𝑋2ℓ ;𝜃), (4.14)

where

Pr(0,0|𝑋1ℓ , 𝑋2ℓ ;𝜃) = Φ2 (−𝑋 ′1ℓ 𝛽1,−𝑋 ′2ℓ 𝛽2; 𝜌) − 𝐼00
ℓ (4.15)

Pr(0,1|𝑋1ℓ , 𝑋2ℓ ;𝜃) = Φ2 (−𝑋 ′1ℓ 𝛽1−𝛼1, 𝑋
′
2ℓ 𝛽2;−𝜌) + 𝐼01

ℓ (4.16)
Pr(1,0|𝑋1ℓ , 𝑋2ℓ ;𝜃) = Φ2 (𝑋 ′1ℓ 𝛽1,−𝑋 ′2ℓ 𝛽2−𝛼2;−𝜌) + 𝐼10

ℓ (4.17)
Pr(1,1|𝑋1ℓ , 𝑋2ℓ ;𝜃) = Φ2 (𝑋 ′1ℓ 𝛽1 +𝛼1, 𝑋

′
2ℓ 𝛽2 +𝛼2; 𝜌) − 𝐼11

ℓ (4.18)

with 𝛼𝑖 = 𝛼1
𝑖
−𝛼0

𝑖
, 𝛽𝑖 = 𝛽1

𝑖
− 𝛽0

𝑖
and

13 See footnote 10.
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𝐼00
ℓ =

∫ −𝑋′1ℓ𝛽1

−𝑋′1ℓ𝛽1−𝛼1
1

∫ −𝑋′2ℓ𝛽2

−𝑋′2ℓ𝛽2−max{𝛼2 ,0}
𝑑Φ2 (𝜖1, 𝜖2; 𝜌)

𝐼01
ℓ =

∫ −𝑋′1ℓ𝛽1+𝛼0
1

−𝑋′1ℓ𝛽1−𝛼1

∫ −𝑋′2ℓ𝛽2−min{𝛼2 ,0}

−𝑋′2ℓ𝛽2

𝑑Φ2 (𝜖1, 𝜖2; 𝜌)

𝐼10
ℓ =

∫ −𝑋′1ℓ𝛽1

−𝑋′1ℓ𝛽1+𝛼0
1

∫ −𝑋′2ℓ𝛽2−min{𝛼2 ,0}

−𝑋′2ℓ𝛽2

𝑑Φ2 (𝜖1, 𝜖2; 𝜌)

𝐼11
ℓ =

∫ −𝑋′1ℓ𝛽1−𝛼1
1

−𝑋′1ℓ𝛽1−𝛼1

∫ −𝑋′2ℓ𝛽2

−𝑋′2ℓ𝛽2−max{𝛼2 ,0}
𝑑Φ2 (𝜖1, 𝜖2; 𝜌).

In particular, the integrals 𝐼00
ℓ

and 𝐼11
ℓ

vanish when 𝛼2 ≤ 0 whereas the integrals
𝐼01
ℓ

and 𝐼10
ℓ

vanish when 𝛼2 ≥ 0 because 𝜖2 has a density with respect to Lebesgue
measure. The probabilities (4.15)–(4.18) follow from Figures 4a–4b.14 For instance,
the outcome (0,0) is a SE if and only if (𝜖1, 𝜖2) ∈ E00 when 𝛼2 > 0 or (𝜖1, 𝜖2) ∈ F00
when 𝛼2 < 0. This gives (4.15) for the probability of observing (0,0) giving (𝑋1ℓ , 𝑋2ℓ).

The first terms in (4.15)–(4.18) are identical to the first terms in (4.8)–(4.11).
When the structural effect 𝛼2 = 0, the integrals 𝐼00

ℓ
, 𝐼11
ℓ

, 𝐼01
ℓ

and 𝐼10
ℓ

all vanish.15

Thus the probabilities (4.15)–(4.18) reduce to those derived by Heckman (1978) for
the simultaneous equation model (4.3) with structural shift 𝛼1. In contrast, when
the structural effect 𝛼1 = 0 so that 𝛼0

1 = 𝛼
1
1, i.e., when the leader’s utility increment

�̃�1 (1, 𝑦2) −�̃�1 (0, 𝑦2) = Δ1 + 𝜖1 is independent of the follower’s action 𝑦2, these four
integrals do not necessarily vanish because 𝛼0

1𝛼
1
1 ≠ 0. Thus, the probabilities (4.15)–

(4.18) do not reduce to those obtained by Heckman (1978) for the simultaneous
equation model (4.3) with structural shift 𝛼2 or Maddala and Lee’s (1976) recursive
model where player 2’s latent variable 𝑌 ∗2 depends on player 1’s choice 𝑌1. In other
words, relative to the latter, the SE model allows for an effect of player 2’s action 𝑦2
on player 1’s utility �̃�1 (1, 𝑦2) and �̃�1 (0, 𝑦2) through 𝛼1

1 = 𝛼
0
1 despite having no effect

on player’s 1’s utility increment �̃�1 (1, 𝑦2) −�̃�1 (0, 𝑦2).
As for NE two important special cases are considered in empirical work. When

agents’ utilities exhibit strategic complementarity, i.e., when 𝛼𝑖 > 0 for 𝑖 = 1,2 as in
models of peer effects (social interactions) and network formation, the likelihood
function is given by (4.14) where (4.15)–(4.18) reduce to

Pr(0,0|𝑋1ℓ , 𝑋2ℓ ;𝜃) = Φ2 (−𝑋 ′1ℓ 𝛽1,−𝑋 ′2ℓ 𝛽2; 𝜌) − 𝐼00
ℓ

Pr(0,1|𝑋1ℓ , 𝑋2ℓ ;𝜃) = Φ2 (−𝑋 ′1ℓ 𝛽1−𝛼1, 𝑋
′
2ℓ 𝛽2;−𝜌)

Pr(1,0|𝑋1ℓ , 𝑋2ℓ ;𝜃) = Φ2 (𝑋 ′1ℓ 𝛽1,−𝑋 ′2ℓ 𝛽2−𝛼2;−𝜌)
Pr(1,1|𝑋1ℓ , 𝑋2ℓ ;𝜃) = Φ2 (𝑋 ′1ℓ 𝛽1 +𝛼1, 𝑋

′
2ℓ 𝛽2 +𝛼2; 𝜌) − 𝐼11

ℓ

14 When the lower boundary is larger than the upper boundary in the outside integral of (4.15)–(4.18),
by convention the integral is the negative of the integrand from the upper boundary to the lower
boundary. For instance, if 𝛼1

1 < 0 then 𝐼00
ℓ

=−
∫ −𝑋′1ℓ𝛽1−𝛼1

1
−𝑋′1ℓ𝛽1

∫ −𝑋′2ℓ𝛽2
−𝑋′2ℓ𝛽2−max{𝛼2 ,0} 𝑑Φ2 (𝜖1, 𝜖2;𝜌) .

15 The likelihood (4.14) with probabilities (4.15)–(4.18) also holds when 𝛼2 = 0.



126 Bjorn et al.

with 𝐼00
ℓ

=
∫ −𝑋′1ℓ𝛽1

−𝑋′1ℓ𝛽1−𝛼1
1

∫ −𝑋′2ℓ𝛽2
−𝑋′2ℓ𝛽2−𝛼2

𝑑Φ2 (𝜖1, 𝜖2; 𝜌) and 𝐼11
ℓ

=
∫ −𝑋′1ℓ𝛽1−𝛼1

1
−𝑋′1ℓ𝛽1−𝛼1

∫ −𝑋′2ℓ𝛽2
−𝑋′2ℓ𝛽2−𝛼2

𝑑Φ2 (𝜖1, 𝜖2; 𝜌), which can be positive or negative. See Figure 4.4b where these
integrals are positive. Similarly, when agents’ utilities exhibit strategic
substitutability, i.e., when 𝛼𝑖 < 0 for 𝑖 = 1,2 as in entry models, the likelihood
function is given by (4.14) where (4.15)–(4.18) reduce to

Pr(0,0|𝑋1ℓ , 𝑋2ℓ ;𝜃) = Φ2 (−𝑋 ′1ℓ 𝛽1,−𝑋 ′2ℓ 𝛽2; 𝜌)
Pr(0,1|𝑋1ℓ , 𝑋2ℓ ;𝜃) = Φ2 (−𝑋 ′1ℓ 𝛽1−𝛼1, 𝑋

′
2ℓ 𝛽2;−𝜌) + 𝐼01

ℓ

Pr(1,0|𝑋1ℓ , 𝑋2ℓ ;𝜃) = Φ2 (𝑋 ′1ℓ 𝛽1,−𝑋 ′2ℓ 𝛽2−𝛼2;−𝜌) + 𝐼10
ℓ

Pr(1,1|𝑋1ℓ , 𝑋2ℓ ;𝜃) = Φ2 (𝑋 ′1ℓ 𝛽1 +𝛼1, 𝑋
′
2ℓ 𝛽2 +𝛼2; 𝜌),

with 𝐼01
ℓ

=
∫ −𝑋′1ℓ𝛽1+𝛼0

1
−𝑋′1ℓ𝛽1−𝛼1

∫ −𝑋′2ℓ𝛽2−𝛼2
−𝑋′2ℓ𝛽2

𝑑Φ2 (𝜖1, 𝜖2; 𝜌) and 𝐼10
ℓ

=
∫ −𝑋′1ℓ𝛽1

−𝑋′1ℓ𝛽1+𝛼0
1

∫ −𝑋′2ℓ𝛽2−𝛼2
−𝑋′2ℓ𝛽2

𝑑Φ2 (𝜖1, 𝜖2; 𝜌), which can be positive or negative.

4.4.2 Identification

Without additional restrictions, the shift parameters (𝛼0
2, 𝛼

1
2) representing the structural

effects in the follower’s utility [�̃�2 (0, 𝑦1),�̃�2 (1, 𝑦1)] are not identified because only
their difference 𝛼2 = 𝛼

1
2 −𝛼

0
2 appears in the probabilities (4.15)–(4.18). Similarly, for

𝑖 = 1,2, the coefficients (𝛽0
𝑖
, 𝛽1
𝑖
) in the linear specifications (4.13) of Δ0

𝑖
and Δ1

𝑖
are

not separately identified because only their difference 𝛽𝑖 = 𝛽1
𝑖
− 𝛽0

𝑖
appears in the

probabilities (4.15)–(4.18). However, when there are some variables in 𝑋𝑖 , e.g., 𝑋0∗
𝑖

and 𝑋1∗
𝑖

, that are specific to Δ0
𝑖

and Δ1
𝑖
, then their coefficients (𝛽0∗

𝑖
, 𝛽1∗
𝑖
) in (𝛽0

𝑖
, 𝛽1
𝑖
)

are identified whenever 𝛽𝑖 is identified. Indeed, let 𝛽0
𝑖
= (𝛽0∗

𝑖
, 𝛽0∗∗
𝑖
), 𝛽1

𝑖
= (𝛽1∗

𝑖
, 𝛽1∗∗
𝑖
)

and 𝑋𝑖 = (𝑋0∗
𝑖
, 𝑋1∗
𝑖
, 𝑋∗∗
𝑖
) where 𝑋∗∗

𝑖
are the variables in 𝑋𝑖 that are common to Δ0

𝑖

and Δ1
𝑖
. Thus, 𝛽𝑖 = (−𝛽0∗

𝑖
, 𝛽1∗
𝑖
, 𝛽1∗∗
𝑖
− 𝛽0∗∗

𝑖
) from the exclusion restrictions.16

Bjorn and Vuong (1985) study the (local) parametric identification of the SE model
by deriving a rank condition under which the information matrix is non-singular
when 𝛼2 < 0 and 𝛼2 > 0. See Rothenberg (1971). To this end, they focus on the
identification of the parameters 𝜃 = (𝛼0

1, 𝛼
1
1, 𝛼2, 𝛽1, 𝛽2, 𝜌). Again relying on the chosen

functional forms, the authors show that 𝜃 is identified except for particular values of
the characteristics (𝑋1ℓ , 𝑋2ℓ). This holds even when the same covariates appear in
(4.13), i.e., when 𝑋0

1 = 𝑋1
1 = 𝑋0

2 = 𝑋1
2 . However, some covariates must be present to

achieve identification. If not, there are 6 parameters which are (𝛼0
1, 𝛼

1
1, 𝛼2, 𝜌) and two

constant terms in (Δ1,Δ2), whereas there are only three independent probabilities
among the four observed probabilities Pr(𝑦1, 𝑦2), (𝑦1, 𝑦2) ∈ {0,1}2.

16 Identification of (𝛽0∗
𝑖
, 𝛽1∗
𝑖
) can be similarly achieved through such exclusion restrictions in the

NE model of Section 4.3 when starting from (4.12)-(4.13) instead of (4.1)-(4.2). Only the differences
𝛼𝑖 = 𝛼

1
𝑖
− 𝛼0

𝑖
for 𝑖 = 1, 2, however, are identified in the NE model.
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𝜖1

𝜖2

0

−Δ2

−Δ2 − 𝛼2

−Δ1 − 𝛼1 −Δ1 + 𝛼0
1 −Δ1

(0,1) (1,1)

(0,0) (1,0)

(a) 𝛼0
1 < 0 < 𝛼1

1 and 𝛼2 < 0

𝜖1

𝜖2

0

−Δ2 − 𝛼2

−Δ2

−Δ1 − 𝛼1 −Δ1 − 𝛼1
1 −Δ1

(0,1) (1,1)

(0,0) (1,0)

(b) 𝛼0
1 < 0 < 𝛼1

1 and 𝛼2 > 0

Fig. 4.4: Stackelberg Equilibria

4.5 Application to Labor Force Participation

Bjorn and Vuong (1984, 1985) study the labor force participation of married partners
using the 1982 wave of the Panel Study of Income Dynamics.17 Prior to their papers,
Heckman (1974) considers women’s decisions while taking the husband’s labor force
participation as exogenous, or as the outcomes of a joint utility maximization as in
Ashenfelter and Heckman (1974). Defining 𝑦𝑖 = 1 as working and 𝑦𝑖 = 0 otherwise,
the authors define �̃�𝑖 (1, 𝑦 𝑗 ) as partner 𝑖’s market wage and �̃�𝑖 (0, 𝑦 𝑗 ) as his/her

17 See Kooreman (1994) for an application to Dutch households.
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reservation wage. The set of covariates is standard and include age, education, race,
local unemployment rate, nonlabor income and the number of children of given age.
The sample contains 2,012 couples with few husbands not working despite nearly
two thirds of working wives. Overall, maximum likelihood estimation of the NE
model with equal equilibrium selection probabilities and the two SE models with the
husband and the wife being alternatively the leader gives sensible results in terms
of the coefficients of the covariates. For instance, the presence of young children,
which is excluded from the husband’s market and reservation wage, has a positive
effect (see the coefficient 𝛽0∗

𝑖
in the discussion above ) on the wife’s reservation wage.

Similarly, they reject that the correlation parameter 𝜌 is equal to zero.
Maximum likelihood estimation of the Nash model gives estimates of the structural

effects 𝛽ℎ < 0 and 𝛽𝑤 > 0 for husband and wife, respectively. The first sign is expected
because the husband’s reservation wage declines when the wife works. The second
sign is unexpected but might be due to the unbalanced contingency table. Estimation
of the Stackelberg model with the husband as the leader gives a negative structural
effect �̂�0

ℎ
< 0 on the husband’s reservation wage. This could result from social

norms inciting the husband to work when the wife works. It also gives a negative
structural effect �̂�𝑤 < 0, suggesting an increase in the wife’s reservation wage when
the husband works as expected. Estimation of the Stackelberg model with the wife as
the leader gives similar results, i.e. a positive structural effect �̂�0

𝑤 > 0 on the wife’s
reservation wage when the husband works and a negative structural effect �̂�ℎ < 0 on
the husband’s reservation wage which could result from social norms. Using a Wald
test, the coherency condition 𝛼ℎ𝛼𝑤 is clearly rejected in the three models.

This work also inspires the development of Vuong’s (1989) test for model selection
as the NE and the two SE models are nonnested. Bjorn’s (1986) dissertation was the
first application of this model selection test based on the likelihood ratio. Pairwise
comparisons of the three competing models are inconclusive, possibly due to the
observed unbalanced contingency table and some model specification features.

4.6 Further Developments and Concluding Remarks

Over the past forty years, the econometrics of discrete games has developed at a quick
pace with applications to several domains of economics. We do not intend to provide
a complete review here but we outline some major lines of research.

First, in line of Bjorn and Vuong (1984, 1985), static complete information games
became popular to analyze strategic interactions among economic agents. The largest
number of applications is in industrial organization with the analysis of firms’ entry
in markets starting with Bresnahan and Reiss (1990, 1991) for monopoly/duopoly
markets. Berry (1992) extends this setting to oligopolies in the airline industry where
the number of operating airlines is the variable of interest to avoid multiple NE
equilibria. He also proposes simulation-based estimators as developed by McFadden
(1989) and Pakes and Pollard (1989) to deal with integrals on intricate integration
domains. In contrast to early papers, in which entry decisions are independent across
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markets, Jia (2008) allows for dependence in the discount retailing industry. See
Berry and Reiss (2007) for a survey on entry models in industrial organization, in
which airline and retailing industries have been extensively studied. Whereas most
of these papers rely on parametric models, Bajari, Hong and Ryan (2010) study the
semiparametric identification of static complete information games. They show that
the model is identified under weaker functional form assumptions using exclusion
restrictions and support conditions. Moreover, they develop a simulation-based
estimator while allowing for mixed strategies. Because there are multiple NEs, the
authors rely on probability weights for equilibrium selection in the spirit of Bjorn
and Vuong (1984). They illustrate their results on the analysis of contractors’ entry in
procurements. The literature on discrete games has proposed alternative strategies to
deal with multiple equilibria. The equilibrium selection operates through an external
equation in Jia (2008). Bresnahan and Reiss (1990, 1991) and Berry (1992) tackle the
problem by considering the number of firms as the dependent variable instead of the
firms’ entry decisions. Tamer (2003) initiates a different approach based on bounds,
which are derived from the NE necessary conditions, leading to set identification.
See also Ciliberto and Tamer (2009) and Andrews, Berry and Jia (2004). Estimation
relies on moment inequalities as developed by Pakes, Porter, Ho and Ishii (2015)
among others. See also Kline, Pakes and Tamer’s (2021) survey on moment inequality
estimators in industrial organization. A major drawback is the difficulty of performing
counterfactuals that typically motivate the structural approach.

A second major line of research is the development of static games with incomplete
information in which agents possess private information usually modeled as an error
term. The model is solved using the Bayesian NE concept. Here again, industrial
organization is at the forefront of this line of research. Assuming independence of
private information, Seim (2006) considers firms’ entry and location choices in the
retailing industry, whereas Sweeting (2009) studies commercial timing among radio
stations. Sweeting (2009) exploits the existence of multiple equilibria to identify
the payoffs by assuming that at least two equilibria are played by the stations across
markets. Aradillas-Lopez (2010) and Bajari, Hong, Krainer and Nekipelov (2010)
relax parametric assumptions and propose semiparametric estimators, when analyzing
capital investment decisions and stock analysts’ recommendations, respectively.18

Exploiting multiple equilibria, De Paula and Tang (2012) identify the sign of the
structural effects, i.e., the impacts of players’ actions on each others’ payoffs, without
any parametric assumption on the players’ payoffs, distribution of private informa-
tion or equilibrium selection mechanism, whereas Lewbel and Tang (2015) show
nonparametric identification under exclusion restrictions. However, independence of
private information is a restrictive assumption. As noted by Berry and Tamer (2006),
entry may occur because of correlated unobserved profitability independently of the
effect of competition.19 In sociology, people who interact tend to be similar with
common tastes known as homophily. When private information among players is

18 See also Aradillas-Lopez and Tamer (2008) for the identification of complete and incomplete
information games with alternative equilibrium concepts of limited rationality.
19 Grieco (2014) considers independence of private information but allows for unobserved hetero-
geneity to analyze entry in the retailing industry.
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dependent, Liu, Vuong and Xu (2017) show that the model structure is nonparamet-
rically identified under exclusion restrictions up to a scale-location normalization.
Moreover, they derive the restrictions imposed by the model on observables to assess
the model validity. To our knowledge, dependence of private information has not been
considered in the empirical literature. One exception is Kim, Perrigne, Vuong and Yan
(2025) who combine entry decisions and demand for differentiated products. With
peer effect and network models, as discussed below, we expect that such developments
will occur in the near future because of homophily.

A third major extension deals with dynamic games. Most of this literature adopts
a Markov dynamic setting with infinite horizon. See Rust (1994a, 1994b) in single-
agent settings. The complex optimization problem involving multiple periods and
uncertainty about future states is reduced into a sequence of deterministic and
static optimization problems through the use of a value function and a Bellman
equation. This literature also focuses on finding numerical algorithms to alleviate
the computational burden of determining the value function. See Ericson and Pakes
(1995) and Pakes and McGuire (1994). The introduction of the Markov perfect
equilibrium concept by Maskin and Tirole (2001) initiated the estimation of dynamic
discrete games.20 Considering games of incomplete information, a number of papers
propose different estimators assuming that private information is independently and
identically distributed over time and across agents, and private information does
not affect the transition probability of commonly known variables given agents’
decisions in each period. Most papers also adopt Hotz and Miller’s (1993) two-step
procedure which exploits the mapping between the conditional choice probability
and the choice-specific value function to avoid computing the equilibrium. Bajari,
Benkard and Levin (2007) propose simulation-based estimators, Pesendorfer and
Schmidt-Dengler (2008) rely on minimum distance estimators, and Pakes, Ostrovsky
and Berry (2007) on method of moments. Aguirregabiria and Mira (2007) propose a
nested pseudo maximum likelihood estimator. Empirical applications consider entry
and exit of firms, where discrete games are part of a larger model involving continuous
endogenous variables to analyze firms’ advertising, investment and pricing, joint
ventures, and mergers. See Ackerberg, Benkard, Berry and Pakes (2007), Reiss
and Wolak (2007) and Aguirregabiria, Collard-Wexler and Ryan (2021) for more
empirical references in industrial organization.

A fourth major line of research involves interaction-based models such as peer
effects, networks and bargaining. Here the domains of applications are labor, health,
education and development and more broadly social sciences. Peer effects and network
models rely on the idea that human capital acquisition, i.e., education, labor market
outcomes, criminality, or health depends on the behavior and/or characteristics of
community members. With possibly a large number of players, as noted by Manski
(1993b), the identification problem is challenging as we need to distinguish the
exogenous effect due to the propensity of an individual to behave as other individuals

20 Weintraub, Benkard and Roy (2008) propose an alternative equilibrium concept, i.e., oblivious
equilibrium, in which each firm makes decisions based on its own state and knowledge of the long-run
average industry state but where firms ignore the current information about their competitors’ states
simplifying the computation of the Markov perfect equilibrium.
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with the same characteristics, the endogenous effect due to the propensity of an
individual to behave like his group, and the correlated effect due to the propensity of
similar behavior among individuals because they have similar tastes as in homophily.
Binary choice models then become useful to analyze social interactions. See Brock
and Durlauf (2001, 2007) for the identification and estimation of such models with
applications using cross-section and panel data. Important questions are the network
formation and the analysis of games within networks such as trade flows, production
networks, research collaborations or insurer-provider networks in health markets.
A recent literature is rapidly developing based on game theoretic developments by
Jackson and Wolinsky (1996), empirical work on peer and neighborhood effects,
the econometric analysis of games, and advances in machine learning techniques
with large data. As surveyed by Graham (2020), a major contribution lies in the
dyadic regression model which rules out interdependencies in link formations. See
Graham (2008, 2011) and Menzel (2016) for large networks. As a matter of fact,
interdependencies are difficult to model. Jackson and Wolinsky (1996) rely on the
pairwise stability equilibrium concept, which is used in matching models. See e.g.
Galichon and Salanié (2017). While most papers consider complete information,
Leung (2015) considers directed links with private information. This literature is at
an early stage and new contributions are expected.

Lastly, Professor Nerlove also pioneered family economics with the analysis of
fertility decisions. See Nerlove, Razin and Sadka (1987). In the spirit of strategic
interactions, a recent literature focuses on household decisions and intra-household
resource distribution using collective bargaining models. Initiated by McElroy and
Horney (1981) with Nash bargaining, the collective model developed by Chiappori
(1988, 1992) and Browning and Chiappori (1998), in which agents bargain over
consumption and other choices, has been a seminal contribution to the literature in
family and development economics. Such models have been extended to dynamic
and noncooperative solutions. See Almås, Attanasio and Carneiro (2023) for a survey
on testing, extensions and applications. Dunbar, Lewbel and Pendakur (2021) derive
semiparametric identification results of the distribution of resources across household
members thereby allowing to estimate intra-household resource allocations. Using
data from developing economies, analysts find that the poverty rates differ across
family members because of the large disparity in resources due to different bargaining
power. See Dunbar, Lewbel and Pendakur (2013) and Calvi (2020). These models
are in complete information but a recent literature provides evidence of private
information within the household, thereby calling for new developments.

Needless to say, the empirical analysis of strategic games with the development
of econometric methods on identification and estimation remains an active area of
research. New tools from machine learning, a larger availability of data including
elicitation data and increasing computing facilities will contribute to new advances
in this literature and new empirical insights involving important policy questions at
the core of our economies and societies.
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Appendix 1

Cases A3, B3, C3 and D3 exhibit a NE in mixed strategies. Let 𝑝𝑖 be the probability
that agent 𝑖 plays action 𝑦𝑖 = 1. From Fudenberg and Tirole (1991), in a mixed NE
player 𝑗 must be indifferent between choosing 𝑦 𝑗 = 1 and 𝑦 𝑗 = 0 when his opponent
randomizes with probability 𝑝𝑖 . From the normal form of the game, it follows that a
mixed NE is characterized by the conditions [�̃� 𝑗 (0,1) +Δ 𝑗 +𝛼 𝑗 + 𝜖 𝑗 ]𝑝𝑖 + [�̃� 𝑗 (0,0) +
Δ 𝑗 + 𝜖 𝑗 ] (1− 𝑝𝑖) = �̃� 𝑗 (0,1)𝑝𝑖 +�̃� 𝑗 (0,0) (1− 𝑝𝑖), for 𝑖 = 1,2 and 𝑗 ≠ 𝑖. Each condition
reduces to Δ 𝑗 + 𝜖 𝑗 +𝛼 𝑗 𝑝𝑖 = 0, which does not depend on [�̃� 𝑗 (0,1),�̃� 𝑗 (0,0)], 𝑗 = 1,2.
This gives the equilibrium mixing probabilities

𝑝𝑖 = −
Δ 𝑗 + 𝜖 𝑗
𝛼 𝑗

for 𝑖 = 1,2, (4.19)

with 0 < 𝑝𝑖 < 1 as it can be verified from the strict inequalities defining cases A3, B3,
C3 and D3 where there is a mixed NE. Hence, in a mixed strategy NE, the probability
that agents 1 and 2 play actions 𝑦1 and 𝑦2 is

∏
𝑖=1,2 𝑝

𝑦𝑖
𝑖
(1− 𝑝𝑖)1−𝑦𝑖 given (𝜖1, 𝜖2).

As a matter of fact, the latter probability is conditional on the mixed NE being
played. In cases B3 and C3, the mixed NE is the unique NE and thus is played by
assumption. Hence in case B3, it follows from (4.19) that the probability of observing
(𝑦1, 𝑦2) given B3 ≡ {(𝜖1, 𝜖2) : −Δ1−𝛼1 < 𝜖1 < −Δ1 and−Δ2 < 𝜖2 < −Δ2−𝛼2} is

Pr(𝑦1, 𝑦2 |B3)=
1

Pr(B3)

∫
B3

∏
{𝑖=1,2& 𝑗≠𝑖}

(
−
Δ 𝑗+𝜖 𝑗
𝛼 𝑗

) 𝑦𝑖(Δ 𝑗+𝛼 𝑗+𝜖 𝑗
𝛼 𝑗

)1−𝑦𝑖
𝑑𝐹 (𝜖1, 𝜖2) (4.20)

for (𝑦1, 𝑦2) ∈ {0,1}2 where Pr(B3) =
∫
B3
𝑑𝐹 (𝜖1, 𝜖2). Similarly for case C3, the

probability Pr(𝑦1, 𝑦2 |C3) of observing (𝑦1, 𝑦2) given C3 ≡ {(𝜖1, 𝜖2) : −Δ1 < 𝜖1 <
−Δ1−𝛼1 and−Δ2−𝛼2 < 𝜖2 < −Δ2} is

Pr(𝑦1, 𝑦2 |C3)=
1

Pr(C3)

∫
C3

∏
{𝑖=1,2& 𝑗≠𝑖}

(
−
Δ 𝑗+𝜖 𝑗
𝛼 𝑗

) 𝑦𝑖(Δ 𝑗+𝛼 𝑗+𝜖 𝑗
𝛼 𝑗

)1−𝑦𝑖
𝑑𝐹 (𝜖1, 𝜖2) (4.21)

for (𝑦1, 𝑦2) ∈ {0,1}2 where Pr(C3) =
∫
C3
𝑑𝐹 (𝜖1, 𝜖2).
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Appendix 2

From (4.19) it follows that player 𝑖’s expected profit in the mixed NE of case A3 or
D3 is

Π𝑖 =
Δ𝑖 +𝛼𝑖 + 𝜖𝑖

𝛼𝑖
�̃�𝑖 (0,0) −

Δ𝑖 + 𝜖𝑖
𝛼𝑖

�̃�𝑖 (0,1).

This is a weighted average of �̃�𝑖 (0,0) and �̃�𝑖 (0,1) with weights strictly between 0
and 1.
• Case A3: The pure NEs are (0,0) and (1,1). We have

�̃�𝑖 (0,0) −Π𝑖 = −
Δ𝑖 + 𝜖𝑖
𝛼𝑖

[
�̃�𝑖 (0,0) −�̃�𝑖 (0,1)

]
�̃�𝑖 (1,1) −Π𝑖 =

Δ𝑖 +𝛼𝑖 + 𝜖𝑖
𝛼𝑖

{
𝛼𝑖 −

[
�̃�𝑖 (0,0) −�̃�𝑖 (0,1)

]}
�̃�𝑖 (1,1) −�̃�𝑖 (0,0) = Δ𝑖 +𝛼𝑖 + 𝜖𝑖 −

[
�̃�𝑖 (0,0) −�̃�𝑖 (0,1)

]
.

Because Δ𝑖 + 𝜖𝑖 < 0 < Δ𝑖 +𝛼𝑖 + 𝜖𝑖 with 𝛼𝑖 > 0 in case A3, it is easy to sign the above
differences. Let Δ�̃�0

𝑖
≡ �̃�𝑖 (0,0) −�̃�𝑖 (0,1). Figure 4.2a summarizes the results in the

(Δ�̃�0
1 ,Δ�̃�

0
2 )-plane given (𝜖1, 𝜖2) ∈ A3. There are 16 regions according to whether

each coordinate Δ�̃�0
𝑖

crosses the thresholds 0, Δ𝑖 +𝛼𝑖 +𝜖𝑖 and 𝛼𝑖 . The first two lines (in
blue) of each region strictly rank Π𝑖 , �̃�𝑖 (0,0) and �̃�𝑖 (1,1) for 𝑖 = 1,2. The inequality
that switches when Δ�̃�0

𝑖
crosses a threshold becomes an equality at the threshold. For

instance, Π𝑖 = �̃�𝑖 (0,0) when Δ�̃�0
𝑖
= 0. The third line (in red) of each region indicates

Pareto-dominance among the three NEs of case A3 whenever possible. For instance,
𝑀 <𝑝 (1,1) states that the mixed NE is Pareto-dominated by the pure NE (1,1).

In particular, Figure 4.2a shows that the mixed NE is Pareto-dominated by at least
one of the pure NE except when either {Δ�̃�0

1 < 0,Δ�̃�0
2 > 𝛼2} or {Δ�̃�0

1 > 𝛼1,Δ�̃�
0
2 < 0}.

Moreover, Figure 4.2a shows that the pure Nash equilibria (0,0) and (1,1) can be
Pareto-ranked except when

∏
𝑖=1,2 [Δ�̃�0

𝑖
− (Δ𝑖 +𝛼𝑖 +𝜖𝑖)] < 0 or {Δ�̃�0

𝑖
= Δ𝑖 +𝛼𝑖 +𝜖𝑖 , 𝑖 =

1,2}. The latter exception region contains the former exception region. Thus, if∏
𝑖=1,2
[Δ�̃�0

𝑖 − (Δ𝑖 +𝛼𝑖 + 𝜖𝑖)] ≥ 0 with one nonzero term when (𝜖1, 𝜖2) ∈ A3, (4.22)

then one of the pure NE Pareto-dominates the other pure and mixed NEs. For instance,
when Δ�̃�0

𝑖
= 0 for 𝑖 = 1,2, then (4.22) holds since Δ𝑖 +𝛼𝑖 + 𝜖𝑖 > 0. Specifically, we

have 𝑀 ∼𝑝 (0,0) <𝑝 (1,1), i.e., the mixed NE and pure NE (0,0) are equivalent in
terms of expected payoff but are both Pareto-dominated by the pure NE (1,1).

Alternatively, the differences (Δ�̃�0
1 ,Δ�̃�

0
2 ) can be viewed as random with a

joint distribution 𝐻 (·, ·|𝜖1, 𝜖2) conditional on (𝜖1, 𝜖2) that is absolutely continu-
ous with respect to Lebesgue measure. For (𝜖1, 𝜖2) ∈ A3, assume that the support
of 𝐻 (·, ·|𝜖1, 𝜖2) is {∏𝑖=1,2 [Δ�̃�0

𝑖
− (Δ𝑖 +𝛼𝑖 + 𝜖𝑖)] ≥ 0} so that (4.22) is satisfied al-

most surely. Thus, a pure NE Pareto-dominates the other pure and mixed NE.
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Specifically, we have {𝑀 and (0,0)} <𝑝 (1,1) if Δ�̃�0
𝑖
< Δ𝑖 +𝛼𝑖 + 𝜖𝑖 , 𝑖 = 1,2 whereas

{𝑀 and (1,1)} <𝑝 (0,0) if Δ�̃�0
𝑖
> Δ𝑖 + 𝛼𝑖 + 𝜖𝑖 , 𝑖 = 1,2. Hence, when the players

coordinate on the Pareto-dominant NE, the probabilities of observing (1,1) and (0,0)
given A3 are

Pr(1,1|A3) =
1

Pr(A3)

∫
A3

∫
{Δ�̃�0

𝑖
≤Δ𝑖+𝛼𝑖+𝜖𝑖 , 𝑖=1,2}

𝑑𝐻 (Δ�̃�0
1 ,Δ�̃�

0
2 |𝜖1, 𝜖2)𝑑𝐹𝑜 (𝜖1, 𝜖2),

(4.23)
Pr(0,0|A3) = 1−Pr(1,1|A3),

where Pr(A3) =
∫
A3
𝑑𝐹𝑜 (𝜖1, 𝜖2).

• Case D3: The pure NEs are (1,0) and (0,1). We have

�̃�𝑖 (1,0) −Π𝑖 = −
Δ𝑖 + 𝜖𝑖
𝛼𝑖

{[
�̃�𝑖 (0,0) −�̃�𝑖 (0,1)

]
−𝛼𝑖

}
�̃�𝑖 (0,1) −Π𝑖 = −

Δ𝑖 +𝛼𝑖 + 𝜖𝑖
𝛼𝑖

[
�̃�𝑖 (0,0) −�̃�𝑖 (0,1)

]
�̃�𝑖 (1,0) −�̃�𝑖 (0,1) =

[
�̃�𝑖 (0,0) −�̃�𝑖 (0,1)

]
+Δ𝑖 + 𝜖𝑖 .

Because Δ𝑖 + 𝛼𝑖 + 𝜖𝑖 < 0 < Δ𝑖 + 𝜖𝑖 with 𝛼𝑖 < 0 in case D3, it is easy to sign the
above differences. Figure 4.2d summarizes the results in the (Δ�̃�0

1 ,Δ�̃�
0
2 )-plane given

(𝜖1, 𝜖2) ∈ D3. There are 16 regions according to whether each coordinate Δ�̃�0
𝑖

crosses
the thresholds 𝛼1, Δ𝑖 + 𝜖𝑖 and 0. The reading of Figure 4.2d is analogous to Figure
4.2a.

In particular, Figure 4.2d shows that the mixed NE is Pareto-dominated by at least
one of the pure NE except when either {Δ�̃�0

1 < 𝛼1,Δ�̃�
0
2 < 𝛼2} or {Δ�̃�0

1 > 0,Δ�̃�0
2 > 0}.

Moreover, Figure 4.2d shows that the pure Nash equilibria (0,1) and (1,0) can be
Pareto-ranked except when

∏
𝑖=1,2 [Δ�̃�0

𝑖
+ (Δ𝑖 +𝜖𝑖)] > 0 or {Δ�̃�0

𝑖
=−(Δ𝑖 +𝜖𝑖), 𝑖 = 1,2}.

The latter exception region contains the former exception region. Thus, if∏
𝑖=1,2
[Δ�̃�0

𝑖 + (Δ𝑖 + 𝜖𝑖)] ≤ 0 with one nonzero term when (𝜖1, 𝜖2) ∈ D3, (4.24)

then one of the pure NE Pareto-dominates the other pure and mixed Nash equilibria.
For instance, when Δ�̃�0

𝑖
= 0 for 𝑖 = 1,2, then (4.24) fails since Δ𝑖 + 𝜖𝑖 > 0. Specifically,

the mixed Nash equilibrium is Pareto-dominated by both pure Nash equilibria (0,0)
and (1,1) but the latter cannot be Pareto-ranked.

Alternatively, the differences (Δ�̃�0
1 ,Δ�̃�

0
2 ) can be viewed as random with a joint

distribution 𝐻 (·, ·|𝜖1, 𝜖2) conditional on (𝜖1, 𝜖2) that is absolutely continuous with
respect to Lebesgue measure. For (𝜖1, 𝜖2) ∈ D3, assume that the support of𝐻 (·, ·|𝜖1, 𝜖2)
is {∏𝑖=1,2 [Δ�̃�0

𝑖
+ (Δ𝑖 + 𝜖𝑖)] ≤ 0} so that (4.24) is satisfied almost surely. Thus, a

pure NE Pareto-dominates the other pure and mixed NE. Specifically, we have
{𝑀 and (1,0)} <𝑝< (0,1) if Δ�̃�0

1 < −(Δ1 + 𝜖1) and Δ�̃�0
2 > −(Δ2 + 𝜖2) whereas

{𝑀 and (0,1)} <𝑝 (1,0) if Δ�̃�0
1 > −(Δ1 + 𝜖1) and Δ�̃�0

2 < −(Δ2 + 𝜖2). Hence, when
the players coordinate on the Pareto-dominant NE, the probabilities of observing
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(0,1) and (1,0) given D3 are

Pr(0,1 | D3) =
1

Pr(D3)

∫
D3

∫
{Δ�̃�0

1 ≤−(Δ1+𝜖1 ) , Δ�̃�0
2 ≥−(Δ2+𝜖2 ) }
𝑑𝐻

(
Δ�̃�0

1 ,Δ�̃�
0
2 | 𝜖1, 𝜖2

)
𝑑𝐹 (𝜖1, 𝜖2),

(4.25)

Pr(1,0 | D3) = 1−Pr(0,1 | D3),

where Pr(D3) =
∫
D3
𝑑𝐹 (𝜖1, 𝜖2).
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Chapter 5
Measuring ‘Income’ Inequality and Distribution
of Outcomes

Esfandiar Maasoumi, Yisroel Cahn

Abstract We provide a suggestive examination of state of knowledge on measurement
and analysis of ‘inequality’ of outcomes, especially of incomes and earnings. This
perspective aims to describe the state of art techniques for identifying the distribution
of outcomes as the central object and consider interesting functions of it, such as
inequality measures, poverty and mobility indices. We distinguish between ‘scalar’,
cardinal functions such as indices, as well as weak uniform rankings, such as by
stochastic dominance based on modern rigorous tests. A basic theme permeates
the discussion, that of decision theoretic foundations within the potential outcomes
paradigm. This permits connectivity and advancement of knowledge that is policy
relevant, reveals the essential subjectivity of indices and assessments, and allows
important consideration of counterfactual distribution of outcomes. Identification
of distributions and their functionals exposes the impact of covariates and different
contributing factors to outcomes. A recurrent example is the distribution of earnings
of different groups within a population, and decomposition of outcomes by group
or other characteristics, and counterfactual states. Modern foundations of inequality
measures, dominance rankings, quantile differences/effects, as well as quantile models,
instrumental variables and ‘distribution regressions’ are included and analyzed. The
hope is to encourage and facilitate adoption of these important new developments
at a time of heightened interest in this central socio-political area of policy analysis.
The closely related notions of multivariate well being, mobility and poverty, merit
separate treatment and are not addressed.
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5.1 Introduction

The question of allocation and ‘inequality’ has engaged social thinkers for centuries
and is back as ‘The question of our time’. Within economics, the issue of ‘allocation’
remains central to policy analysis of market and social outcomes. As faith grew
stronger in ‘modern’ formal market theories of economics, interest declined in this
central question, based on a presumption of market ability to determine outcome
distributions that would be universally desirable. This faith, not entirely misplaced,
was perhaps too uncritical and has undergone healthy questioning and revision at
the frontier of economic and social research. Civil society can define its objective
function to accommodate any aspect of outcomes it deems desirable. These include
ethical and longer term allocation objectives and group outcomes.

The consequences of extreme inequality, certainly of ‘inequity’, for stability of
social and market institutions is now more widely acknowledged. The distinctions
between opportunity, mobility, poverty, inequality, and concepts of ‘well being’
more general than incomes/earnings, are increasingly appreciated and examined.
Mechanisms by which a distributed outcome is arrived at are extremely complex and
evolving. Models that aspire to identify and separate underlying ‘causes’, while still
challenged, are becoming less restrictive in form and more sophisticated in dealing
with sampling issues such as ‘selection’. They are also increasingly treated rigorously
with the latest econometric techniques that go beyond the modest asymptotic inferences
highlighted in earlier surveys, for example, Maasoumi (1998).1

This paper provides a selective account of some of these developments. For
policy and decision making, objective measurement of outcomes, as they are,
and formally subjective assessments, remain a central challenge to evidence-based
analysis. This review is primarily focused on transparent subjectivity of seemingly
objective measurement of inequality in an outcome distribution, be it incomes, health,
education, wealth, etc. Modern inference techniques and algorithms are summarized.
It is emphasized that all assessments are fundamentally subjective-comparative in
nature, starting with a contrast between a given distribution of income (say), and
a perfectly ‘equal’ outcome as a reference. We emphasize the subjective bases of
measurement choices and interpretations even of ‘what is’, let alone comparisons
between groups or over time or policy states. The subjective, welfarist, ‘utilitarian’,
characterization of inequality measures flows from the fundamental works of Dalton
in 1920s, to Atkinson and Kolm, in the 1960s. The 1970s and 1980s witnessed a
faithful attempt to provide some objectivity in the analysis of fundamental welfare
axioms/restrictions that underlie all measures and indices of inequality and poverty,
For example see, Shorrocks (1978) and Bourguignon (1979).

In a 2011 issue of AER P&P, A. B. Atkinson asserts “[e]conomists need to
be more explicit about the relation between welfare criteria and the objectives

1 Nerlove’s contributions belong to the strand of research concerned with mechanisms and empirical
models of taxation, human capital and gender differences. See for example, Nerlove, Razin and
Sadka (1987), Nerlove, Razin, Sadka and Weizsacker (1993), Nerlove, Razin, Sadka and Weizsäcker
(1993), and Nerlove, Razin and Sadka (1993).
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of governments, policymakers and individual citizens”. Indeed, such normative
discussions are sidestepped when only means are considered.

For example, in evaluating ‘right to work’ laws which forbid unions from interfering
with the employment of nonunion workers, some workers may be hurt while others
benefit. Looking at the mean alone might indicate that such laws are neutral or
favorable while ignoring ethical questions surrounding such laws.

Another example is forming combined classes for students with high test scores
and low test scores, in order to evaluate policy outcomes. Examining the mean test
scores of the resulting combined class might not give an accurate picture of who, if
anyone, benefited and by how much. Reasonable evaluation criteria for such a policy
might entail determining whether the gap in test scores between the two groups of
students has been reduced or whether test scores are above a given threshold.

A. B. Atkinson (2011) lists several possible ways applied economists have
rationalized neglecting welfare economics. These include assuming away differences
in outcomes, assuming agreement on the welfare criteria, or even that welfare
discussions are better suited to other disciplines. A. B. Atkinson argues against such
stances and urges applied economists to renew their focus on welfare discussions.
Indeed, a policy’s distributional effects have important, non-trivial implications
that are contingent on subjective values. This paper reviews clear approaches to
explicitly accommodate different opinions regarding inequality and poverty, and
heeds A. B. Atkinson’s call to put welfare economics back in the spotlight.

There are important aspects of welfare that are often overlooked by much of the
policy evaluation literature — the effect of the policy in the short- medium- and
long-term. Multidimensional inequality or poverty comparisons can address such
issues by using outcomes of individuals in different periods as dimensions. While
multidimensional measures are not discussed in this paper, the appendix includes a
way of accounting for the value of time in the income distribution.

Furthermore, if there are multiple outcomes of interest, individuals might be
affected positively in one outcome but negatively in another. In many cases, welfare
might not only be measured in inequality or poverty in one dimension, but rather by
some functional of the joint distribution of outcomes. Cahn (2022) examines whether
increases in minimum wage reduced the hours worked of those individuals whose
wages were increased. Simply looking at average treatment effects of hours and wages
separately would not accurately reflect such an outcome.

Generally, there are three stages in the analysis of outcomes: Choice of the wellbeing
object, the distribution of that object, and characterization of that distribution.

Considering ‘income’, decisions must be made on sources of it, such a labor
income, investment, transfers,....Then a choice has to be made for the period of time,
monthly, annual, or lifetime/permanent incomes. Inflation adjustment is desirable to
consider ‘real’ incomes, but group specific price indices are generally not available
and highly subjective. Choice of the unit as an individual, or household matters a
great deal. How are households measured is challenging die to the need for equivalent
incomes for different members. A good deal of work is based on expenditures as
more easily measured object of utility, compared to ‘income’. Price indices are almost
universally based on expenditure data, not incomes.
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The impact of other causes and covariates may be accommodated, before they are
integrated out to obtain the ‘marginal’ distribution of income. This is highly model
dependent, and requires going beyond the regression at the conditional means, as
befits the context of concern for ‘distribution’ of an outcome!

There are complex relations between different means of comparing distributed
outcomes. Inequality may be a ‘relative’ concept or ‘horizontal’. It may consider
real incomes, or nominal, household or individuals, after or before tax and benefits,
and may consider dimensions beyond income, such as health and education. It is
instructive to begin with an empirical example of, US household (pre-tax) income
distribution at two different points in time. This will serve to highlight many of the
subjective and challenging issues, including what is represented by measures of
inequality, poverty, mobility,...,. In this example, an otherwise uniformly stochastically
dominant outcome represents higher ‘relative’ inequality!

Table 5.1 represents household income quantiles in the US in 1974 and 2004.

Table 5.1: Household incomes. US 1974-2004

𝜃 𝜃-quantile Growth

1974 2004

10% $9,741 $10,927 12.2%

20% $16,285 $18,500 13.6%

50% $37,519 $44,389 18.3%

80% $64,781 $88,029 35.9%

90% $83,532 $120,924 44.8%

95% $102,534 $157,185 53.3%

Note: Columns 2 and 3 give upper limit of

the bottom 10%, 20%... of the population.

Source: Cowell (2006)

Every quantile in 2004 is higher than the corresponding one in 1974. As we
shall see, to a given degree of statistical confidence, 2004 outcome stochastically
dominates 1974. But due to much higher growth rates in upper quantiles, inequality
has likely increased. In this situation almost all inequality measures would reverse
the ranking in favor of 1974. The extent of this reversal depends on the particular
inequality index.

A central object for assessing distributions is the Lorenz curve/function. It is a
graph of ordered cummulated income shares against the corresponding cummulated
‘population shares’:

This curve is depicted below for the same data in Table 5.1.
For two income distributions with the same means, the one that is uniformly closer

to the 45 degree line (Lorenz) dominates. It is all about ‘relative’ incomes and equal
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Table 5.2: Average incomes for five quintiles and overall. US 1974-2004

Group Average Income Growth

1974 2004

1st $9,324 $10,264 10.1%

2nd $23,176 $26,241 13.2%

3rd $37,353 $44,455 19.0%

4th $53,944 $70,085 29.9%

Top $95,576 $151,593 58.6%

Overall $43,875 $60,528 38.0%

Note: Columns 2 and 3 give the average

income of the bottom fifth, second fifth...

of the population. Source: Cowell (2006)

Fig. 5.1: ECDF Diagram for Table 5.1.

Source: Cowell (2006)

means renders the two relative outcomes comparable. Every ‘relative’ inequality
measure is a function of the area between the Lorenz curve and the 45 degree line.
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Fig. 5.2: Lorenz Curve for Table 5.1

Source: Cowell (2006)

Here, dominance of 1974 in terms of ‘equality’ is merely a matter of how much, not
if.

But the means are seldom equal. And a much ‘richer’ outcome in 2004, with a
higher mean income, and higher quantiles, may be ‘dominant’ even when degrees of
‘aversion to inequality’ are introduced. This assessment is accomplished by a simple
transformation of Lorenz curve, multiplying it by the corresponding mean income, to
obtain the ‘Generalized Lorenz’ function. This is depicted in the following Figure for
the same Table 5.1 data.

This is also known as ‘second order stochastic dominance’. The cumulated CDF
of one distribution (2004 here) is everywhere to the left of the one for 1974. We
expect this, since ‘first order dominance’ observed in Fig 1 implies higher orders of
dominance.

These rankings imply poverty dominance as well, since the CDFs do not cross
at lower quantiles, or any that may be viewed as a popular ‘poverty line’. There is
‘restricted dominance’ at every quantile, even though ‘degree of poverty’ may be
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Fig. 5.3: Generalized Lorenz curve for Table 5.1

Source: Cowell (2006)

assessed as having increased. By how much, depends on the poverty measure. See
Lugo and Maasoumi (2008).

None of the above assessments can guide us clearly to an assessment of mobil-
ity. ‘Anonymous’ views of a distribution of outcomes, as above, are invariant to
permutations of the unit outcomes. Mobility measures, be they ‘cross sectional’ or
intergenerational, must shed the property of ‘anonymity’, which is so central to the
axiomatic development of ideal inequality measures.

It is clear that if the CDFs cross, some quantiles would be ranked higher and some
lower. If a single crossing occurs at very high incomes, Second Order dominance may
still hold. Otherwise, even comparison of the two crossing outcomes will depend on
the choice of the inequality index. A Rawlsian will rank based on the lowest incomes,
and an extreme trickle-down measure will rank by the highest quantile/income, and
all others would fall in between. A conundrum.

Measures of inequality have a long history, and one of the earliest due to Gini
continues to be dominant among practitioners and policy makers. The Gini index did
not fare well, initially, in the axiomatic search for ideal measures, owing to its well
known allowance for intrapersonal comparisons of well being/utility. The axiomatic
approach emphasized the apparent objectivity of welfarist-utilitarian-individualistic
welfare functions (infinitely substitutable utility of individuals), and its emphasis on
‘anonymity’. Generalizations of Gini have somewhat rehabilitated Gini, see Donaldson
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and Weymark (1983). But Gini fails in important ways. One is that it seems to be
stuck in a range of about 4.1-4.5 for the US, with recent numbers of 4.2 and 4.1
being used in popular and political press as evidence of movement up or down. These
differences are not likely statistically significant, and miss all the movements in the
tails. The tails are were most policies are aimed at, and much of the differential
evolutions of incomes have occurred! Other measures of inequality, such as Theil’s
entropy are much more sensitive to tail changes. A second issue with Gini is that
it fails to satisfy a very useful ‘Aggregation Consistency’ property; see Shorrocks
(1983), or Maasoumi (1998). If one divides the reference population into R groups,
men and women, say, if inequality within one subgroup (women) increases, all else
being the same, overall Gini may decline!

Figure 5.4 shows the Gini index of weekly earnings in the US from 1979 to 2019.2
When the population is split by gender, inequality is lower in either group than when
the two are pooled together, implying that much of the inequality displayed in the
overall graph results from gaps between the genders. This highlights a shortcoming
of the commonly used Gini index because it does not permit a breakdown of the
overall inequality in the population into subgroups (additive decomposability).

This additive decomposability property is only satisfied by Theil’s two measures,
with only one having relatively unambiguous subgroup (population) weights. See
Shorrocks (1978) and Bourguignon (1979). In spite of these almost fatal shortcomings
of Gini for policy evaluation, it continues to dominate in empirical and government
work.

Additionally, many inequality indices, both Gini and Theil’s measures, have been
criticized since they measure inequality as the relative differences between individuals’
allotments (i.e., they are relative inequality measures). For example, if a proposed
policy would give all poor individuals a ten percent increase in income while giving
wealthy individuals a twenty percent increase, these inequality indexes would assign
such a distribution a higher level inequality even though every individual is made
better off. Furthermore, many do not find the goal of reducing inequality for its own
sake a compelling criterion for improving welfare. For those reasons, some find
the goal of reducing poverty (an absolute measure which refers to some threshold
defining poverty) more reasonable.

Figure 5.6 shows the Foster, Greer and Thorbecke (1984) poverty index of weekly
earnings with different parameter values and a poverty threshold of $400 per week
(half the median weekly earnings of individuals in 2019).3 As opposed to inequality,
poverty seems to have remained constant or even declined since the 1970’s, although
changes are likely not statistically significant. The headcount measure (FGT(0))
measures the percent of individuals falling below the poverty threshold. Extreme

2 Data was collected from US Current Population Survey Merged Outgoing Rotation Group.
Following D. H. Autor, Manning and Smith (2016), the sample includes individuals ages 18 through
64 and excludes those who are self-employed. Top-coded values are multiplied by 1.5, and the top
two wage percentiles for each state, year, and sex grouping are ‘Winsorized’ (replaced with the
ninety-seventh percentile’s value). This sample is commonly used in labor studies. The Gini indexes
are lower than the previously discussed 4.1-4.5 range of yearly income due to the Winsorization.
3 Using the same data as Figure 5.4.
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Data Source: National Bureau of Economic Research

Fig. 5.4: Gini Index of Weekly Earning Over time.

poverty (FGT(2) which weighs individuals falling far below the poverty threshold
more heavily) was always low with little fluctuation.

The conundrum in the choice of inequality indices may be bypassed, some would
argue, with transparent reporting of the data, as in Tables 5.1-5.2 above or Figure 5.5.4
There are subtle problems with this apparent transparency! It invites problematic and
uncritical comparisons of ‘dollars’ at different quantiles. My favorite example is one
of two populations (each with five groups): {1,2,3,4,5} vs. {1,2,3,4,15}. Judged by
the median, they are equivalent. Median is seen to be both a robust measure and an
‘insensitive’ one. The second population may be regarded by some as facing extreme
inequality, especially if we associate dollar levels to these groups. The means are 3
and 5. One may argue that the mean of 5 represents no one in the second population,
its comparison with the mean of 3 in the first population rendered meaningless and
misleading. There are any number of weighting schemes that may value each group
differently, and produce different comparatives. In addition, we may not wish to
think of a dollar in the highest group as having the same value in the lowest group

4 Using the same data as Figures 5.4-5.5, Figure 5.5 shows mean weekly earnings, the 90th percentile
of weekly earnings minus the 10th, and the 90th percentile of weekly earnings minus the 50th, all in
2019 dollars. Mean weekly earnings increased since the 1980’s and seem to be driven by weekly
earnings increasing at the top of the distribution; the difference between the 90th percentile and the
10th percentile is proportional to the difference between the 90th percentile and the 50th percentile.
Similar to Tables 1-2, this suggests that increases in mean weekly earnings is mainly due to increases
at the top of the distribution.
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Data Source: National Bureau of Economic Research

Fig. 5.5: Poverty in Weekly Earning Over Time

(1). Intrapersonal comparisons of well being make for even larger set of evaluative
functions than the set defined merely on different weight schemes for averaging. Every
inequality measure is equivalent (uniquely so up to a monotonic transformation) to
an evaluative (welfare) function. Averages, medians and every quantile are highly
subjective and exclusionary measures of an outcome distribution!

The non-uniqueness of evaluation functions is a manifestation of the Arrowian
Impossibility Theorems. It leads us to consider weaker, uniform rankings which are
valued over large classes of ‘welfare functions’. We witnessed the pros and cons of
this in the US example above. Dominance rankings are powerful when such rankings
are present empirically, and equally powerful and informative in policy debates,
when such rankings do not exist. Suppose that, in the last example, every entry in
the second population was multiplied by a 100 (in real terms). While the relative
distribution/inequality is unchanged, the second population is now moved so far to
the right of population 1 (or 2), as to dominate it uniformly. What is the formal sense
in which this uniform ranking obtains?

There are other challenges. Why just income? Forceful criticisms of single
dimensional analysis of well being, implicit in income inequality analysis emanated
from writings of Sen and others, leading to development of multidimensional measures
and analysis of well-being, see for example Maasoumi (1986), Tsui (1999). This is a
vast area of analysis and much has taken place since my earlier surveys in Maasoumi
(1998), Maasoumi (1999). I will not explicitly deal with these otherwise important
issues in this paper.
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Data Source: National Bureau of Economic Research

Fig. 5.6: Weekly Earning Over Time (2019 Dollars)

Most discussions and conceptions of inequality, especially in public domain, are
informal comparisons of Lorenz curves. The share of total incomes going to the top
10 per cent of the population, percentage of assets held by the top 1 per cent. The
recent treatise by Piketty (2013) visits historical evidence on the share of capital going
to different population groups, and its association, especially at current extremes, with
social consequences. Piketty analysis includes different sources of income, including
capital gains. The comparative historical analysis, for groups, or factors of production,
and over time, is a means of isolating statistical or causal factors. much as a statistical
model, or counterfactual statistical analysis is meant to do. The latter methods are
formal and capable of identifying and exposing the otherwise implicit assumptions
that underlie all such analyses. But both descriptive and rigorous approaches share
a common goal: How to measure inequality, as a meaningful functional of a given
distribution, and what determines (covariates and causes) those marginal distribution
outcomes.

Inequality indices are expected utilities for any given utility or weighting function
and a given distribution of outcomes. Absent a consensus on utility functions, and
any distribution, some distributed outcomes may have higher expected utility for
entire classes of utility functions. This is a case for uniform rankings by dominance or
other criteria. This was discussed informally above, and will be treated more formally
below.
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5.1.1 Statistical Objects

Latest developments treat marginal distributions as outcome of integrated condi-
tional distributions, through appropriate and interesting distribution of conditioning
covariates (education, experience, neighborhoods, parental characteristics, race,
gender). These are the ‘causal’ and other factors that impact individual outcomes and
characterize population subgroups and counterfactual states of those subgroups. A
typical Mincer equation is a (conditional mean or quantile regression) description of
earnings outcomes, by such factors as education, experience (polynomials), and other
individual or location/time characteristics. But the object of interest is the inequality
in the (marginal) distribution of earnings, integrating out the effect of the conditioning
covariates, or at certain values of those covariates that a policy may care about. This
paradigm allows ‘decomposition’ which may identify, for example, the influence
of ‘characteristics’ from the influence of ‘returns’ to those characteristics, between
groups (for example, men and women, and their counterfactual states: women with
their observed characteristics, were they to receive the men’s loadings for those same
characteristics).

Both inverse probability weighting techniques and regression at the mean and
quantiles methods have advanced greatly and rapidly to respond to these questions.
We provide a summary of these developments and advocate their adoption for
informed, as well as rigorous inference on inequality and related measurement
objectives. The advantage of these techniques is that they first identify desired marginal
distributions. Once equipped with this marginal distribution, interesting functions of
it are computable, including inequality, mobility and poverty measures, quantiles of
interest and their distances. Uniform ranking can also be tested for since conditions
for it are testable hypotheses about distributions. Comparative measurements and
analyses proceed accordingly, as for the ‘gap’ between distributions and its evolution
over time. As we will argue, conception of the ‘gap’ is essentially the same question
as the ‘ideal inequality’ measures and challenges thereof.

There are generally two approaches currently in vogue for identifying marginal
distributons of incomes. The first approach is to compute conditional distributions
quantile-by-quantile and conduct comparative analysis with suitable evaluative
functions of quantile differences (before or after marginalization by integrating
out the desired covariate distributions). A second approach is to first summarize
(characterize) each marginal (or conditional) distribution by suitable evaluative
functions (like inequality indices), and then compute the difference between these
indices. The latter approach has been the mainstay of ‘income inequality’ literature
for better than a century. In more recent times, the first approach has been favored by
modern statistically advanced researchers, primarily versed in the potential outcome
paradigm. The first approach is also quite helpful in accounting for the perennial
problem of ‘selection’, of many types, and identification arguments that are extremely
revealing of the statistical challenges to attribution of ‘causes’ of outcomes.

The difference between the two approaches is subtle. The first approach requires
identification of the distribution of quantile differences. To see the problems of this
approach, consider a society with only two men (Males A and B), and two women
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(Females A and B). Male wages are ($5,000 , $1,200), respectively; Female wages are
($3,000 , $1,000). Quantile-by-quantile analysis will compare Female A to Male A,
and Female B to Male B. However, occupying the same rank in their respective group
does not necessarily mean that Female A and Male A are comparable individuals.
Implicitly assumed and required in the quantile comparisons is an assumption of
rank invariance (or similarity), i.e., one’s relative rank is preserved when endowed
with each other’s skill sets or market returns. Rank invariance requires that male and
female ranks refer to the same skills and substitutions thereof, or at least the same
intrinsic values of skills.

Rank invariance is unlikely to be satisfied empirically, and has been statistically
rejected for several decades of CPS data in the US. Without rank invariance, it is
questionable that the first approach (‘quantile treatment effect’) can deliver meaningful
measures of distribution differences. See Maasoumi and Wang (2019). The traditional
approach (to summarize the distribution first and then compare the summary measures
of inequality, say) is concerned with the distributions for groups, instead of individuals.
This is ‘anonymous’ and does not require identification of individual quantile
differences.

Both rank invariance and choice of evaluation functions are problems that have
not received sufficient emphasis and scrutiny in the literatures on the gender gap
and treatment effects, with a few notable exceptions (Heckman, Smith and Clements
(1997); Heckman and Smith (1998); Dehejia (2005)). This paper aims to provide this
emphasis. This also helps to connect the inequality literature, and the literature on
gender gaps and the literature on treatment effects.

5.1.2 What Does Marginalization Mean?

It is important to distinguish between ‘marginalization’ to ‘derive’ the marginal
distribution of income over all values of covariates, on the one hand, and the
distribution of incomes free of some factor influence, like education. Marginalization
obtains incomes for any value of covariates (characteristics). Residual analysis in
which the impact of some factors are removed, is an statistical technique which
requires a model (such as for the Mincer equation), in which projections are conducted
in order to obtain the ‘best’ fitted value of income due to any sources other than the
ones in the projection space. This residual analysis, while simple in conception and
execution, is relatively rare. See Maasoumi and Heshmati (2000). This is in part due
to model and covariate dependence in this approach, a perennial challenge in robust
econometric model building and inference. Modern ‘big data’ techniques, such as
double machine learning, offer exciting possibilities for robust implementations of
this residual based approach.
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5.1.3 Addressing Selection and Other issues at the Distribution Level:

A potentially major challenge to empirical evaluative anlaysis of distributed outcomes
is non random selection. Regardless of evaluative measures, analysis of inequality
can be impacted by selection. Labor force participation (LFP) rates for males have
continued to decline for decades, and those for females increased, then peaked, and
has decreased slightly in recent years. To the extent that non-working men and women
systematically differ from working men and women, measures of inequality would
be ‘biased’ when generalized to the whole populations. For example, if there is
positive selection by women over time (high-earning women enter the labor market,
and low-earning ones leave). This may lead to a possibly mistaken observation of
‘convergence’ between distributions of earnings between men and women. This key
insight dates back to Heckman (1974), and attention has been paid to it in many
studies of women’s labor market outcomes. For example, in the gender gap literature,
we note a few attempts, mostly on the gap at the mean or median (e.g., Blau & Kahn,
2006; Olivetti & Petrongolo, 2008; Mulligan & Rubinstein, 2008).

It is desirable and informative to address selection at the entire distribution beyond
the mean and median. We will briefly describe a number of methods to deal with
this. Arellano and Bonhomme (2017a) and Maasoumi and Wang (2019) adopt a new
quantile-Copula approach to model the joint determination of wages and participation
decision for both men and women. This approach allows a recovery of the distributions
of wage offers for the entire male and female populations. It can also be used to
consider ‘value of time’ in measuring outcomes. Comparing distributions of wage
offers is informative, but for those who do not work, wage offers do not reveal ‘value
of time’ or the well-being they actually enjoy. Some individuals derive value from not
working, and this is captured by their reservation wages. The quantile-copula approach
provides a useful structure to recover the reservation wages and its distribution using
the potential wage offers and the selection mechanism. This replaces market wages
for those non-employed with their reservation wages instead, see Maasoumi and
Wang (2019).

A more recent ‘distribution regressions’ approach is due to Chernozhukov,
Fernández-Val and Luo (2018). It is based on local Gaussian characterization
of distributions, and leads to familiar distribution (MLE, probit) regressions from
which both inequality measures and other distribution functionals can be derived. It
can handle selection as well, but it depends on different identification assumptions
and strategies.

The recent technology for analyzing inequality and gap between subgroups can
provide nuanced findings. These findings, while consistent with some findings based
on traditional summary measures and regressions, modify and mediate others. For
instance, based on the Current Population Survey data from 1976 to 2016, Maasoumi
and Wang (2019) find that, firstly, without correcting for selection, while women
generally perform worse than men in the labor market, they are catching up with men
(Blau & Kahn, 1997, Blau & Kahn, 2006, and Goldin, 2014). The gender differences
have decreased over time, especially in the 1980s and early 1990s, although at a much
slower rate since the mid-1990s. The perception of the actual ‘gap’ and its dynamics
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varies according to measures employed. The quantile evolve differently over the
past several decades. Entropic measures of inequality and the gap provide a more
nuanced picture of the evolution of the gap between wage distributions. Specifically,
Generalized Entropy measures indicate a generally larger convergence until early
1990s, and a more pronounced flattening since then, for full-time workers. Moreover,
the gap increases monotonically with the level of inequality aversion for entropy
measures.

Selection indeed impacts all measures of inequality and the comparative evolutions.
Once selection is accounted for, MW find that convergence of earnings is slower, with
a recent reversal in the trend in parts of the wage distribution between mid-1990s and
the most recent recession, followed by a further marked decline in the gap, especially
among low-skilled workers. Weak uniform ranking of wage distributions between
men and women is less likely, and one does not find‘uniform’ narrowing of the gap at
all quantiles.

Maasoumi and Wang (2019) find labor force participation varies by education and
race. The relative economic position of less educated women has lacked progress, or
even deteriorated, in more recent years, and the existing studies may have understated
this because many low-wage earners among less educated women exit the labor force.
Similar results hold for black women. Specifically, the wage gap for black women
has narrowed less compared to both Hispanics and whites, although the gender gap
within minority groups (blacks and Hispanics) is generally smaller than amongst
whites. We pay special attention to impact of ‘types’, such as education and race,
within gender groups.

Taking ‘value of time’ into account has been found to moderate degree of
convergence between men and women and other groups. Women’s relative well-being,
especially among those in the upper tail, may have even worsened over time.

The rest of the paper unfolds to elaborate on the topics discussed in the Introduction,
as follows: In Section 5.2 a brief formal description of decision theoretic foundations of
assessing outcomes is presented. It includes both the equal equivalent income and the
equity-effciency reduced form representation of relations between welfare functions
and inequality measures. General axioms are discussed as potentially desirable
properties for inequality measures. Analysis of the ‘gap’ between distributed outcomes
derives from this presentation. For this purpose, the role of metrics for measuring
distance between entire distributions, for example by entropies, is highlighted. Some
well known inequality measures are given and the value (or limitations) additive
decomposability (or aggregation consistency) and Theil’s measures are explained.
The section ends with a discussion of weak uniform ranking of entire outcomes over
classes of welfare functions, as a means of avoiding cardinal assessments based on
particular inequality indices.

Section 5.3 describes some of the latest developments and techniques for recov-
ering unconditional distributions from conditional ones. This section emphasizes
conditional quantile methods which account for explanatory covariates and individual
characteristics that interest policy makers. Inequality meaaures assess the marginal
distributions, but these are outcomes that are heterogenous. This section also clarifies
how counterfactual analysis and decompositions of final outcomes is facilitated by
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the transition from conditional to marginal distributions, as well as providing a frame
for dealing with sample selection. Section 5.3.1 on inverse probability weighting
method. It is included in this section to highlight its essential value in obtaining
entire counterfactual distributions, and fucntions of potential outcome distributions
as natural byproducts. Section 5.3.2 further clarifies the derivation of counterfactual
distributions with inverse weighting methods.

Section 5.3.3. describes the latest alternative to inverse probability weighting
by means of ‘Distribution Regressions’. This is a very promising method which
depends on different identification strategies in deriving conditional distributions and
counterfactuals. It can handle many data types (discrete or continuous), as well as
sample selection and some model misspeficiations.

Section 5.4 provides a modern example of assessing male-female earnings dis-
tributions. It demonstrates a new method of correcting for sample selection (labor
force participation) based on copulas. It is based on (Mincer) conditional quantile
models which is further presented in Section 5.4.1. Section 5.4.2 presents the impact
of selection on decomposition and counterfactual findings. An appendix on inference
methods is provided, as well as a section on some extensions.

5.2 Ideal Measures of Inequality, Poverty, and Mobility

There is no universally accepted evaluation function of a distribution, and there
are many candidates. The field of ‘ideal inequality’ measures is vast and beautiful!
Averages, inequality measures, quantiles and entropies are all well-known functions
of distributions that summarize its quantiles anonymously. This is typically without
regard to identity of those who occupy a given quantile. Each function attributes
its own weights to different wage levels and individuals. For example, the average
(function) assumes equal weights to all percentiles, treating a dollar of high-wage
earners and a dollar of low-wage earners equally. All evaluative functions that underly
various measures and indices can be endowed with a decision theoretic basis. I will
expand on this and provide a more modern decision theoretic motivation.

The decision theoretic framework typically discovers a flexible family of measures
of inequality, poverty, and mobility, generally based on entropy functions (the Gener-
alized Entropy family that includes a normalized Kullback-Leibler-Theil measure,
and a normalized Hellinger measure, as well as Atkinson’s family). Entropy functions
share similarities to characteristic functions, such as a one-to-one relation to the
corresponding distribution. More importantly, unlike the average function, entropies
satisfy many desirable properties such as aversion to inequality (which assigns more
weights to a dollar of transfer at lower wages than at higher wages; i.e, the Pigou-
Dalton principle of transfers). Each entropy function in this class is characterized
by a different level of inequality aversion (for an impartial observer/evaluator of the
wage distributions).
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5.2.1 Decision-Theoretic Basis of Evaluation Functions

Let 𝑦 𝑓 and 𝑦𝑚 denote (log) wages of groups f and m, with CDF (density) denoted
by 𝐹 𝑓 ( 𝑓 𝑓 ) and 𝐹𝑚 ( 𝑓𝑚), respectively. Let 𝐹 𝑓 (𝑦 𝑓𝜏 ) = 𝜏, and 𝐹𝑚 (𝑦𝑚𝜏 ) = 𝜏 define the
𝜏-th quantile. Note that when one group/distribution is the idealized perfectly equal
case, the Gap between is the measure of inequality. A general definition of the gap
between the groups is the difference of respective Evaluation Functions (EFs):

Gap = 𝐸𝐹𝛾,𝜖 (𝑦𝑚) −𝐸𝐹𝛾,𝜖 (𝑦 𝑓 ). (5.1)

The gap at a 𝜏𝑡ℎ quantile is 𝑦𝑚𝜏 − 𝑦
𝑓
𝜏 , where the median corresponds to 𝜏 = 1

2 .
Measures of the gap may be functions of the quantile gaps. The mean gap is
E[𝑦𝑚] −E[𝑦 𝑓 ] =

∫ 1
0

[
𝑦𝑚𝜏 − 𝑦

𝑓
𝜏

]
𝑑𝜏. Gap at any quantile, or the mean, is a (linear)

weighted function of quantile gaps. Linear functions of quantiles imply infinite
substitutability of a dollar at all wage levels. Alternative functions would reflect
different types of weights and/or interpersonal evaluations, reflecting degrees of
aversion to inequality/dispersion. There are parallel literatures on ideal inequality
(and risk) measures, and ideal entropies. The latter is summarized in Maasoumi
(1993) and motivates the inequality literature.

Consider the following Evaluation Function (EF):

𝐸𝐹𝛾,𝜖 =

∫ 1

0
𝑅(𝜏, 𝛾)𝑈𝜖 (𝑦𝜏)𝑑𝜏, (5.2)

where 𝑅(𝜏, 𝛾) = 𝛾(1−𝜏)𝛾−1, and𝑈 (·) is a concave function of wages. 𝛾 is an aversion
to inequality/dispersion parameter. This class of functionals is general and underlies
the Atkinson and S-Gini families of inequality measures (which satisfy desirable
properties such as the Pigou-Dalton transfer and permutation invariance properties).5
It allows for flexible weights at different percentiles. Holding 𝛾 ≠ 1 fixed, the weight
function, 𝑅(·), is decreasing with respect to 𝜏, thereby assigning greater weights to
lower wages in the evaluation of a wage distribution and hence measurement of the
gender gap.

If only relative (scale/mean-independent) measures are to be considered, the
function 𝑈 (·) must be of the following (homothetic) form (see Pratt (1964) or
A. Atkinson (1970)):

𝑈𝜖 (𝑦𝜏) =
{
𝑦1−𝜖
𝜏

1−𝜖 if 𝜖 ≠ 1
log(𝑦𝜏) if 𝜖 = 1

. (5.3)

5 Invariance to permutation of individuals produces anonymity of measures with respect to identity
of those who occupy a given quantile. The Pigou-Dalton transfer property (or aversion to inequality)
emphasizes that one dollar reduction of gap at lower wages is relatively more valuable than one
dollar at higher wages. This principle implies that any redistribution from the rich to the poor can
reduce inequality. The definition of inequality-loving would be the opposite of this definition.
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Note that the wage quantile 𝑦𝜏 itself is a special case of possible utility functions
𝑈 (·) at 𝜖 = 0. This leads to a linear summary function of the quantile or quantile gaps:∫
𝑅(𝜏, 𝛾) (𝑦𝑚𝜏 − 𝑦

𝑓
𝜏 )𝑑𝜏. In the special case when 𝜖 = 0 and 𝛾 = 1, EF is

∫
𝑦𝜏𝑑𝜏 = E[𝑦]

and the gap is the mean gap. In this case, 𝛾 = 1 (and the mean gap) implies no aversion
to inequality (neutrality).

A concave and increasing Evaluation Function of an impartial observer (represented
by Equation 5.2) is known to be similarly represented as an important money metric
Evaluation Function, called the Equal Distributed Equivalent Income (EDEI) wage,
given by

𝐸𝐷𝐸𝐼𝛾,𝜖 = 𝑈−1 (𝐸𝐹𝛾,𝜖 ) (5.4)
= 𝜇𝑦

(
1− 𝐼𝛾,𝜖 (𝑦)

)
, (5.5)

where 𝜇𝑦 is the mean and 𝐼𝛾,𝜖 (·) is any relative inequality measure. One can also
consider alternative EFs such as those in Aaberge, Havnes and Mogstad (2013). Note
that dividing both sides by the mean, we can make scale-invariant evaluations of the
wage distribution based on ‘relative’ inequality measures.

There are many inequality measures, including a monotonic transformation of
the Atkinson family of inequality indices known as the Generalized Entropy (GE)
family. While there exists no unique (or ideal) inequality measure, influential works
by Shorrocks (1980), and Bourguignon (1979) have established the ‘ideal’ properties
of GE.

The famed welfare properties/axioms which support GE are:

1. Anonymity or invariance to permutations,
2. Population replication,
3. Scale invariance, and
4. Pigou-Dalton principle of transfers or aversion to inequality.

If 3 is replaced with
3’. ‘Invariance’ to rank preserving equal increment transformations (adding a fixed
amount to everyone), one obtains ‘horizontal’ or rank inequality measures. I do
not cover these measures. If one adds:

5. Additive decomposability (Aggregation consistency). If this strong decomposabil-
ity requirement is added, Theil’s population share weighted inequality measure is
identified as the ‘ideal’ inequality measure; see below for further details.

5.2.2 An Alternative Equity-Efficiency Representation

An alternative representation of the essential relation between inequality measures
and welfare (evaluative) functions is instructive and exposes the ‘equity-Efficiency’
trade off which is central to debates on inequality and policy. A good example of the
following account is given by Amiel and Cowell (1997):

Let 𝑥 = (𝑥1, 𝑥2, .....𝑥𝑛) ∈ X be an income vector from the set X of all ordered non
negative vectors. 𝑛(𝑥) is the number of individuals in x, and the mean is denoted by
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𝜇(𝑥). Consider a class of ‘additive shares inequality indices’ as follows:

𝐼 (𝑥) =
𝑛∑︁
𝑖=1
𝑤𝑖𝑇 (𝑠𝑖 (𝑥)), (5.6)

where T(·) defines various inequality indices, and the i-th share is defined by

𝑠𝑖 (𝑥) = 𝑥𝑖/𝑛. 𝜇(𝑥) (5.7)

This class of inequality measures is quite large, including Generalized Entropy ,
Gini, relative mean deviation and logarithmic variance. For instance Gini is a special
case with,

𝑤𝑖 = −(1/𝑛) (𝑛−2𝑖 +1). (5.8)

The Extended Gini indices merely replace the above conditon on 𝑤𝑖 with increasing-
ness in i; See Weymark (1981). A Reduced Form expression of EF is available in
terms of mean income and inequality (upto monotonic transformations), as follows:

𝐸𝐹 (𝑥) = 𝐻𝐸𝐹 (𝜇(𝑥), 𝐼 (𝑥)). (5.9)

For differentiable functions H, denoting its derivatives by 𝐻𝜇 and 𝐻𝐼 , a very useful
monotonicity condition can be expressed for well known inequality indices. For GE
it is given as follows:

−(𝐻𝜇/𝐻𝐼 ) > 𝑚𝑎𝑥( [𝑛𝑠𝑖]𝛼−1−1)/(𝛼−1) −𝛼.𝐼 (𝑥)/𝑛. 𝜇(𝑥)) (5.10)

Based on the Equity-Effciency frontiers defined from the above representation, one
may rank income distribution profiles by EF or by the correspoding mean-inequality
profiles. See Amiel and Cowell (1997). This provides a different perspective than
the more common expression of EFs in terms of the ‘Equal Distributed Equivalent
Income’ given earlier.

5.2.2.1 Measuring the ‘Gap’ between Entire Outcome Distributions

The contrast between the entropies of two distributions is an example of how we may
assess the divergence between the densities of wages for two groups. Since GE and
Theil measures may be seen to be divergences of a given income distribution from the
‘uniform’ distribuition, the difference between two such inequality indices provides a
measure of the entropic gap between them (since the uniform distribution entropy
cancels out). Because there are competing normalizations for entropy functions, we
write the symmetric GE measure of divergence between the densities of wages for
two groups with a single parameter 𝑘 of inequality aversion.

1
2
·
[
𝐼𝑘 ( 𝑓1, 𝑓2) + 𝐼𝑘 ( 𝑓2, 𝑓1)

]
∀𝑘 ∈ [0,1], (5.11)
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where 𝐼𝑘 (·, ·) is a GE measure of divergence given by

𝐼𝑘 ( 𝑓1, 𝑓2) =
1

𝑘 −1

[∫ (
𝑓1
𝑓2

) 𝑘−1
𝑓1𝑑𝑦−1

]
,

𝐼𝑘 ( 𝑓2, 𝑓1) =
1

𝑘 −1

[∫ (
𝑓2
𝑓1

) 𝑘−1
𝑓2𝑑𝑦−1

]
.

Two popular members are:

1. The normalized and symmetrised Kullback-Leibler-Theil measure:

KL =
1
2
·
[∫
[log(

𝑓 𝑓

𝑓𝑚
) · 𝑓 𝑓 + log(

𝑓𝑚

𝑓 𝑓
) · 𝑓𝑚]𝑑𝑦

]
. (5.12)

2. And, at 𝑘 = 1
2 , one obtains an entropy distance metric that is a normalization of

the Bhattacharya-Matusita-Hellinger measure, given by:

𝑆𝜌 =
1
2

∫ ∞

−∞

(
𝑓

1/2
𝑚 − 𝑓 1/2

𝑓

)2
𝑑𝑥 (5.13)

=
1
2

∫ 1−
𝑓

1/2
𝑚

𝑓
1/2
𝑓


2

𝑑𝐹 𝑓 .

Varying 𝑘 corresponds to different levels of inequality aversion. Shannon’s entropy
is the basis of both the KL measure and Theil’s inequality measures, and is more
‘inequality averse’ than the Gini and the Hellinger (or 𝑆𝜌).

The property of aggregation consistency, and related useful additive decompos-
ability of inequality measures deserves further analysis. With a slightly different
normalization, we may express the GE family of inequality measures as the sum of
two terms, a within group and a between group component, as follows:

𝐼𝛾 =

𝑅∑︁
𝑟=1
𝑌
𝛾+1
𝑟 . (𝑛𝑟/𝑛)𝛾 𝐼𝑟𝛾 + 𝐼𝑏𝛾 , (5.14)

𝑌𝑟/
𝑛𝑟∑
𝑗

𝑦 𝑗 = 𝑌𝑟 . share of group r income 𝑌𝑟 In total income, r=1,2,.....R; n𝑟 is the

number of units in the r-th group, 𝐼𝑟𝛾 , is the ‘within group’ inequality, and 𝐼𝑏𝛾 is the
‘between group’ inequality, measured between the group income shares. 𝛾 reflects
degree of inequality aversion.

The decomposition given above is ambiguous since the group weights are function
so of incomes, and lack invariance to income changes. This ambiguity is resolved
only at 𝛾 = −1, which defines Theil’s second inequality index, given as follows:
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𝐼−1 = log𝑛+ 1
𝑛

𝑛∑︁
𝑖

log(𝑦𝑖/
𝑛∑︁
𝑗

𝑦 𝑗 ), for any income vector (𝑦1, 𝑦2, .....𝑦𝑛). (5.15)

Theil’s additive decomposition which is unique to it, is given as follows:

𝐼−1 =

𝑅∑︁
𝑟=1
(𝑛𝑟/𝑛)𝐼𝑟−1 + 𝐼

𝑏
−1. (5.16)

Theil’s second index is aggregation consistent, a rise in inequality in any group r,
all else being equal, will raise total inequality. which will be attributable to events
within that group.

Table 5.3: Inequality Indices example in Table 5.1

1974 2004

𝐼 .25
A 0.067 0.097

𝐼 .5A 0.134 0.190

𝐼 .75
A 0.207 0.286

𝐼1.0
A 0.297 0.418

𝐼Gini 0.395 0.466

𝐼0
GE 0.352 0.542

𝐼1
GE 0.267 0.406

Source: Cowell (2006)

5.2.3 Uniform Ordering: Stochastic Dominance Tests

Measures of inequality provide ‘complete’ (cardinal) rankings. When distributions
cross (especially at lower tails),6 different inequality measures will differ in their
rankings, depending on the underlying evaluation functions. It is useful to test whether
distributions can be uniformly ranked over large classes of (evaluation) functions
to a statistical degree of confidence. Absent any uniform dominance relations, all
measures of inequality and gap need to be examined relative to the underlying
evaluation functions. Examples of such uniform rankings are Lorenz, Generalized
Lorenz and other dominance orderings.

6 As they do for US wages in some years.
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Let𝑈1 denote the class of all increasing von Neumann-Morgenstern type utility
functions 𝑢 that are increasing in wages (i.e. 𝑢′ ≥ 0), and 𝑈2 the class of utility
functions in 𝑈1 such that 𝑢′′ ≤ 0 (i.e. concave). Concavity implies an aversion to
inequality:

First Order Dominance:

Male wages 𝑦𝑚 First Order Stochastically Dominate (FSD) Female wages 𝑦 𝑓 if and
only if

1. 𝐸𝑢(𝑦𝑚) ≥ 𝐸𝑢(𝑦 𝑓 ) for all 𝑢 ∈𝑈1 with strict inequality for some 𝑢.
2. Or, 𝐹𝑚 (𝑦) ≤ 𝐹 𝑓 (𝑦) for all 𝑦 with strict inequality for some 𝑦.
3. Or, 𝑦𝑚𝜏 ≥ 𝑦

𝑓
𝜏 for all points on the support.

The last condition is very intuitive. If income is higher at every quantile for one
group, then it is first order dominant, whatever inequality measure is employed. Not
even a Rawlsian comparison (of the poorest) would reverse the ranking. 𝑦𝑚 FSD 𝑦 𝑓

implies that the mean m-wage is greater than the mean f-wage. Average or median
income for one group may be higher without uniform dominance, because other
members may be worse off.

Cumulative distributions often cross, making FSD unlikely. If class of utility
functions is further restricted, one may still find correspondingly higher order
dominance. Inequality measures correspond to preferences that are increasing and
inequality averse, to various degrees. Inequality aversion is represented by concavity
of the utility function (much like risk aversion): Second Order Dominance:

(𝑦𝑚) Second Order Stochastically Dominates (𝑦 𝑓 ) (denoted 𝑦𝑚 SSD 𝑦 𝑓 ) if and only
if

1. 𝐸𝑢(𝑦𝑚) ≥ 𝐸𝑢(𝑦 𝑓 ) for all 𝑢 ∈𝑈2 with strict inequality for some 𝑢.
2. Or,

∫ 𝑦
−∞ 𝐹𝑚 (𝑡)𝑑𝑡 ≤

∫ 𝑦
−∞ 𝐹 𝑓 (𝑡)𝑑𝑡 for all 𝑥 with strict inequality for some 𝑥.

3. Or,
∫ 𝜏

0 𝑦𝑚𝑢 𝑑𝑢 ≥
∫ 𝜏

0 𝑦
𝑓
𝑢𝑑𝑢 for all points on the support.

FSD implies SSD. Again, the last condition is very intuitive. Ordered cumulated
quantiles (divided by the mean) are the basis of the Lorenz curve. If the lowest q
percentile of the population receives less than q percentile of incomes, at every level,
there is Lorenz dominance. When multiplied by means, it is Generalized Lorenz
dominance, also known as Second Order Stochastic Dominance. Higher order SD
rankings are based on narrower classes of preferences, with increasing ‘degrees’ of
aversion to inequality. As noted in the Introduction for the US example, Relative
income inequality rankings may not agree with SD rankings.

Advances in SD tests based on a generalized Kolmogorov-Smirnov test discussed
in Linton, Maasoumi and Whang (2005), and the recent text by Whang (2019). The
tests for FSD and SSD may be based on the following functionals:
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𝑑 =

√︂
𝑁1𝑁2
𝑁1 +𝑁2

minsup[𝐹𝑚 (𝑦) −𝐹 𝑓 (𝑦)], (5.17)

𝑠 =

√︂
𝑁1𝑁2
𝑁1 +𝑁2

minsup

∫ 𝑦

−∞
[𝐹𝑚 (𝑡) −𝐹 𝑓 (𝑡)]𝑑𝑡, (5.18)

𝑁1 and 𝑁2 are respective sample sizes. Test statistics are based on the sample
counterparts of 𝑑 and 𝑠, employing empirical CDFs. Bootstrap and subsampling
implementations of the tests are common. Maasoumi (2001) surveys the related tests
and techniques, including older tests of quantile (inverse distribution) rankings.

The SSD tests are closely related to the decision-theoretic framework outlined
above. The money-metric evaluations can be derived from Equation (5.1), and other
monotonic transformations. A representation of 𝐸𝐹𝛾,𝜖 (using integration by parts)
reveals a useful relation to SSD:

𝐸𝐹𝛾,𝜖 =

∫ 1

0
𝛾(𝛾−1) (1− 𝜏)𝛾−2𝐺𝐿𝑈 (𝜏)𝑑𝜏, (5.19)

where 𝐺𝐿𝑈 (𝜏) =
∫ 𝜏

0 𝑈 (𝑦𝑢)𝑑𝑢 is the Generalized Lorenz (GL) function of 𝑈 (·).
When𝑈 (·) = 𝑦𝜏 , ranking by GL (𝐺𝐿𝑚

𝑈
−𝐺𝐿 𝑓

𝑈
=

∫ 𝜏
0 𝑦𝑚𝑢 𝑑𝑢−

∫ 𝜏
0 𝑦

𝑓
𝑢𝑑𝑢) is exactly the

test of SSD. This helps in interpretation of the SD tests.

5.3 Recovering Unconditional Distributions

Let 𝐹𝑦 |𝑥𝑖 ≡ 𝑃𝑟 [𝑦𝑖 ≤ 𝑦 |𝑥𝑖] be the conditional CDF of the wages given 𝑥 = 𝑥𝑖 , and
𝑄𝜏 (𝑦 |𝑥𝑖) the corresponding 𝜏𝑡ℎ conditional quantile. Note that 𝑄𝜏 (𝑦 |𝑥𝑖) = 𝐹−1

𝑦 |𝑥𝑖 (𝜏),
the inverse of the conditional CDF. The marginal distribution is related to conditional
distribution as follows 7

𝐹𝑦 (𝑦) = E[𝐼 [𝑦𝑖 ≤ 𝑦]] = E[E[𝐼 [𝑦𝑖 ≤ 𝑦] |𝑥𝑖]] = E[𝐹𝑦 |𝑥𝑖 ], (5.20)

where 𝐼 [·] is an indicator function. The conditional CDF is related to its inverse
(the conditional quantile function) as follows (see, e.g., Angrist and Pischke (2009,
p.282))

𝐹𝑦 |𝑥𝑖 =

∫ 1

0
𝐼 [𝐹−1

𝑦 |𝑥𝑖 (𝜏) ≤ 𝑦]𝑑𝜏 =
∫ 1

0
𝐼 [𝑄𝜏 (𝑦 |𝑥𝑖) ≤ 𝑦]𝑑𝜏. (5.21)

The unconditional CDF may be estimated by

7 The first equality follows from the definition of unconditional CDF. And the second equality
follows directly from the law of iterated expectations. The last is the definition.
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𝐹𝑦 (𝑦) =
1
𝑁

𝑁∑︁
𝑖=1

∫ 1

0
𝐼 [𝑄𝜏 (𝑦 |𝑥𝑖) ≤ 𝑦]𝑑𝜏] . (5.22)

The corresponding unconditional quantiles can be obtained by inverting the marginal
CDF:

𝑄𝜏 (𝑦) = inf{𝑦 : 𝐹𝑦 (𝑦) ≥ 𝜏}.

Inequality and other functions , as well as stochastic dominance tests are performed
on these estimates.

5.3.1 Inverse Probability Weighting Methods

We are often interested in answering two types of counterfactual situations: First,
what if the wage structure of group A (women) is replaced with the wage structure
of group B (men), but holding the distribution of group A characteristics constant?
Conversely, what if we replace the distribution of group A’s characteristics to that of
group B’s, holding the wage structure unchanged? This is the basis of Oaxaca-Blinder
decompositions which are applied in context of the conditional mean of linear additive
regressions. A similar decomposition is possible for the entire distributions (and at
quantiles, with rank invariance type assumptions).

There are a number of available methods to identify the counterfactual distributions
of interest. Below I describe the inverse probability weighting method. Suppose we
wish to identify the distributions of the following counterfactual outcomes:

ln(𝑤𝑐1
𝑖 ) = 𝑔0 (𝑋𝑖1, 𝜖𝑖1), (Counterfactual Outcome #1) (5.23)

ln(𝑤𝑐2
𝑖 ) = 𝑔1 (𝑋𝑖0, 𝜖𝑖0). (Counterfactual Outcome #2) (5.24)

𝐹𝑐1 ( 𝑓𝑐1) denote the corresponding CDF (PDF) of the counterfactual outcome ln(𝑤𝑐1
𝑖
).

𝐹𝑐2 ( 𝑓𝑐2) represents the corresponding CDF (PDF) of the counterfactual outcome
ln(𝑤𝑐2

𝑖
). Notice that the differences in the distributions of 𝐹𝑐1 and 𝐹1 (ln(𝑤𝑐1

𝑖
) v.s.

ln(𝑤 𝑓
𝑖
)) come solely from differences in wage structures; the comparisons of these

two distributions thus provide insight into potential discrimination. On the other hand,
the differences in the distributions of 𝐹𝑐1 and 𝐹1 (ln(𝑤𝑐2

𝑖
) v.s. ln(𝑤 𝑓

𝑖
)) come solely

from differences in the distribution of human capital characteristics; the comparisons
thus provide some insight into the ‘gap’ due to productivity differences.

As shown Firpo (2007, Lemma 1), under the following assumptions:

[A1.] Unconfoundedness/Ignorability: Let (𝐷, 𝑋, 𝜖) have a joint distribution. For
all 𝑥, 𝜖 is independent of 𝐷 conditional on 𝑋 = 𝑥.
[A2.] Common Support: For all 𝑥, 0 < 𝑝(𝑥) = Pr[𝐷 = 1|𝑋 = 𝑥] < 1.

The counterfactual outcome CDF of ln(𝑤𝑐1
𝑖
) is identified aas follows:

𝐹𝑐1 = E[𝜔𝑐1 (𝐷, 𝑋) · 𝐼 [(ln(𝑤𝑖) ≤ 𝑦)],
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where

𝜔𝑐1 (𝐷, 𝑋) =
(
𝑝(𝑥)

1− 𝑝(𝑥)

)
·
(

1−𝐷
𝑝

)
.

The counterfactual outcome CDF of ln(𝑤𝑐2
𝑖
), 𝐹𝑐2, is similarly identified. The

propensity score, 𝑝(𝑥), is estimated, typically by probit or logit methods. p is the
population propotion of group A.

Both assumptions (A1) and (A2) are commonly used in the literature. Assumption
(A1) implies here that given the values of observable human capital characteristics
𝑋 , the distribution of unobservable human capital characteristics such as ability is
independent of gender. Assumption (A2) rules out the possibilities that a particular
value 𝑥 belongs to either group A or B, and that the set of wage determinants, (𝑋, 𝜖)
differ across groups. Once we identify the counterfactual distributions of interest,
counterfactual decomposition analysis can be conducted directly, or based on suitable
‘metrics’ to measure ‘distance’ between distributions. The only metric member of the
entropy divergence measures discussed earlier is the Hellinger metric. Analysis of
these divergences is often reported in terms of inequality measures as well. It should
be clear from the earlier decision theoretic discussion in this paper, all such meaures
are subjective in terms of their weighting of distances at different quantiles, in addition
to the requirement of some degree of ‘rank invariance’ for quantile counterfactual
comparisons.

5.3.2 Distribution Regressions Model

The distributions referenced in prior sections, including the counterfactual ones, may
be estimated based on a new method of ‘distribution regressions’. The following
account is from Chernozhukov and Fernandez-Val (2018):

The first key observation is that a partitioning of the sample space allows a
binary regression framework to model and estimate the conditional distribution
of an outcome given covariates. The outcome is a real-valued variable that may
be continuous (e.g., log wages as above), count (number of patents), nonnegative
(duration), discrete or binary as in propensity score models.

The second key observation is that the conditional distribution of 𝑌 given the
covariates 𝑋 can be expressed as

𝐹𝑌 |𝑋 (𝑦 | 𝑥) = E[1{𝑌 ≤ 𝑦} | 𝑋 = 𝑥] .

Accordingly, all outcomes (binary or not) allow a construction of a collection of
binary response variables (partition), of the events that the outcome falls bellow a set
of thresholds:

1{𝑌 ≤ 𝑦}, 𝑦 ∈ 𝑇 ⊂ R,
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where 𝑇 is a countable subset of R. For estimation and other practical purposes, 𝑇 is
taken to be a finite collection of grid points. Then binary regressions for a collection
of binary response variables are used to model the conditional distribution of 𝑌 given
𝑋 ,

𝐹𝑌 |𝑋 (𝑦 | 𝑥) = Pr(𝑌 ≤ 𝑦 | 𝑋 = 𝑥) = 𝐹𝑦 (𝐵(𝑥)′𝛽(𝑦)),

where 𝐹𝑦 is a link function, which may vary with the threshold 𝑦, 𝐵(𝑋) is a dictionary
of transformations of 𝑋 (including a 1 as the first entry), and 𝛽(𝑦) is the parameter
vector that may vary with the threshold 𝑦. This is the distribution regression model.

The distribution regression model is quite flexible and nests a variety of classical
models for conditional distribution functions, including the ones described in this
paper. Other examples from Chernozhukov and Fernandez-Val are as follows:
Example 1. Classical Normal Regression Model In the classical normal regression
model, 𝑌 | 𝑋 ∼ 𝑁 (𝐵(𝑋)′𝛾,𝜎2), the conditional distribution of 𝑌 given 𝑋 is

𝐹𝑌 |𝑋 (𝑦 | 𝑥) = Φ((𝑦−𝐵(𝑥)′𝛾)/𝜎),

where Φ is the standard normal distribution. This conditional distribution is a special
case of the distribution regression model with 𝐹𝑦 equal to the probit link Φ, and
𝛽(𝑦) = (𝑦−𝛾1,−𝛾′−1)

′/𝜎, for 𝛾 = (𝛾1, 𝛾
′
−1)
′. The slopes here don’t vary with 𝑦.

Example 2. Cox Proportional Hazard Model The Cox duration regression is
popular to model conditional distributions in duration and survival analysis, as well
as to model non-negative outcomes, such as capital (in (𝑆, 𝑠) models) and wages. The
conditional distribution is:

𝐹𝑌 |𝑋 (𝑦 | 𝑥) = 1− exp(−exp(𝑡 (𝑦) −𝐵(𝑥)′𝛾)),

where 𝑡 (·) is an unknown monotonic transformation. It corresponds to the following
location-shift representation:

𝑡 (𝑌 ) = 𝐵(𝑋)′𝛾 +𝑉,

where 𝑉 has an extreme value distribution (Gumbel) and is independent of 𝑋:

𝑉 | 𝑋 ∼ log(− log(𝑈 (0,1))).

The hazard rate is given as,

ℎ(𝑦 | 𝑥) = − 𝜕
𝜕𝑦

ln(1−𝐹𝑌 |𝑋 (𝑦 | 𝑥)) =
𝜕𝑡 (𝑦)
𝜕𝑦

exp(𝑡 (𝑦)) exp(−𝐵(𝑥)′𝛾),

depends proportionally on exp(−𝐵(𝑥)′𝛾). The conditional distribution is a special
case of the distribution regression model with 𝐹𝑦 equal to the complementary log-log
link, 𝐹𝑦 (𝑢) = 1− exp(−exp(𝑢)), and 𝛽(𝑦) = (𝑡 (𝑦) − 𝛾1,−𝛾′−1)

′, for 𝛾 = (𝛾1, 𝛾
′
−1)
′.

The slopes here don’t vary with 𝑦, while distributional regression allows for slopes to
be varying with 𝑦.
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Example 3. Poisson Regression Model The Poisson distribution is frequently used
to model count variables taking values in 0,1,2, .... The conditional distribution of
the count variable 𝑌 given 𝑋 takes the form:

𝐹𝑌 |𝑋 (𝑦 | 𝑥) =
𝑦∑︁
𝑘=0

exp (𝐵(𝑥)′𝛾)𝑘 exp (−exp (𝐵(𝑥)′𝛾))
𝑘!

=𝑄 (𝑦,exp (𝐵(𝑥)′𝛾)) ,

where𝑄 is the incomplete Gamma function. This model can be seen as an special case
of the distribution regression model with link function 𝐹𝑦 (𝑢) = 𝑄 (𝑦,exp(𝑢)) and
𝛽(𝑦) = 𝛾. The Poisson regression model is based on a widely criticized assumption that
the same index governs the whole distribution. The zero-inflated Poisson regression
model is a little more flexible by allowing the coefficients to be different at 0. The
distribution regression model does not restrict the heterogeneity of the coefficients at
any level.

Given the conditional distribution one can recover the conditional quantiles:

𝐹←
𝑌 |𝑋 (𝑢 | 𝑥), 𝑢 ∈ [0,1],

where← denotes the left-inverse of the map 𝑦 ↦→ 𝐹𝑌 |𝑋 (𝑦 | 𝑥) on 𝑇 . The left-inverse
of a function 𝐺 : 𝑇 → [0,1] on 𝑇 is defined as

𝐺← (𝑢) := inf{𝑡 ∈ 𝑇 : 𝐺 (𝑡) ≥ 𝑢} ∧ sup{𝑡 ∈ 𝑇}, (5.25)

with the convention inf{∅} = +∞. Given a graph of a distribution function 𝑡 ↦→ 𝐺 (𝑡)
one may obtain the graph of the quantile function 𝑢 ↦→ 𝐺← (𝑢) by simply flipping the
axes and mirroring the resulting image.

There are many ways to estimate the distribution regression model. Chernozukhov
and Fernandez-Val (2018) describe one method as follows. We can estimate the
conditional distribution by:

�̂�𝑌 |𝑋 (𝑦 |𝑥) = 𝐹𝑦 (𝐵(𝑥)′𝛽(𝑦)), 𝑦 ∈ 𝑇,

where for each 𝑦 ∈ 𝑇 , 𝛽(𝑦) is the maximum likelihood estimator,

𝛽(𝑦) ∈ arg max
𝑏 (𝑦) ∈B

E[1(𝑌 ≤ 𝑦) ln𝐹𝑦 (𝐵(𝑋)′𝑏(𝑦)) +1(𝑌 > 𝑦) ln(1−𝐹𝑦 (𝐵(𝑋)′𝑏(𝑦)))],

where B is the parameter space for 𝛽(𝑦). For example, 𝛽(𝑦) is the probit estimator
with the normal link 𝐹𝑦 = Φ , or the logit estimator with the logistic link 𝐹𝑦 = Λ.

Inference on 𝑦 ↦→ 𝐹𝑦 (𝐵(𝑥)′𝛽(𝑦)) for 𝑦 ∈ 𝑇 is standard since one can use the delta
method in conjunction with the GMM formulation of the problem. One can view
estimation of

𝜃0 = vec(𝛽(𝑦) : 𝑦 ∈ 𝑇)

as GMM estimation with the score:

𝑔(𝑍, 𝜃) = vec
(
𝑔𝑦 (𝑍, 𝑏(𝑦)) : 𝑦 ∈ 𝑇

)
,
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𝑔𝑦 (𝑍, 𝑏(𝑦)) =
𝜕

𝜕𝑏(𝑦) {1(𝑌 ≤ 𝑦) ln𝐹𝑦 (𝐵(𝑋)
′𝑏(𝑦))

+1(𝑌 > 𝑦) ln(1−𝐹𝑦 (𝐵(𝑋)′𝑏(𝑦)))},

which simply stacks the scores of many binary regressions; the joint parameter
vector is

𝜃 = vec(𝑏(𝑦) : 𝑦 ∈ 𝑇),

and stacks the parameters of many binary regressions. The map 𝑦 ↦→ 𝐹𝑦 (𝐵(𝑥)′𝛽(𝑦)),
𝑦 ∈ 𝑇 , is a smooth transformation of the estimators 𝛽(𝑦), 𝑦 ∈ 𝑇 , so the delta method
delivers the large sample properties of the estimators 𝐹𝑦 (𝐵(𝑥)′𝛽(𝑦)), 𝑦 ∈ 𝑇 . This
also very helpful since it means that one may use the bootstrap for inference.

5.4 An Example Based on CPS, Male-Female Distributions

The period 1976-2013, March Current Population Survey (CPS) data is analyzed. We
use log of hourly wages, measured by an individual’s wage and salary income for the
previous year divided by the number of weeks worked and hours worked per week.8

The sample includes individuals aged between 18 and 64 who 1) work only for
wages and salary, 2) do not live in group quarters, 3) work more than 20 weeks
(inclusive), and more than 35 hours per week in the previous year (e.g., Mulligan and
Rubinstein (2008)).

First, we report some baseline results from unconditional distributions (ignoring
selection).

5.4.1 Conditional Quantile Selection Models

In the absence of selection, a probability re-weighting approach can be used to recover
marginal distributions (see, e.g., Firpo (2007)). Reweighting and quantile approaches
are equally valid ( Chernozhukov, Fernandez-Val and Melly (2013)). They lead to
numerically identical results asymptotically. However, the reweighting approach
cannot easily accommodate the selection issue. One cannot identify distributions for
groups including unobserved wages for non workers.

8 Wages are adjusted for inflation based on the 1999 CPI adjustment factors. These are available
at https://cps.ipums.org/cps/cpi99.shtml. Following the literature (e.g., Mulligan and Rubinstein
(2008); Lemieux (2006)), we exclude extremely low values of wages (less than one unit of the log
wages). It has been shown that inclusion of imputed wages in wage studies is ‘problematic’ (Hirsch
and Schumacher (2004); Bollinger and Hirsch (2006)). Mulligan and Rubinstein (2008) and Lemieux
(2006)) exclude these imputed observations. Such corrections are considered to ‘largely eliminate
the first-order distortions resulting from imperfect matching’ (Bollinger and Hirsch (2013)).

https://cps.ipums.org/cps/cpi99.shtml
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A quantile-copula function approach is proposed in Arellano and Bonhomme
(2017b) to correct the entire distribution for selection. Alternative methods will
be disucssed in a subsequent section. Selection model add more structure and
hence information. The AB approach has greater flexibility in modellng the joint
dependence of the marginal variables and leaves marginals unrestricted. In the
presence of selection, the AB approach shifts the percentiles as a function of the
amount of selection.

Parametric estimation of quantiles is due to Koenker and Bassett (1978), and
nonparametric extensions have recently been proposed (e.g., Li and Racine (2008)). In
the presence of selection, there are only a few approaches to point identify parameters
of a quantile function – identification at infinity, the Buchinsky (1998) approach,
the Arellano and Bonhomme (2017b), approach, and the more recent distribution
regressions of Fernandez-Val et al (2018). Olivetti and Petrongolo (2008) propose
another approach but focusing only on median regressions. While they could slightly
relax the assumption of selection on unobservables to impute wages for workers who
work and have wages for more than a year, they still have to resort to the selection on
observable assumption for those who never work.

Identification at infinity is based on the notion that selection bias tends to zero for
individuals with certain characteristics who always work and whose probability to
work is close to one (Heckman, 1990; Mulligan & Rubinstein, 2008; Chamberlain,
1986). As a result, quantile functions can be identified using the selected sample (even
in the absence of exclusion restrictions). However, the definition of ‘closeness’ to one
can be arbitrary in practice and there is a significant trade-off between sample size
and the amount of selection bias. Mulligan and Rubinstein (2008) adopt this approach
to assess the robustness of their conditional mean results. They define ‘closeness’ to
one as probability of working equal to or greater than .8, and the resulting sample
is only about 300 observations per five-year sample, less than 1% of the original
sample.9

Consider the following quantile wage function (see, e.g., Chernozhukov and
Hansen (2008))

ln(𝑤) = 𝑔(𝑥,𝑢) 𝑢 |𝑥 ∼𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(0,1), (5.26)

where 𝜏 ↦→ 𝑔(𝑥𝑖 , 𝜏) is strictly increasing and continuous in 𝜏. This can be a non-
separable function of observable characteristics, 𝑥, and unobservable disturbances
𝑢, normalized and typically interpreted as ability (Doksum, 1974; Chernozhukov &
Hansen, 2008).10 Unobservables, 𝑢, are the rank variable or quantile and thus can be

9 Buchinsky (1998) proposed a control function approach to extend Heckman’s selection approach
to quantiles. He assumed additive separability of observable and unobservables in the wage equation.
It also implicitly assumed ‘independence between the error term and the regressors conditional on
the selection probability.’ (Melly & Huber, 2008) Arellano and Bonhomme (2017b) and Arellano
and Bonhomme (2017c) note that it is unlikely to specify a data generating process consistent with
the Buchinsky assumptions except in the case of either 1) additivity and parallel quantile curves,
implying quantile functions are identical and equal to the conditional mean function, or 2) selection
is random; see, also, Melly and Huber (2008).
10 Pr[𝜏 |𝑥 ] = 𝜏. The first equality follows from Equation (5.26). The second follows from the fact
that conditional on 𝑥, 𝑢 is uniformly distributed.



170 Maasoumi and Cahn

fixed in estimations. The participation decision written in a normalized form is given
by:

𝑆 = 𝐼 (𝑣 ≤ 𝑝(𝑧)) 𝑣 |𝑥 ∼𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(0,1), (5.27)

where 𝑝(𝑧) = Pr[𝑆 = 1|𝑧] is the propensity score, and assuming 𝑝(𝑧) > 0 with
probability one.11 𝐼 (·) is an indicator function (equal to one if the argument is
true, zero otherwise). Let 𝑧 = (𝑥′, �̃�′)′, where �̃� includes a vector of IVs statistically
independent of both (𝑢, 𝑣) given 𝑥. An exclusion restriction is through a variable that
affects the selection equation only (see below).
If selection is present,

Pr[ln(𝑤) ≤ 𝑔(𝑥, 𝜏) |𝑠 = 1, 𝑧] = Pr[𝑢 ≤ 𝜏 |𝑣 ≤ 𝑝(𝑧), 𝑧] = 𝐶𝑥 (𝜏, 𝑝(𝑧))
𝑝(𝑧)

≡ 𝐺𝑥 (𝜏, 𝑝(𝑧)) ≠ 𝜏,

where the joint cumulative distribution function (or copula) of (𝑢, 𝑣) is defined as
𝐶𝑥 (𝑢, 𝑣). The observed rank for the 𝜏𝑡ℎ quantile, 𝑔(𝑥, 𝜏), is no longer the 𝜏 in the
selected sample. Instead, the observed rank is𝐺𝑥 (𝜏, 𝑝(𝑧)). Knowledge of the mapping
between the quantile and its observed rank in the sample allows estimatation of 𝑔(𝑥, 𝜏)
using a ‘rotated quantile regression’. This is indeed the idea proposed by Arellano and
Bonhomme (2017b). 12 Given (a) availability of an exclusion restriction, (b) absolutely
continuous bivariate distribution of (𝑈,𝑉) (represented by its copula, 𝐶 (𝑢, 𝑣)), (c)
continuous outcome, and (d) 𝑝(𝑧) > 0, 𝑔(·) is nonparametrically identified.

5.4.1.1 Practical Implementation

We report results based on a linear index conditional quantile function 𝑔(𝑥,𝑢) = 𝑥′𝛽(𝑢).
There is a certain nonlinearity allowed by this since it allows 𝑥 to have differential
impact at different quantiles.13 This index model is a non-separable function of 𝑥 and 𝑢,
allowing for interaction between the observable and unobservable characteristics, and
is thus preferred to the additive structure that is often assumed in the conditional mean
models. Linear quantile regression can provide a weighted least squares approximation
to an unknown and potentially nonlinear conditional quantile regression Angrist,
Chernozhukov and Fernandez-Val (2006).

Below we provide some graphic evidence of the performance of such linear
non-separable models, based on Maasoumi and Wang (2019). The vector, 𝑥, is a
typical set of wage determinants, including educational attainment dummies, marital
status, polynomial terms of age up to third order, racial dummy and regional dummies.

11 Note that Equation (5.27) is a normalization commonly used in the treatment effects literature.
Note that E[𝑆 |𝑧 ] = Pr[𝑆 = 1 |𝑧 ] = 𝑝 (𝑧) = E[𝑆 = 1 | 𝑝 (𝑥 ) ] = Pr[𝑆 = 1 | 𝑝 (𝑧) ].
12 The algorithm is provided in detail in 5.5 in the supplemental material. Exclusion restrictions and
functional forms regarding 𝐺 ( ·) provide identification.
13 It has been noted, e.g., Melly and Huber (2011), that allowing for arbitrary heterogeneity and non
separability does not allow point identification, generally. allowing identification only of bounds of
the effects which are ‘usually very wide in typical applications’.
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This is the common set of covariates in the literature on the gender gap with the CPS
data. The corresponding wage equation is similar to what Blau and Kahn (2017) refer
to as ‘human capital specification’.14

MW (2019) estimated the propensity scores probit with a flexible specification
that includes polynomial terms of the continuous variables up to third order, as well
as interaction terms between them and other discrete variables, in addition to an IV. A
linear index model is employed. The main exclusion restriction is the presence/number
of young children. The set of variables do not completely overlap with those in the
wage equation, providing some additional ‘exclusion restrictions’ for identification.

Note that identification is further aided by the copula function.Identification
analysis in Arellano and Bonhomme (2017b) is general and covers the case where
the copula is nonparametric. The Frank copula is a low-dimensional parametric
choice. See Maasoumi and Wang (2019). Its single parameter, 𝜌, captures dependence
between𝐺𝑥 (𝜏, 𝑝(𝑧)) ≡𝐺𝑥 (𝜏, 𝑝(𝑧); 𝜌). Frank copula permits a wide range of potential
dependencies, including negative dependence.

The dependence parameter 𝜌 has an additional useful interpretation, indicating the
sign of selection. A negative 𝜌 indicates positive selection into employment, while
positive 𝜌 implies negative selection. This facilitates the comparison to the patterns
of selection over time reported in the literature, e.g., Mulligan and Rubinstein (2008).
𝜌, is further allowed to be gender-specific.

The three-steps of implementation are: Estimate propensity scores, 𝑝(𝑧); Es-
timate the dependence parameter, 𝜌; and given the estimated 𝜌 and a specified
𝜏, obtain the observed rank, 𝐺𝑥 (𝜏, 𝑝(𝑧); 𝜌) and estimate 𝛽𝜏 , using the‘rotated
quantile regression’. To recover the unconditional distribution, we estimate 𝛽𝜏 for
𝜏 = 0.02,0.03, . . . ,0.97,0.98.15

Maasoumi and Wang (2019) assessed the robustness of these findings relative to
Frank copula. They employed the Gaussian copula, another low-dimension Copula
that provides dependence parameters that could be compared to 𝜌 by the implied
Spearman correlation coefficient. Note that in the special case when both marginal
distributions of 𝑢 and 𝑣 are normal, the copula is a bivariate normal distribution,
as in the Heckman model (Lee, 1983). The Gaussian-copula specification used by
Maasoumi and Wang (2019) is based on arbitrary marginals and hence more general.

14 Examples include Blau and Kahn (2006) and Mulligan and Rubinstein (2008). Buchinsky (1998)
uses a similar set of variables. Card and DiNardo (2002) and Juhn and Murphy (1997) employ a
similar set of wage determinants.
15 The third step is computationally intensive because, for each year of the data, a large number of
quantile regressions must be estimated. The results reported here are based on the 299 replications
(as reported in Maasoumi and Wang (2019), which requires estimation of more than a million
quantile regressions for the comparison of every two pairs of distributions.).



172 Maasoumi and Cahn

5.5 Conclusion

Renewed interest in inequality of outcomes elicits three general concerns for the
practitioner: (i) what attribute is a good measure of well-being, (ii) how to identify
its distribution, and (iii) how to characterize the distribution into a workable statistic.
This paper serves as a review of the literature and a selective guide of these stages of
the analysis of inequality.

Appendix: Inference and some Algorithms

The parameters, 𝜌 and 𝛽(𝑢), need to be estimated in the quantile selection models.
The propensity scores, 𝑝(𝑧), are first estimated using a probit model. Following
Arellano and Bonhomme (2017b), consider first how to estimate the quantile selection
model given the selection parameter, 𝑟ℎ𝑜 in a copula, and then the estimation of 𝜌.

1. [Estimation of 𝛽𝜏] Given a particular �̂�, �̂�𝜏 can be estimated by minimizing the
following rotated check function.

�̂�𝜏 = argmin
𝛽

𝑁∑︁
𝑖=1
𝑆𝑖 [𝐺𝜏,𝑖 (𝑙𝑛(𝑤𝑖) − 𝑥′𝑖𝛽)+ + (1−𝐺𝜏,𝑖) (𝑙𝑛(𝑤𝑖) − 𝑥′𝑖𝛽)−]

where (𝑙𝑛(𝑤𝑖) − 𝑥′
𝑖
𝛽)+ = max((𝑙𝑛(𝑤𝑖) − 𝑥′

𝑖
𝛽),0), and

(𝑙𝑛(𝑤𝑖) − 𝑥′𝑖𝛽)− =max(−(𝑙𝑛(𝑤𝑖) − 𝑥′𝑖𝛽),0). 𝐺𝜏,𝑖 = 𝐺 (𝜏, 𝑝(𝑧); �̂�).
2. [Estimation of 𝜌] To estimate 𝜌, we follow Arellano and Bonhomme (2017) and

exploit the following moment restrictions

E[𝐼 (ln(𝑤) ≤ 𝑥′ �̂�𝜏) −𝐺 (𝜏, 𝑝(𝑧); 𝜌) |𝑆 = 1, 𝑍 = 𝑧] = 0.

This implies that we can choose 𝜌 that minimize the following objective function

�̂� = argmin
𝜌
| |
𝑁∑︁
𝑖=1

𝑘∑︁
𝑗=1
𝑆𝑖𝜙𝜏 𝑗 (𝑧𝑖) [𝐼 (ln(𝑤𝑖) ≤ 𝑥′𝑖𝛽𝜏 𝑗 (𝜌)) −𝐺 (𝜏𝑗 , 𝑝(𝑧𝑖); 𝜌)] | |,

where 𝜏𝑗 takes the finite grid in { 3
10 , . . . ,

7
10 }. 𝜙𝜏 𝑗 (𝑧𝑖) is an instrument function,

and

𝛽𝜏 (𝜌) = argmin
𝛽

𝑁∑︁
𝑖=1
𝑆𝑖 [𝐺𝜏,𝑖 (𝑙𝑛(𝑤𝑖) − 𝑥′𝑖𝛽)+ + (1−𝐺𝜏,𝑖) (𝑙𝑛(𝑤𝑖) − 𝑥′𝑖𝛽)−]

where (𝑙𝑛(𝑤𝑖) − 𝑥′
𝑖
𝛽)+ = max((𝑙𝑛(𝑤𝑖) − 𝑥′

𝑖
𝛽),0), and

(𝑙𝑛(𝑤𝑖) − 𝑥′𝑖𝛽)− =max(−(𝑙𝑛(𝑤𝑖) − 𝑥′𝑖𝛽),0). 𝐺𝜏,𝑖 = 𝐺 (𝜏, 𝑝(𝑧); 𝜌),.



5 Measuring ‘Income’ Inequality and Distribution of Outcomes 173

As noted in Arellano and Bonhomme (2017, p.9), if the 𝜏 is in 𝜏 = { 3
10 , . . . ,

7
10 }, we

actually do not have to repeat this process since we have already obtained these values
in the step of estimation of 𝜌.

Extension: A New Concept of Income Distribution: Value of Time

Wage may not necessarily be a good measure of women’s actual well-being for those
who do not work, and the comparison of wage offers does not fully serve our purpose.

The presence of young children reduces the probability of a woman being a
full-time worker, ‘a noteworthy number of these women are married to men who
earn relatively high incomes’ (Neal, 2004). For individuals, especially women, who
do not work full-time, their decisions to stay home do not necessarily reflect low
wage offers, but rather ‘high shadow prices of time spent at home’ (Neal, 2004). In
other words, wage offers do not necessarily represent income levels that they may
enjoy, or the well-being of those who do not work full-time or work at all. It is then
important to take into account the non-market value of time for those who do not
work in measuring the gender gap. In economic theory, the actual monetary value of
not working (or the best alternative to working full-time) is captured by reservation
wages. An interesting yet useful comparison would be based on an alternative wage
distribution for men and women, replacing the wage offers with reservation wages for
those who do not work full-time. Recall that the selection mechanism can be thought
of as follows

𝑆 = 𝐼 (ln(𝑤) ≥ 𝑌 reservation wages). (5.28)

The alternative wage distribution is thus equivalent to the distribution of
max(ln(𝑤),𝑌 reservation wages). Our quantile approach allows such analysis. With
further structure in the selection equation, we can recover the distribution of
reservation wages given unemployment. Specifically, we further impose an additive
structure of reservation wages given by 𝑅(𝑧) +𝜂, and the labor force participation is
based on the comparison of wage offers and reservation wages:

𝑆 = 𝐼 (ln(𝑤) ≥ 𝑅(𝑧) +𝜂). (5.29)

As noted in Arellano and Bonhomme (2017), this is equivalent to

𝑆 = 𝐼 (𝑣 ≤ 𝐹𝜂−ln(𝑤) |𝑍 (−𝑅(𝑧) |𝑧) 𝑣 |𝑥 ∼𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(0,1), (5.30)

where 𝑣 ≡ 𝐹𝜂−ln(𝑤) |𝑍 (−𝑅(𝑧) |𝑧) is the standard uniform. Therefore, all the assumptions
for qunatile selection models in Section 4.1.2 are met, and the wage function, 𝑔(𝑥,𝑢),
is identified. Given 𝑔(𝑥,𝑢), we can also identify 𝑅(𝑧).
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In practice, we assume a linear index for 𝑅(𝑧) = 𝑧′𝛾. For a given quantile, 𝜏, (3)
becomes

𝑆 = 𝐼 (𝑥′𝛽𝜏 ≥ 𝑧′𝛾 +𝜂)
= 𝐼 (𝑧′𝜃 ≥ 𝜂), (5.31)

the second equality is due to 𝑥 ∈ 𝑧. Once quantile function is identified, 𝑥′𝛽𝜏 , we can
estimate reservation wages, 𝑧′𝛾, via propensity score equation Φ(𝑧′𝜃). This involves
a three-step procedure. (1) For every individual with 𝑋 = 𝑥, we simulate the complete
distribution of potential wages by computing ln(𝑤) = 𝑥𝛽𝜏 for 𝜏 = 2, . . . ,98 and (2)
estimate 𝑧′ �̂�, the linear index from the probit model. (3) Reservation wage conditional
on non-participation status is identified by 𝑥𝛽𝜏 − 𝑧′ �̂� for 𝜏 = 2, . . . ,98 given 𝑆 = 0.
Potential wage conditional on participation status is given by 𝑥𝛽𝜏 for 𝜏 = 2, . . . ,98
given 𝑆 = 1.16

Decomposition and Counterfactual Analysis with Selection

Decomposition of observed effects into ‘structure’ and ‘composition’ components
has a long-standing history in labor economics (see Altonji and Blank (1999) and
Fortin, Lemieux and Firpo (2011) for excellent accounts). However, most of this
type of analysis usually ignores potential bias due to selection, and is focused on the
‘average’.

Structural effects are objects of policies promoting equitable wage-setting;
The composition effects concern human capital characteristics such as education.
Policy/treatment outcomes may produce ‘winners’ and ‘losers’; structural (or com-
position) effects could be positive at some parts of the distribution, and negative at
others.

Counterfactual distributions may be based on conditional quantile regressions, or
on re-weighting by propensity scores, or ‘distribution regressions’. Here I describe the
quantile approach because we can estimate the (true) conditional quantile selection
regressions. 17

Machado and Mata (2005) is among the first to estimate quantiles to recover the
counterfactual distribution, and Chernozhukov et al. (2013) discuss the corresponding
inferential theory.18

16 In a different context, Bonhomme, Jolivet and Leuven (2014) rely on the selection equation to
recover the distribution of agents’ underlying preferences in a similar way.
17 The re-weighting approach cannot be readily extended to address selection for decomposition
for the whole population. In Maasoumi and Wang (2017), examines the racial gap among women,
extending Huber (2014) and propose a re-weighting approach based on nested propensity score to
recover the counterfactual distributions for the selected population.
18 Albrecht, van Vuuren and Vroman (2009) extends this framework to address the selection issue at
the distributional level. However, Albrecht et al. (2009)’s approach is based on Buchinsky (2001)’s
quantile selection model, which relies on an unrealistic quantile structure.
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The counterfactual distribution can be recovered as follows,

𝐹𝑌𝑐 (𝑦) = 𝐹𝑌 ⟨𝑖 | 𝑗 ⟩ (𝑦) =
∫
𝐹𝑌𝑖 |𝑋𝑖 (𝑦 |𝑥)𝑑𝐹𝑋 𝑗 (𝑥). (5.32)

Given Equation (5.21), Equation (5.32) can be re-written as follows

𝐹𝑌𝑐 (𝑦) = 𝐹𝑌 ⟨𝑖 | 𝑗 ⟩ (𝑦) =
∫
{
∫ 1

0
𝐼 [𝑄𝜏 (𝑌𝑖 |𝑋𝑖) ≤ 𝑦]𝑑𝜏}𝑑𝐹𝑋 𝑗 (𝑥) (5.33)

=

∫
{
∫ 1

0
𝐼 [𝑋𝛽𝑖 ≤ 𝑦]𝑑𝜏}𝑑𝐹𝑋 𝑗 (𝑥). (5.34)

The last equality is based on specification of the conditional quantile model. The
counterfactual outcome distributions are given by:

𝐹𝑌𝑐1 (𝑦) =
∫
{
∫ 1

0
𝐼 [𝑋𝛽𝑚 ≤ 𝑦]𝑑𝜏}𝑑𝐹𝑋 𝑓 (𝑥), (Count. Dist. #1) (5.35)

𝐹𝑌𝑐2 (𝑦) =
∫
{
∫ 1

0
𝐼 [𝑋𝛽 𝑓 ≤ 𝑦]𝑑𝜏}𝑑𝐹𝑋𝑚 (𝑥). (Count. Dist. #2) (5.36)

𝐹𝑐1 represents the counterfactual distribution with male wage structure, with women’s
human capital characteristics. 𝐹𝑐2 represents the counterfactual distribution with
female wage structure, holding men’s human capital characteristics. The differences in
the distributions 𝐹𝑐1 and 𝐹1 provide insight into ‘structural effects’. The differences in
𝐹𝑐2 and 𝐹1 come from differences in the distribution of human capital characteristics;
the ‘composition effects’.

Decomposition methods, at both the mean and distribution level, are now standard
in the graduate economics education (see for example, D. Autor (2015)). Methods for
correcting selection bias is a logical additional to the curriculum.
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Chapter 6
The Wizard of OZ (Opportunity Zones):
Spatial Spillovers in Place-based Programs

Dibya Deepta Mishra, Robin C. Sickles and Yanfei Sun

Abstract The Opportunity Zones (OZ) program, as the largest ongoing place-based
development program in the U.S., was intended to stimulate investment and drive
economic growth in low-income areas by lowering capital gains tax rates. This paper
investigates the spatial spillover effects of the OZ due to their interconnections with
high-income neighboring areas. Using two-way fixed effects, synthetic difference-
in-differences, and spatial difference-in-differences, we study the impact of OZ
on housing prices and nighttime light emissions in the largest state by area in the
continental US, Texas. Our empirical results indicate that census tracts located near
more developed regions exhibit a stronger response to the OZ program due to the
presence of spillover effects. One of the governing factors of these policies is the
number of high-income neighbors. However, they play the role of a double-edged
sword. A large number of high-income neighbors will make the tract in question
not as attractive for investment, even in the presence of tax breaks. This is because
the neighbors will provide higher returns. If a census tract is surrounded by some
high-income neighbors and there is scope of future return, it may provide incentives
for investing. We provide evidence of this trade-off in our paper and also show how
these effects should be considered carefully when designing place-based policies,
especially when providing location-based tax breaks as in the Opportunity Zone
program.
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6.1 Introduction

Much like the Wizard of Oz, whose amazing power and dramatic appearance was
the source of awe and inspiration by all of his subjects, Marc Nerlove shaped the
intellectual perspectives of countless students and colleague in awe of Marc. The
second co-author of this paper was lucky enough to be a Penn colleague of Marc’s
and also worked with him on projects in Brazil and Washington, DC. His intellectual
reach was remarkably broad and intensely deep. His grasp of history, literature,
languages, and the world was humbling. I recall Marc commenting on what he learned
from a relatively young Mario Vargas Llosa with whom he was bunked in a very
distinguished conference for intellectual leaders of different disciplines. Llosa is
credited with developing magical realism as a literary genre. Marc’s contribution was
no less magical. Llosa ultimately won the Nobel Prize in Literature. Marc should
have had the same legacy in Economic Sciences.

We have benefited from Marc Nerlove’s many contributions in our Chapter, from
his care with data, to his use of new applied econometric techniques, to his dedicated
interest in the American economy. His classic work on dynamic panels (Balestra &
Nerlove, 1966) and our work on spatial panels differ in many ways. However, spatial
models are intrinsically dynamic panel models with the subscripts reserved.

Place-based policies have emerged as effective tools for addressing spatial inequal-
ity. These policies involve providing incentives to economically disadvantaged areas to
stimulate investment. One such place-based policy is opportunity zones. For instance,
in 2017, the Tax Cuts and Jobs Act of 2017 (TCJA), introduced the Opportunity
Zone (OZ) program. The primary goal of this initiative was to bolster investment in
low-income areas by reducing tax rates on capital gains. In so doing it was intended to
spur economic growth and job creation within distressed communities. This program
mandated state governors to designate approximately 25% of low-income census
tracts, or tracts adjacent to such areas, as Opportunity Zones eligible for reduced tax
rates.

However, the impact of opportunity zones has been subject to conflicting evidence,
partly due to indications of political considerations influencing the selection of
eligible regions. For example, Eldar and Garber (2020) find that while state governors
often prioritize zones based on distress levels, there is also evidence of favoritism, as
manifested by the allocation of tract status to similarly aligned zones. In the same
vein, Frank, Hoopes and Lester (2022) find that governors are on average 7.6%
more likely to select a census tract as an Opportunity Zone when the tract’s state
representative is a member of the governor’s political party. This complex interplay
makes it challenging to evaluate the true impact of opportunity zones. Consequently,
numerous studies report limited or negligible effects of the program. Nonetheless,
certain studies reveal selective positive impacts of opportunity zones.

For instance, Arefeva, Davis, Ghent and Park (2020) demonstrate that the OZ
designation within the TCJA led to amplified employment growth compared to similar
tracts. This growth was more pronounced in urban areas than in rural ones. Sage,
Langen and Van de Minne (2019) note that while housing prices remained relatively
unaffected by opportunity zones, there was a notable increase in redevelopment and
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vacant land prices. However, it is essential to acknowledge that these changes may be
influenced by factors beyond the scope of the OZ status. Kennedy and Wheeler (2021)
employ tax filings to uncover spatial concentrations of OZ capital, with evidence of
property investments in neighborhoods boasting relatively higher incomes. Moreover,
recent journalistic analysis argues that the TCJA prompted real estate investments
in gentrifying areas that were already experiencing wealth and demographic shifts
(Tankersley, 2021). This highlights the varying sensitivity of different low-income
areas to their OZ classification.

The tax benefit of OZ helps to pool capital from potentially broad geographical
areas and thus is expected to encourage long-term investment in OZs. However, there
are multiple concerns about the OZ program, from the nomination process to its
impact on both designated zones and the nation as a whole. States were required
to submit nominations for OZs to the Treasury Department. However, there is no
detailed and publicly available information from either the federal or state governments
describing all the factors used in choosing OZs from all eligible tracts. Barth, Sun
and Zhang (2021) question whether the chosen OZs were the most appropriate ones
among all the eligible distressed communities, although based on the Government
Accountability Office report (2018) OZs have lower incomes and higher poverty than
other census tracts, as well as a greater share of the non-white population. Some
studies find that political factors play a significant role in OZ designation as the
nomination process provides an opportunity for the governor to reward political allies,
buy voter support, and help business interests. Alm, Dronyk-Trosper and Larkin
(2021) find that census tracts with a higher proportion of representation by Democrats
in the state legislative chamber are negatively associated with qualified Opportunity
Zone designation, and partisan matching increases the likelihood of OZ designation.
The latter finding is also supported by Frank et al. (2022). Eldar and Garber (2020)
find that while state governors select zones based on distress levels, favoritism is an
important consideration in the nomination process, as tracts in counties that supported
the governor in the election are more likely to be chosen as OZs.

Based on the estimation of the Joint Committee on Taxation, OZs would cost $1.6
billion in revenue from 2018 to 2027. GAO (2021) conducted a survey of government
officials across all 50 states, Washington D.C., and five U.S. territories to assess the
effects of the OZ tax incentive. Out of the 56 respondents, only 20 reported a net
positive impact, while 10 claimed a net neutral impact and 5 reported no impact. One
respondent reported a net negative impact, and the remaining 20 were uncertain about
the impact. Similarly, academic research also shows mixed evidence on the impact
of OZs. Interestingly, according to the GAO (2021) report, “[q]ualified Opportunity
Funds are making diverse investments. Nearly all of the fund representatives we
interviewed were investing in projects principally focused on real estate development.”
In that case, OZ should observe an increase in real estate prices. Zillow data shows
that after the selections were announced, OZs experienced a 20% jump in real estate
prices from the previous year. Sage et al. (2019) find a positive price effect of OZ
designation for old commercial properties, such as retail and apartment properties, as
well as vacant land. Similarly, Frank et al. (2022), Pierzak (2021), and Wiley and
Nguyen (2022) also report a higher housing price in OZs. However, while Wiley
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and Nguyen (2022) and Bekkerman, Cohen, Liu, Maiden and Mitrofanov (2021)
find that the OZ program increased real estate prices, it does not have a significant
effect on transaction volume. Alm et al. (2021) suggest that while OZs have had a
positive impact on non-vacant residential property values, the effect on commercial
and vacant property is unclear. In contrast to these findings, Chen, Glaeser and Wessel
(2023) argue that OZs appear to have a negligible impact on housing prices.

In terms of economic activities, Frank et al. (2022) document the positive effects
of OZ designation on building permits and construction employment. Arefeva et
al. (2020) show that the OZ designation increases employment growth relative to
comparable tracts, although it does not create jobs in rural areas. Wheeler (2022)
finds a substantial impact on promoting new real estate development, and the positive
effects extend to surrounding areas. However, Freedman, Khanna and Neumark (2023)
criticize the program, stating that its effects are economically small and generally
statistically indistinguishable from zero. They report that the employment rates of
residents do not change significantly, and while there is a slight increase in average
earnings and local poverty rates, but not statistically significant. Feldman and Corinth
(2023) find that the impact of OZ is very limited, with no increase in investment for
both the number and amount of investment, business activities, or consumer spending
in OZs. Snidal and Li (2022) examine small business and residential loan data and
do not find OZs have had statistically significant effects on business or residential
loan growth.

A potential unintended consequence of OZs that runs counter to their primary
goal of bolstering investment in low-income areas and in so doing possibly mitigate
income inequality by generating economic growth and job creation within distressed
communities, is that OZs could accelerate neighborhood gentrification. As OZs offer
investors a reduction in capital gains tax, investors are more likely to seek high-return
programs or hot areas to invest, e.g. luxury residential high-rises in Houston and
major high-rise residential/luxury retail partnerships in North Miami. This trend
leads to the concentration of capital in already gentrifying areas, rather than the
most distressed ones. Kennedy and Wheeler (2021) use tax filings to demonstrate
that OZ capital is spatially concentrated, and property investments are more likely
in neighborhoods with relatively higher incomes. Notably, they find that 84% of
OZs receive zero OZ capital. Kurban, Otabor, Cole-Smith and Gautam (2022) also
observe that census tracts with positive net migration and lower business vacancy
rates are more likely to receive higher financing.

Given these multiple concerns, efficient allocation of opportunity zone status is
of utmost importance. In this paper, our objective is to provide evidence that this
sensitivity is interconnected with spatial spillovers from neighboring areas. Census
tracts in close proximity to more developed regions or other opportunity zones tend to
respond more dynamically to place-based policies due to the presence of synergistic
effects. To achieve our objective, we begin by estimating the causal treatment impact
of OZ status using a two-way fixed effects approach. However, with place-based
policies, even untreated units can be exposed to treatment if treated units are nearby.
Apart from that the treatment effect is also dependent on nearby infrastructure as it
can help facilitate increases in economic activity.
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Section 2 provides an overview of the program. Section 3 discusses why spatial
spillovers are important, especially within the context of place-based policies, and
how to estimate these effects. Section 4 provides an illustrative model of why direct
and indirect impacts need to be taken into account when considering allocating
subsidies in place-based policies. Section 5 talks about our data and estimation
strategy. We provide a discussion about our results in Section 6 and conclude with
ideas for future extensions in Section 7.

6.2 The Opportunity Zone Program

The Opportunity Zones (OZs) program, established by the Tax Cuts and Jobs Act
of 2017, was designed with the primary objective of catalyzing economic growth
and job creation within distressed communities. This program empowered governors
in each state to nominate 25% of their eligible low-income tracts for designation as
Opportunity Zones. Consequently, numerous low-income communities (LIC) across
the United States were designated as Qualified Opportunity Zones, granting investors
who allocate eligible capital into Qualified Opportunity Zone assets significant capital
gains tax benefits.

The process of selecting these Opportunity Zones initiated with the compilation
of a comprehensive list encompassing all low-income or economically distressed
communities within each state. To be eligible for consideration, tracts were required to
exhibit a poverty rate of at least 20% or possess a median family income not exceeding
80% of the area’s median income. Additionally, a limited allowance was made for the
selection of up to 5% of the designated Opportunity Zones from contiguous tracts that
did not meet the aforementioned criteria but were situated adjacent to a designated
LIC with a median family income no greater than 125% of the adjacent LIC.

Governors in each state subsequently nominated up to 25% of these eligible census
tracts as OZs. Out of a total of 42,160 eligible tracts, 8,764, representing 21% of
the total, were ultimately nominated and subsequently certified. Among these, 8,566
tracts are categorized as LIC tracts, while the remaining 198 are non-LIC contiguous
tracts. Notably, approximately 32 million individuals, equivalent to around 10% of
the entire U.S. population, reside within these designated Opportunity Zone, when
the bill was enacted in 2017.

The OZ tax incentives serve the overarching goal of fostering the development
of Opportunity Zones and reducing their poverty rates. These incentives provide
taxpayers with the opportunity to defer, and in certain cases permanently exclude,
specific gains by investing in a Qualified Opportunity Fund (QOF). Investors can
defer taxes on prior capital gains invested in a QOF until either the date of the QOF
investment’s sale, exchange, or December 31, 2026, provided that all or a portion of
the gains are reinvested within 180 days in QOFs.

Additionally, if taxpayers retain investments in QOFs for at least five years, there is
a 10% exclusion of the deferred gain, thereby reducing the tax liability to 90% of the
rolled-over capital gains. For investments held for at least seven years, an additional
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5% exclusion applies. Consequently, investors who want to benefit from the full 15%
tax exclusion must invest in QOFs by 2024 to secure the initial 10% exclusion and by
2031 to claim the additional 5% exclusion.

Crucially, investors who maintain investments in QOFs for a minimum of ten
years can permanently exclude capital gains taxes on any profits derived from these
investments. Those planning to shelter their gains for the entire decade can do so
until June 28, 2027, with the proposed regulations suggesting that QOFs can retain
these sheltered funds through 2047.

In our analysis, we focus on the state of Texas. Texas is an ideal setting to explore
the heterogeneous impact of opportunity zones. It is the largest state in the contiguous
United States with an area of approximately a quarter million square miles, making it
larger than many countries (Texas is 20% larger than France). Apart from that, there
is significant inequality in Texas even though the situation has improved somewhat in
recent years (Fisher & Smeeding, 2016). Spatial inequalities are also quite rife in
Texas, with 83.7% of the population residing in urban areas and 25% living in the
state’s five largest cities, according to 2020 Census data. Hence, spatial agglomeration
effects should play a large role in the effect of heterogeneous impact of opportunity
zones.

In the state of Texas, the second-largest state in the USA by both land area and
population, there exist a total of 5,265 census tracts, of which 3,190 are deemed
eligible tracts. The office of Texas Governor Greg Abbott designated 628 census tracts
as Opportunity Zones, with all of these tracts classified as low-income. In the selection
process, Texas emphasized specific criteria, including chronic unemployment, recent
natural disasters within the past two years, and low population density, identifying
these factors as “significant economic disruptors” likely to benefit from economic
stimulus.

Figure 6.1 provides details on all the census tracts in Texas where we identify
the opportunity zones, eligible census tracts that were not OZs, and tracts that were
not eligible for the OZ program. Figure 6.2 shows the distribution of high income
neighbors in Texas for every census tract, where the high income designation comes
from the definition of the same from the US Treasury.
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Fig. 6.1: Opportunity Zones in Texas

Data source: U.S. Census Bureau (2017); U.S. Department of the Treasury (2018).

Fig. 6.2: High Income Neighbors in Texas
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Data source: U.S. Census Bureau (2017).
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6.3 Spillover Effects

The effect of location of factors of production, pioneered by Krugman (1991), posits
that economic activity will be spatially distributed, resulting in a core-periphery
structure. This implies the presence of agglomeration effects. In this case, the
Opportunity Zone program’s effect could be mediated by how close the opportunity
zone is to the core of economic activities. For example, any manufacturing activity
would be ineffective in the absence of transport networks that move raw materials and
produced goods in and out of the facility. Hence, the effectiveness of any place-based
policy would be mediated by agglomeration effects and would result in spatial
spillovers.

Spatial spillovers as peer effects (Manski, 1993; Goldsmith-Pinkham & Imbens,
2013) have been well-studied in trade (Donaldson & Hornbeck, 2016), health (Kosfeld,
Mitze, Rode & Wälde, 2021), education (Li, Sickles & Williams, 2020; Barrios-
Fernández, 2023) as well as in the urban economics literature (Butts, 2021, Figueroa-
Armijos & Johnson, 2016,Dubé, Legros, Thériault & Des Rosiers, 2014,Heckert,
2015,Sunak & Madlener, 2014). We use methods from both the two-way fixed effects
literature and synthetic difference-in-differences methods to identify spatial spillover
effects. We posit that census tracts that are classified as higher income are more likely
to be the core of economic activity and have spatial agglomeration effects. Hence,
opportunity zones that are closer to a larger number of high-income census tracts
will have greater returns to investment as they can take advantage of the positive
spillovers. Hence, accounting for these spillovers when deciding which census tracts
to classify as opportunity zones could lead to better outcomes.

Given the spatial and temporal variation in the OZ program, the difference-
in-differences method is quite apt for evaluating the effect of granting OZ status
on economic activity. Note that the difference-in-differences estimator provides
the treatment effect on the outcomes by comparing outcomes before and after the
treatment date and between units that were exposed to treatment and units that
were not exposed to treatment. Formally, the TWFE estimator identifies the Average
Treatment Effect under the assumptions of correct linear specification, homogeneous
treatment, parallel trends, ignorability, and stable unit treatment value assumption
(SUTVA). However, note that in the case of place-based policies, such as the OZ
program, even if a census tract was not classified as an opportunity zone, there
might be spatial spillovers from treated zones nearby due to agglomeration effects as
discussed above. This would violate the SUTVA assumption and thus the potential
outcomes for an untreated census tract could be related to the presence of treated
status nearby, biasing estimates of the treatment effects were this spatial correlation
not addressed. Hence, we need to modify the base TWFE model to identify these
effects.

There have been some relatively recent papers that model and estimate spatial
spillover effects. Among these, Butts (2021) shows that when the effect of treatment
units cross over borders, TWFE produces biased estimates. He provides a semi-
parametric approach to estimate the spillover effects of place-based policies. Delgado
and Florax (2015) develop an estimator for spatial data that allows for local spatial
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interaction in potential outcomes, which helps identify direct and indirect treatment
effects. Specifically, they modify the standard TWFE model 𝑦𝑖𝑡 = 𝛼0+𝛼1𝑋𝑖𝑡 +𝛼2𝐷𝑖𝑡 +
𝛼3𝑇𝑖𝑡 +𝛼4𝐷𝑖𝑡𝑇𝑖𝑡 + 𝜀𝑖𝑡 where 𝐷𝑖𝑡 = 1 indicates treatment status, and 𝑇𝑖𝑡 = 1 indicates
pre-post classification. The spatial difference-in-differences model they posit models
the effect of treatment spillovers as 𝑦 = 𝛼0+𝛼1𝑋 +𝛼2𝐷+𝛼3𝑇 +𝛼4𝐷 ◦𝑇 +𝛼5𝑊𝐷 ◦𝑇 +𝜀
where𝑊 is the network matrix.

In this paper, we start by estimating a standard TWFE model. Then we augment the
model by adding interactions of the treatment status with the number of high-income
neighbors near the census tract to model agglomeration effects. We then estimate a
spatial difference-in-differences model similar to Delgado and Florax (2015) and then
utilize a synthetic difference-in-differences approach to identify spatial spillovers.

6.4 Importance of Indirect Effects for Optimal Allocation

Let 𝑁𝑖 represent the set of all census tracts and 𝑖, 𝑗 ∈ 𝑁𝑖 represent two arbitrary census
tracts. Let 𝑑𝑖 𝑗 = 1 denote the presence of a geographic/business link between 𝑖 and 𝑗
and let 𝑑𝑖 𝑗 = 0 otherwise. 𝑂𝑍𝑖 represents an indicator for whether census tract 𝑖 was
designated as an opportunity zone. Let 𝜃 represent the direct economic effects of a
census track being given opportunity zone status, 𝛿ℎ represent the indirect economic
effects of a high income neighbor, and 𝛿𝑙 represent the indirect economic effects of a
low income neighbor. Then the net effect on census tract i being designated as an
opportunity zone is given by

𝜃𝑂𝑍𝑖 +
∑︁
𝑗

[
𝛿ℎ𝑑𝑖 𝑗1

(
𝑥 𝑗 = ℎ

)
𝑂𝑍𝑖 + 𝛿𝑙𝑑𝑖 𝑗1

(
𝑥 𝑗 = 𝑙

)
𝑂𝑍𝑖

]
,

where 𝑥 𝑗 represents whether a census tract is high income or not.
The net impact of the program is given by∑︁

𝑖

[
𝜃𝑂𝑍𝑖 +

∑︁
𝑗

[
𝛿ℎ𝑑𝑖 𝑗1

(
𝑥 𝑗 = ℎ

)
𝑂𝑍 𝑗 + 𝛿ℓ𝑑𝑖 𝑗1

(
𝑥 𝑗 = ℓ

)
𝑂𝑍 𝑗

] ]
.

Hence, an optimal allocation is given by

max
𝑂𝑍

∑︁
𝑖

[
𝜃𝑂𝑍𝑖 +

∑︁
𝑗

[
𝛿ℎ𝑑𝑖 𝑗1

(
𝑥 𝑗 = ℎ

)
𝑂𝑍 𝑗 + 𝛿𝑙𝑑𝑖 𝑗1

(
𝑥 𝑗 = ℓ

)
𝑂𝑍 𝑗

]
.

Based on the previous equation, both direct and indirect impacts are important and
need to be considered when we are thinking of the Opportunity Zone allocation and
the effectiveness of the Opportunity Zone program.
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6.5 Data and Empirical Strategy

We combine data from multiple sources to analyze the effect that designation of
Opportunity Zones status has on economic activity. To begin, we derived our initial
list of eligible Census Tracts from the US Department of Treasury. Subsequently, we
obtained low income and high income designations through data sourced from the
Census Bureau. We augmented data on census tracts by incorporating demographic
data collected during the span of 2013 to 2022 from the American Community
Services surveys. This allows us to control for different demographic trends in census
tracts during the analysis period.

We proxy investment levels within each Census Tract using two distinct metrics.
The first metric is the Housing Price Index, which offers a comprehensive monthly-
level evaluation of single-family housing price fluctuations within census tracts. We
use data from Zillow’s house price index. Since those indices are available at a
zipcode level we required a cross-walk to analyze data at a census tract level.

Complementing our first investment proxy, we use Nightlights data from the
National Oceanic and Atmospheric Administration (NOAA) as our second metric.
Using an annual-level nightlight raster file, we calculated both the mean and median
nightlight intensities within each designated Census Tract. The nightlights data set has
been widely used as a measure of economic activity (Gibson, Olivia & Boe-Gibson,
2020). We create a census tract year panel of nightlight intensity fluctuations. The
nightlights index is a reliable measure of commercial economic development and
provides a highly sensitive measure of economic development. This is because an
increase in nightlights is immediately visible since it is measured continuously as
compared to other measures of growth, which are not continuously measured.

We use these distinct metrics as outcome variables to measure the economic
activity in census tracts. For our estimation, we restrict attention to only the census
tracts that were eligible to be classified as opportunity zones. We do this since
non-eligible census tracts are demographically different from eligible census tracts as
seen in Table 6.1.
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Table 6.1: Summary Statistics

OZ Eligible Non-OZ All

Area in Sq. mi. 24.052 15.431 16.825 17.535

(50.919) (102.240) (97.007) (93.514)

Estimated Total Population 4,850.634 5,051.156 5,455.968 5396.535

(2356.951) (2425.942) (3092.843) (3033.649)

Estimated Unemployment 10.932 8.209 5.991 6.476

(5.515) (4.235) (16.332) (15.674)

Per capita Income 17,771.456 19,651.754 29,885.969 28,696.544

(6745.084) (7863.279) (17699.410) (17319.350)

Proportion of people above 65 11.633 10.983 11.523 11.534

(5.295) (5.255) (17.118) (16.340)

Proportion of people under 17 27.131 27.000 25.746 25.882

(7.175) (6.850) (6.691) (6.752)

SVI Index 9.394 8.730 6.407 6.700

(1.567) (1.813) (22.714) (21.593)

Poverty Rate 28.884 25.091 15.882 17.159

(11.422) (12.072) (25.995) (25.241)

Observations 432 2,521 3,968 4,400

This table presents the mean and standard deviations of the use for each menstruation
management method among women aged 15-24 for both rounds of NFHS.
Data source: U.S. Census Bureau (2017).

6.5.1 Two-way fixed effects (TWFE)

We start by estimating a TWFE model 𝑦𝑖𝑡 = 𝛽0 + 𝛽11{𝑡 > Jun 2017} + 𝛽21{𝑖 𝑖𝑠 𝑜𝑧} +
𝛽31{𝑡 > Jun 2017}×1{𝑖 𝑖𝑠 𝑜𝑧} + 𝑍 ′

𝑖
𝛿+ 𝜖𝑖𝑡 where 𝑖 indexes a tract and 𝑡 indexes a year.

𝑦 is the outcome variable and 𝑍𝑖 are census tract level controls. We cluster at the
county level.

We first present the effect of being classified as an opportunity zone on the housing
price index and the change in the housing price index. We report only 𝛽3 from the
previous equation as that is the parameter of interest. The results are shown in Table
6.2. We find a small effect on the growth of the housing price index. However, there
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is no statistically significant effect of being classified as an opportunity zone on the
housing price index. This is consistent with previous findings, for example, Chen et
al. (2023), which suggest minimal effects of being classified as an opportunity zone.

Table 6.2: Effect of the Opportunity Zone Program on Housing Price Index

Dep Var Hindex Growth Hindex

post × OZ 0.000 -4.720**

(0.002) (2.321)

Observations 17,647 17,647

𝑅2 0.243 0.517

We use data between 2014-2022. post is an indicator variable that takes a value of 1 after the
year 2017. OZ is an indicator that takes a value of 1 for any tract that is an opportunity zone. We
also restrict our analysis to census tracts that were eligible for being an opportunity zone.

6.5.2 Spatial difference-in-differences

Given our discussion on spatial agglomeration, there are two possible spatial treatment
effects. The first is the effect of nearby infrastructure on the outcome variables. This
would differ by treatment status. The second spillover effect would be the effect
on a census tract due to proximity to treated census tracts. This is regardless of
the treatment status of the census tract in question. To disentangle these effects
as a function of having access to infrastructure nearby, we first use interactions
to motivate our reasoning, which we then examine more formally with a spatial
difference-in-differences and synthetic difference-in-differences model.

We use a Geographic Information System (GIS) to create a variable that indicates
the number of high income neighbors of a given census tract. The high income
classification is based on the same criteria as the Opportunity Zone program. We then
interact this variable with 1{𝑡 > 𝑡 > Jun 2017} ×1{𝑖 𝑖𝑠 𝑜𝑧} in the previous equation.
We report the parameter on 1{𝑡 > 𝑡 > Jun 2017}×1{𝑖 𝑖𝑠 𝑜𝑧} as well as the interaction
parameter in Table 6.3. We find that there is a statistically significant effect of having
a larger number of high income neighbors on the housing index growth. However,
there are no significant effects on the housing price index. In Table 6.4 we estimate a
similar model but interact 1{𝑡 > 𝑡 > Jun 2017} ×1{𝑖 𝑖𝑠 𝑜𝑧} with the quartiles of the
number of high income neighbors as compared to a continuous variable. We find
similar results that show that tracts that were classified as opportunity zones had
higher housing price effects if they had high income neighbors.

We detect similar patterns with nightlights data as well as Tables 6.5,6.6 and 6.7
make clear.
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Table 6.3: Effect of the Opportunity Zone Program on housing price index interacted
with high income neighbors

Dep Var Hindex growth Hindex

post × OZ -0.008*** -5.099

(0.003) (4.996)

post × OZ × Proportion HighIncome Neighbors 0.021*** -1.049

(0.008) (10.004)

𝑅2 0.255 0.542

Observations 17,647 17,647

We use data between 2014-2022. Post is an indicator variable that takes a value of 1 after the
year 2017. OZ is an indicator that takes a value of 1 for any tract that is an opportunity zone.
We also restrict our analysis to census tracts that were eligible for being an opportunity zone.
We interact post × OZ with a continuous variable, which is equal to the number of high income
neighbors of a given census tract. The high income classification is based on the same criteria
as the Opportunity Zone program.

Table 6.4: Effect of the Opportunity Zone Program on housing price index interacted
with high income neighbors (Quartiles)

Dep Var Hindex growth Hindex

post × OZ -0.004* -2.648

(0.002) (4.075)

post × OZ × high income neighbors(2) -0.000 -4.577

(0.005) (5.453)

post × OZ × high income neighbors(3) 0.016*** -6.671

(0.005) (5.589)

post × OZ × high income neighbors(4) 0.011* 3.764

(0.007) (6.991)

𝑅2 0.255 0.541

Observations 17,647 17,647

We use data between 2014-2022. Post is an indicator variable that takes a value of 1 after the
year 2017. OZ is an indicator that takes a value of 1 for any tract that is an opportunity zone.
We also restrict our analysis to census tracts that were eligible for being an opportunity zone.
We interact post × OZ with quartiles of the number of high income neighbors of a given census
tract. The high income classification is based on the same criteria as the Opportunity Zone
program.
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Table 6.5: Effect of the Opportunity Zone Program on nightlights

Dep Var NL Growth Mean NL

post × OZ 0.676 -0.053

(0.448) (0.159)

𝑅2 0.198 0.371

Observations 21,917 25,048

We use data between 2014-2022. Post is an indicator variable that takes a value of 1 after the
year 2017. OZ is an indicator that takes a value of 1 for any tract that is an opportunity zone.
We also restrict our analysis to census tracts that were eligible for being an opportunity zone.

Table 6.6: Effect of the Opportunity Zone Program on nightlights interacted with
high income neighbors

Dep Var NL Growth Mean NL

post × OZ 4.485*** 0.015

(0.999) (0.277)

post × OZ × Proportion HighIncome Neighbors -9.329*** -0.058

(2.343) (0.520)

𝑅2 0.201 0.375

Observations 21,917 25,048

We use data between 2014-2022. Post is an indicator variable that takes a value of 1 after the
year 2017. OZ is an indicator that takes a value of 1 for any tract that is an opportunity zone.
We also restrict our analysis to census tracts that were eligible for being an opportunity zone.
We interact post × OZ with a continuous variable, which is equal to the number of high income
neighbors of a given census tract. The high income classification is based on the same criteria
as the Opportunity Zone program.
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Table 6.7: Effect of the Opportunity Zone Program on nightlights interacted with
high income neighbors (Quartiles)

Dep Var NL Growth Mean NL

post × OZ 2.595*** -0.171

(0.688) (0.219)

post × OZ × high income neighbors(2) -2.062** 0.058

(1.016) (0.445)

post × OZ × high income neighbors(3) -4.157*** 0.854***

(1.220) (0.320)

post × OZ × high income neighbors(4) -4.774** -0.671

(2.209) (0.412)

R sq 0.200 0.382

Observations 21,917 25,048

We use data between 2014-2022. Post is an indicator variable that takes a value of 1 after the
year 2017. OZ is an indicator that takes a value of 1 for any tract that is an opportunity zone.
We also restrict our analysis to census tracts that were eligible for being an opportunity zone.
We interact post × OZ with quartiles of the number of high income neighbors of a given census
tract. The high income classification is based on the same criteria as the Opportunity Zone
program.

6.5.3 Synthetic difference-in-differences and Results

Although it is not clear how systematically the allocation mechanism is actually
implemented, one can certainly question its randomness. As we have pointed out
earlier, the designation of a census track as an OZ is influenced by a number of
factors, the most important being political ones (Eldar & Garber, 2020) and these
might bias the estimated treatment effects. To illustrate this we show the variation
in both the housing price index and nightlights as well as their yearly growth with
respect to opportunity zone status.
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Fig. 6.3: Housing Prices by year
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Fig. 6.4: Housing Prices growth by year

Data source: Contat and Larson (2022)
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Fig. 6.5: Mean Nightlights by year
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Fig. 6.6: Nightlights growth by year

Data source: National Oceanic and Atmospheric Administration (2022)
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These apparent differences between eligible non-OZ and OZ census tracts would
suggest that in an alternative method that is robust against possible non-random
allocation would be helpful in order to provide a check against the standard benchmark
TWFE. Hence, we use a synthetic difference-in-differences approach, where for
each treatment unit, we compare the outcome variable with a synthetic unit that
closely matches the pre trends in outcome and is similar to the treatment unit in
other variables (Arkhangelsky, Athey, Hirshberg, Imbens & Wager, 2021). Synthetic
difference-in-differences is a methodology that was developed to address these
challenges by using statistical techniques to create a synthetic control group that
closely matches the characteristics of the treatment group in the pre-treatment period.
The synthetic control group is constructed by combining information from multiple
control units that have similar pre-treatment outcomes and characteristics to the
treatment unit.

The approach involves estimating the counterfactual outcome that would have
been observed for the treatment group in the absence of the policy or intervention,
by comparing the change in outcomes for the treatment group with the change in
outcomes predicted by the synthetic control group. Specifically, consider a balanced
panel with 𝑁 units and 𝑇 time periods, where the outcome for unit 𝑖 in period 𝑡
is denoted by 𝑌𝑖𝑡 , and exposure to the binary treatment is denoted by 𝑊𝑖𝑡 ∈ {0,1}.
Suppose moreover that the first 𝑁𝑐𝑜 (control) units are never exposed to the treatment,
while the last 𝑁𝑡𝑟 = 𝑁 − 𝑁𝑐𝑜 (treated) units are exposed after time 𝑇pre .

1 The
synthetic control method begins by finding weights �̂�sdid that align pre-exposure
trends in the outcome of unexposed units with those for the exposed units, e.g.,∑𝑁𝑐𝑜
𝑖=1 �̂�

sdid
𝑖

𝑌𝑖𝑡 ≈ 𝑁−1
𝑡𝑟

∑𝑁
𝑖=𝑁𝑐𝑜+1𝑌𝑖𝑡 for all 𝑡 = 1, . . . ,𝑇pre . Time weights �̂�sdid

𝑡 that
balance pre-exposure time periods with postexposure ones (see Section I for details)
are then established. These weights are then used in a basic two-way fixed effects
regression to estimate the average causal effect of exposure (denoted by 𝜏) :2(

𝜏sdid , �̂�, �̂�, 𝛽
)
= argmin
𝜏,𝜇,𝛼,𝛽

{
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1
(𝑌𝑖𝑡 − 𝜇−𝛼𝑖 − 𝛽𝑡 −𝑊𝑖𝑡𝜏)2 �̂�sdid

𝑖 �̂�sdid
𝑡

}
.

In comparison, DID estimates the effect of treatment exposure by solving the same
two-way fixed effects regression problem without either time or unit weights:(

𝜏did , �̂�, �̂�, 𝛽
)
= argmin
𝛼,𝛽,𝜇,𝜏

{
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1
(𝑌𝑖𝑡 − 𝜇−𝛼𝑖 − 𝛽𝑡 −𝑊𝑖𝑡𝜏)2

}
.

Hence, synthetic difference-in-differences is able to capture ATT even in the
absence of parallel trends.
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6.5.3.1 Effect on Housing

Table 6.8: Effect of the Opportunity Zone Program — Synthetic Difference-in-
Differences

Control Pool Eligible census tracts All Census Tracts

Dep Var HPI HPI Growth HPI HPI Growth

OZ 1.867 0.007*** 5.752*** 0.008***

(1.217) (0.002) (1.30) (0.002)

We use data between 2013-2021. We use synthetic difference-in-differences. In the first column,
the synthetic control pool is restricted to eligible census tracts only, and in the second column,
we allow for the synthetic controls to be created from all the census tracts. OZ is an indicator
for treatment. The standard errors are in brackets.

Table 6.9: Effect of the having more high income neighbors

Control Pool Opportunity Zones

Dep Var HPI HPI Growth

hinc -16.9*** -0.043***

(4.93) (0.004)

We use data between 2013-2021. We use synthetic difference-in-differences. We restrict the
analysis to opportunity zones and compare census tracts, which have more than median high
income neighbors to census tracts that have less than median high income neighbors. The ATT
estimated is the effect of having more than median high income neighbors. The standard errors
are in brackets.
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6.5.3.2 Effect on Nightlights

Table 6.10: Effect of the Opportunity Zone Program — Synthetic Difference-in-
Differences

Control Pool Eligible census tracts All Census Tracts

Dep Var Mean Nighlights Nightlights Growth Mean Nighlights Nightlights Growth

OZ 0.05 0.15 -0.01 0.026

(0.118) (0.270) (0.137) (0.291)

We use data between 2013-2021. We use synthetic difference-in-differences. In the first column,
the synthetic control pool is restricted to eligible census tracts only, and in the second column,
we allow for the synthetic controls to be created from all the census tracts. OZ is an indicator
for treatment. The standard errors are in brackets.

Table 6.11: Effect of the having more high income neighbors

Control Pool Opportunity Zones

Dep Var Mean Nighlights Nightlights Growth

hinc 1.36*** 2.10***

(0.517) (0.362)

We use data between 2013-2021. We use synthetic difference-in-differences. We restrict the
analysis to opportunity zones and compare census tracts, which have more than median high
income neighbors to census tracts that have less than median high income neighbors. The ATT
estimated is the effect of having more than median high income neighbors. The standard errors
are in brackets.

6.5.4 Spatial difference-in-differences

6.5.4.1 Nightlights Data

To examine the impact of Opportunity Zone (OZ) designations on economic activity,
we employed nightlight intensity as a proxy for economic growth. A spatial weights
matrix was created based on contiguity, capturing geographical proximity for the
year 2019. This matrix allows us to account for spatial dependencies that might
influence the outcomes in neighboring census tracts. The data was structured as a
panel, enabling us to track changes over time and apply spatial panel regressions. We
performed a series of spatial regression analyses using the spxtregress command,
where the dependent variable was the logged mean nightlight intensity. We included
interaction terms between the OZ designation and a post-2017 indicator to capture
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any differential effect of the OZ policy after its implementation. These models also
controlled for various socioeconomic factors and spatial dependencies, ensuring that
the estimated effects of the OZ designation are robust to potential confounding factors
related to geographic location and neighboring tract influences.

Table 6.12: Effect on Nightlights using a spatial regression framework

mean nl nlgorwth mean nl nlgrowth

AREA SQMI -0.000 0.007 -0.000 0.013

(0.000) (0.012) (0.000) (0.010)

E TOTPOP -0.000*** -0.006*** -0.000*** -0.002***

(0.000) (0.000) (0.000) (0.000)

EP UNEMP -0.000 0.314 0.000** 0.655***

(0.000) (0.205) (0.000) (0.168)

EP PCI -0.000*** -0.000** 0.000*** 0.002***

(0.000) (0.000) (0.000) (0.000)

EP AGE65 0.000 -0.227 -0.000*** -0.692***

(0.000) (0.198) (0.000) (0.162)

EP AGE17 0.000*** -0.185 -0.000 -0.915***

(0.000) (0.196) (0.000) (0.160)

SPL THEMES 0.000 -0.502*** -0.000 -0.551***

(0.000) (0.156) (0.000) (0.128)

EP POV -0.000 0.436*** 0.000 0.494***

(0.000) (0.134) (0.000) (0.110)

Designated=1 -0.001 -0.961 0.002** 11.163***

(0.001) (3.907) (0.001) (3.380)

post=1 -0.003*** 16.420*** 0.015*** 62.346***

(0.000) (0.249) (0.001) (0.491)

Designated=1 × post=1 0.002** 2.748*** -0.001 0.772

(0.001) (0.595) (0.001) (0.535)

Constant 0.028*** 102.018*** 0.037*** 120.144***

(0.002) (7.583) (0.001) (6.244)

Growth 0.852*** 0.847***

(0.005) (0.004)

Index 0.868*** 0.981***

(0.003) (0.002)
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Table 6.12: Cont’d — Effect on Nightlights using a spatial regression framework

mean nl nlgorwth mean nl nlgrowth

Designated=1 -0.022*** -93.472***

(0.002) (7.379)

post=1 -0.023*** -61.611***

(0.001) (0.579)

Designated=1 × post=1 0.012*** -0.522

(0.003) (1.132)

EP PCI -0.000*** -0.004***

(0.000) (0.000)

𝜎𝑢 0.013*** 72.101*** 0.005*** 58.791***

(0.000) (0.788) (0.000) (0.634)

𝜎𝑒 0.029*** 15.375*** 0.029*** 12.520***

(0.000) (0.069) (0.000) (0.056)

N 30,800 30,800 30,800 30,800

6.5.4.2 Housing Price Analysis

In addition to nightlight intensity, we analyzed the impact of OZ designations on
housing prices using data from the Federal Housing Finance Agency (FHFA). The
analysis focused on two main outcomes: the Housing Price Index (HPI) and the
rate of housing price appreciation. We utilized a similar approach to the nightlight
analysis, creating a spatial weights matrix for the year 2019 to account for spatial
dependencies between census tracts. Spatial panel regressions were conducted to
assess the relationship between OZ status and housing prices, controlling for key
economic variables, such as income, unemployment, and population characteristics.
Interaction terms were included to test whether the effects of OZ designation on
housing prices differed before and after the policy’s implementation in 2017. By
incorporating these spatial dependencies and interaction effects, our analysis provides
a more nuanced understanding of how OZs might influence local housing markets,
particularly in terms of price growth and regional disparities.

Table 6.13: Effect of the Opportunity Zone Program on housing price index using
Spatial Regression Framework

Growth Index Growth Index

AREA SQMI -0.000 0.007 -0.000 0.013

(0.000) (0.012) (0.000) (0.010)
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Table 6.13: Cont’d — Effect of the Opportunity Zone Program on housing price
index using Spatial Regression Framework

Growth Index Growth Index

E TOTPOP -0.000*** -0.006*** -0.000*** -0.002***

(0.000) (0.000) (0.000) (0.000)

EP UNEMP -0.000 0.314 0.000** 0.655***

(0.000) (0.205) (0.000) (0.168)

EP PCI -0.000*** -0.000** 0.000*** 0.002***

(0.000) (0.000) (0.000) (0.000)

EP AGE65 0.000 -0.227 -0.000*** -0.692***

(0.000) (0.198) (0.000) (0.162)

EP AGE17 0.000*** -0.185 -0.000 -0.915***

(0.000) (0.196) (0.000) (0.160)

SPL THEMES 0.000 -0.502*** -0.000 -0.551***

(0.000) (0.156) (0.000) (0.128)

EP POV -0.000 0.436*** 0.000 0.494***

(0.000) (0.134) (0.000) (0.110)

Designated=1 -0.001 -0.961 0.002** 11.163***

(0.001) (3.907) (0.001) (3.380)

post=1 -0.003*** 16.420*** 0.015*** 62.346***

(0.000) (0.249) (0.001) (0.491)

Designated=1 × post=1 0.002** 2.748*** -0.001 0.772

(0.001) (0.595) (0.001) (0.535)

Constant 0.028*** 102.018*** 0.037*** 120.144***

(0.002) (7.583) (0.001) (6.244)

Growth 0.852*** 0.847***

(0.005) (0.004)

Index 0.868*** 0.981***

(0.003) (0.002)

Designated=1 -0.022*** -93.472***

(0.002) (7.379)

post=1 -0.023*** -61.611***

(0.001) (0.579)

Designated=1 × post=1 0.012*** -0.522
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Table 6.13: Cont’d — Effect of the Opportunity Zone Program on housing price
index using Spatial Regression Framework

Growth Index Growth Index

(0.003) (1.132)

EP PCI -0.000*** -0.004***

(0.000) (0.000)

𝜎𝑢 0.013*** 72.101*** 0.005*** 58.791***

(0.000) (0.788) (0.000) (0.634)

𝜎𝑒 0.029*** 15.375*** 0.029*** 12.520***

(0.000) (0.069) (0.000) (0.056)

N 30,800 30,800 30,800 30,800

6.6 Discussion

Our empirical analysis reveals several interesting patterns in the impact of Opportunity
Zones. The most striking finding is the differential effect across our two key outcome
measures: while we observe no statistically significant effects of OZ designation on
nightlight intensity, we find substantial and statistically significant effects on housing
prices. This provides an important insight into how place-based policies manifest in
different dimensions of economic activity.

The effects of housing price demonstrate that the OZ designation is effective in
attracting capital investment, particularly in the real estate sector. The statistically
significant positive effect on housing prices suggests that investors are responding to
the tax incentives provided by the program. This aligns with the program’s design,
which offers capital gains tax benefits that are particularly attractive for real estate
investment. However, it is crucial to note that this price appreciation could have
ambiguous welfare implications - while it benefits property owners, it might accelerate
gentrification and potentially displacement of existing residents.

In contrast, the lack of significant effects on nightlight intensity - our proxy
for general economic activity - suggests that the program has not yet generated
substantial changes in overall economic vitality. This finding is particularly meaningful
because nightlight intensity serves as a high-frequency indicator of economic activity,
capturing not only residential development but also commercial and industrial activity.
The absence of effects here suggests that while OZ designation may be successful
in attracting real estate investment, it has not yet catalyzed broader economic
transformation.

A particularly novel contribution of our analysis emerges in the spatial dimension
of these effects. Among designated OZs, we find that census tracts with more
high-income neighbors exhibit significantly larger positive changes in nightlight
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levels and growth. This spatial pattern reveals an important mechanism in how place-
based policies operate: the effectiveness of these policies appears to be amplified by
proximity to existing economic activity. This finding has important implications for
policy design, suggesting that the success of place-based interventions may depend
critically on the economic geography of the targeted areas.

This spatial heterogeneity is evident in our regression results, where the interaction
between the designation of OZ and the presence of high-income neighbors consistently
shows positive and significant effects. Specifically, tracts in the third quartile of
high-income neighbors show a 0.016 percentage point increase in housing price
growth, while those in the fourth quartile show a 0.011 percentage point increase.
These effects are economically meaningful and suggest that the benefits of the OZ
designation are not uniformly distributed, but rather concentrate in areas with stronger
existing economic links.

The spatial heterogeneity of our findings suggests an important policy trade-off.
Although designing OZs near high-income areas can maximize the impact of the
program on economic activity, this approach might not best serve the program’s
stated goal of developing economically distressed communities. Our findings indicate
that the most disadvantaged areas, those with fewer high-income neighbors, see more
limited benefits from the program.

Our use of both synthetic difference-in-differences and spatial regression frame-
works provides robust evidence for these patterns. The spatial regression results, in
particular, help disentangle direct effects from spillover effects, showing that both the
designation itself and the economic characteristics of neighboring areas matter for
program outcomes. The synthetic control results further validate these findings while
addressing potential selection concerns in OZ designation.

These results contribute to the broader literature on place-based policies by
highlighting the importance of spatial context in policy effectiveness. Although
previous research has focused primarily on direct effects of such policies, our findings
demonstrate that the spatial distribution of economic activity plays a crucial role in
mediating policy impacts. This suggests that future place-based policies might benefit
from explicitly considering spatial relationships in their design and implementation.

6.7 Conclusion

In this paper, we present evidence of spatial spillovers in outcomes related to place-
based policies. One of the governing factors of these policies is the number of
high-income neighbors. However, they play the role of a double edged sword. A large
number of high-income neighbors will make the tract in question not as attractive for
investment, even in the presence of tax breaks. This is because the neighbors will
provide higher returns. However, if a census tract is surrounded by some high-income
neighbors who are also eligible and there is scope of future return, it might provide
incentives for investing.
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We provide evidence of this trade-off in our paper and also show how these effects
should be considered carefully when designing place-based policies, especially when
providing location-based tax breaks as in the Opportunity Zone program. There are
several interesting extensions to our paper. Some notable ones imply using a structural
model to identify endogenous networks as in De Paula, Rasul and Souza (2019) and
extending our analysis to more outcomes.
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joint research with us before his untimely death in 2023.
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De Paula, Á., Rasul, I. & Souza, P. (2019). Identifying network ties from panel data:
theory and an application to tax competition. https://arxiv.org/abs/1910.07452.
arXiv preprint.

Donaldson, D. & Hornbeck, R. (2016). Railroads and american economic growth:
A “market access” approach. The Quarterly Journal of Economics, 131(2),
799–858.
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Chapter 7
On the Estimation of Forecaster Loss Functions
Using Density Forecasts

Kajal Lahiri, Fushang Liu and Wuwei Wang

Abstract We suggest a novel approach to use density forecasts from surveys to
identify asymmetry in forecaster loss functions. We show that we can calculate the
loss function parameters for Lin-Lin and Quad-Quad loss functions based on the first
order condition of forecast optimality. Since forecasters form their point forecasts
based on what they believe to be the data generating processes and their loss functions,
we can reverse this process and learn about forecaster loss functions by comparing
their point forecasts and density forecasts for the same target. The advantage of this
method is that we can relax the two assumptions needed in Elliott, Komunjer and
Timmermann’s (2008) GMM method: the point forecasts and density forecasts need
not to be rational and the loss function parameters need not to be constant over time.
Moreover, we do not need to know the actual values of the target variable. This
method is applied to density forecasts for annual real output growth and inflation
obtained from the Survey of Professional Forecasters (SPF) during 1968-2023. We
find that forecasters treat underprediction of real output growth more dearly than
overprediction, reverse is true for inflation.

7.1 Introduction

Rationality tests using point forecasts are usually conducted under the assumption
of mean squared error (MSE) loss function. Under this assumption, rational point
forecasts should be unbiased, and one period forecast errors should be serially
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uncorrelated. Nerlove (1983), in his pioneering work on the dynamics and optimality
of expectations data, has left an indelible mark on the profession. Recently, attention
has been devoted to asymmetric loss functions, which are more realistic in many
real-life situations. Properties of optimal forecasts under these loss functions have
been established and it has been shown that traditional rationality tests based on least
square regressions are invalid.1

Alternative rationality tests under asymmetric loss have been proposed. For
example, Batchelor and Peel (1998) use an ARCH-M model to test rationality of
forecasts under a popular loss function – the linear/exponential (Linex) loss. One
implicit assumption of this model is that the loss function parameters are constant
over time. Granger (1969) points out that loss functions could depend on other
variables or the state of the economy, such as the phase of the business cycle or
real GDP growth. Elliott, Timmermann and Komunjer (2005); Elliott et al. (2008),
hereafter referred to as EKT, point out that an asymmetric loss function may arise
from asymmetric stockout and inventory holding costs. Given that the inventory
holding costs may change over time due to technological advances and economic
conditions, it is reasonable to allow the loss function parameters to vary over time.

Under asymmetric loss, the optimal point forecast may deviate from the central
tendency of its underlying density distribution, and the conventional rationality tests
based on least squares can be misleading without simultaneously teasing out the
effect of asymmetric loss. EKT propose to estimate the parameters of loss function
by GMM method and use the GMM over-identification test for forecast rationality.
Intuitively, this test asks if there are common loss function parameters that satisfy all
moment conditions implied by forecast rationality. Given a family of loss functions
indexed by unknown shape parameters, EKT’s GMM method provides not only a
test of forecast rationality, but also a novel way to estimate loss function parameters
directly.2 However, this method relies on two assumptions. First, it assumes that
the loss function parameters are constant over time. Second, and more importantly,
it identifies the loss function parameters only under the assumption of forecast
rationality. As stated in EKT, they “back out the loss function parameters consistent
with the forecast being rational.” If the hypothesis of rationality were rejected, the
estimated loss function parameters would be biased.3 Krüger and LeCrone (2019)
show that EKT approach leads to precise estimates of the degree of asymmetry that
are quite robust to fat tails, serial correlation, and outliers. However, as in other
studies, the loss function is assumed to be invariant over time.

In the received forecasting literature, researchers like EKT usually focus on
point forecasts in conducting the rationality tests and estimating the loss function

1 See Granger and Pesaran (2000), Christoffersen and Diebold (1996), Diebold, Gunther and Tay
(1998), Zellner (1986), and Patton and Timmermann (2007).
2 The approach has been used in many applications. See for instance, Tsuchiya (2016), Clatworthy,
Peel and Pope (2012), Fritsche, Pierdzioch, Rülke and Stadtmann (2015), Wang and Lee (2014) and
Döpke, Fritsche and Siliverstovs (2010).
3 Krüger and LeCrone (2019) using an extensive Monte Carlo study report negative correlation
of more than 0.9 between estimated asymmetric loss parameter and absolute average bias across
experiments (see their online appendix S3).
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parameters. With increasing use of density forecasts in recent years, it is interesting
to ask if density forecasts can help improve our knowledge about loss function
parameters and can shed light on the validity of the rationality tests using point
forecasts alone. We try to answer this question in this chapter. First, we show that for
the two common loss functions – Lin-Lin and Quad-Quad loss – the optimal point
forecasts will be different from the means or the medians of the underlying density
forecasts for any data generating process if the loss is asymmetric. A comparison of
these two will suggest if the loss function is asymmetric as well as the direction of
asymmetry.4 This knowledge can then be used to guide the comparison and selection
of different estimation methods. Second, by combining the point and the density
forecasts for the same target, we can calculate loss function parameters for each
period and relax the assumption of constant loss function parameters over time and
forecasters. Furthermore, relaxing the assumption of constant loss function allows
us to investigate Granger’s conjecture that loss function depends on other economic
variables or the state of the economy. Finally, using density forecasts, we could modify
Batchelor and Peel’s ARCH-M method - we no longer need to specify and estimate
the process of conditional variance. We could compute the conditional variance from
the density forecasts directly and avoid misspecification biases.

With density forecasts and point forecasts both available from U.S. Survey of
Professional Forecasters (SPF), we propose to combine point forecasts and density
forecasts to estimate the loss function parameters. Unlike previous research, our
method does not need to assume unbiasedness of the forecasts because of the
availability of subjective probability forecasts produced by the forecasters. We show
that professional forecasters view under-prediction of output growth more costly
than over-prediction, and the opposite for inflation forecasts. The stylized facts could
be mostly explained by the asymmetry in loss functions rather than irrationality.
Engelberg, Manski and Williams (2009) also find stylized results that forecasters are
overly optimistic in point forecasts than in density forecasts but did not relate their
findings to asymmetry in loss functions.

In this chapter, we fit generalized beta distributions and triangular distributions5

instead of normal distributions to the density forecast histograms. A comparison
to results with fitting normal distributions revealed a better performance of the
combination of generalized beta distribution and triangular distributions. To compare
with Elliott et al. (2005) we apply their GMM method on point forecasts in SPF
and compare the estimates of asymmetry of loss function and bias with the mean
individual asymmetry derived from our method. Determinants of loss function
asymmetry such as the level of the target variable and forecast horizon are discussed.

This chapter is organized as following. In Section 7.2, we review the theoretical
background for relationship between optimal point forecast and the central tendency

4 Lahiri and Liu (2009) have shown that for Linex and Quad-Quad loss functions, a non-zero
divergence of the optimal point forecasts from the mean, and for Lin-Lin loss function, a non-zero
divergence of the optimal point forecasts from the median of the density forecast is both a necessary
and sufficient condition for loss function asymmetry.
5 Engelberg et al. (2009) and Boero, Smith and Wallis (2008) use generalized beta and triangular
distributions in their studies using the same SPF data.
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of underlying density forecast, and the model to recover the asymmetry of loss
functions by combining density and point forecasts. The GMM method to estimate
asymmetry proposed by Elliott et al. (2005) is also reviewed in Section 7.2. In Section
7.3, we describe the features of the data in Survey of Professional Forecasters and
the “Real time Data Set for Macroeconomics”. In Section 7.4 we present empirical
results of the bounds of asymmetric parameters in non-parametric analysis. In Section
7.5 parametric results under Lin-Lin and Quad-Quad loss functions are displayed
for the asymmetry parameter. Determinants of loss function asymmetry such as the
level of the target variable are included in Section 7.5 too. In Section 7.6 we apply
GMM estimation proposed by EKT to SPF point forecasts to estimate time invariant
asymmetry for a set of prolific forecasters for each forecast horizon. Section 7.7
summarizes this chapter.

7.2 Review of Estimation of Loss Function Asymmetry

7.2.1 Loss Function and Asymmetry Parameter

A forecaster, while making a point forecast of a target variable, evaluates the
unobserved distribution of the variable, and chooses an optimal value given an
asymmetric loss function. Thus, the density forecast is the true forecast density which
is used in conjunction with a loss function to report a point forecast, cf. Weber (1994).

Suppose a forecaster (forecaster 𝑖) with information set 𝐼𝑖𝑡ℎ believes that the
target variable 𝑦𝑡 follows a distribution (𝑝.𝑑. 𝑓 ) 𝑓𝑖𝑡ℎ when he makes the forecast ℎ
quarters ahead in year 𝑡. The forecaster reports a point forecast 𝑦𝑖𝑡ℎ that minimizes
the expected value of the loss function 𝐿 (𝑦𝑡 − 𝑦𝑖𝑡ℎ). Loss functions can take different
forms, such as linear form (Lin-Lin):

𝐿 (𝑦𝑡 − 𝑦𝑖𝑡ℎ) = 𝛼𝑖𝑡ℎ |𝑦𝑡 − 𝑦𝑖𝑡ℎ | 𝑖 𝑓 𝑦𝑡 − 𝑦𝑖𝑡ℎ > 0 (7.1)

𝐿 (𝑦𝑡 − 𝑦𝑖𝑡ℎ) = (1−𝛼𝑖𝑡ℎ) |𝑦𝑡 − 𝑦𝑖𝑡ℎ | 𝑖 𝑓 𝑦𝑡 − 𝑦𝑖𝑡ℎ ≤ 0

or quadratic form (Quad-Quad):

𝐿 (𝑦𝑡 − 𝑦𝑖𝑡ℎ) = 𝛼𝑖𝑡ℎ (𝑦𝑡 − 𝑦𝑖𝑡ℎ)2 𝑖 𝑓 𝑦𝑡 − 𝑦𝑖𝑡ℎ > 0 (7.2)

𝐿 (𝑦𝑡 − 𝑦𝑖𝑡ℎ) = (1−𝛼𝑖𝑡ℎ) (𝑦𝑡 − 𝑦𝑖𝑡ℎ)2 𝑖 𝑓 𝑦𝑡 − 𝑦𝑖𝑡ℎ ≤ 0,

where 𝑦𝑖𝑡ℎ ∼ 𝑓𝑖𝑡ℎ.
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Loss functions can even take distinct forms for different signs of forecast errors,
such as the Linex form (loss being linear to forecast error on one side and exponential
on the other side).

In the above Equation (7.2), 𝛼 (alpha) is a parameter of the loss function that
measures asymmetry. In conventional research on forecast rationality, the loss function
is assumed to be symmetric and 𝛼 = 0.5. In this chapter, we allow 𝛼 to be any value
[0,1]. If 𝛼𝑖𝑡ℎ = 0.5, the forecaster is neutral between over-prediction and under-
prediction. However, if 𝛼𝑖𝑡ℎ > 0.5, under-prediction is more costly and the forecaster
will likely produce a point forecast that is above the central tendency of 𝑓𝑖𝑡ℎ. If
𝛼𝑖𝑡ℎ < 0.5, over-prediction is more costly.

7.2.2 Estimation of Asymmetry by Combining Point and Density
Forecasts

Estimation of Asymmetry for Lin-Lin Loss Function

Below we show that, under certain loss function forms, the value of 𝛼𝑖𝑡ℎ could be
derived by combining point and density forecasts.

First, consider the case of Lin-Lin (Linear-Linear) loss function. The forecaster
would choose an optimal point forecast to minimize the expected value of the loss
function.

𝑚𝑖𝑛𝑦𝑖𝑡ℎ𝐸 [𝐿 (𝑦𝑡 − 𝑦𝑖𝑡ℎ)] (7.3)

→ 𝑚𝑖𝑛𝑦𝑖𝑡ℎ [𝛼𝑖𝑡ℎ
∫ ∞

𝑦𝑖𝑡ℎ

(𝑦𝑡 − 𝑦𝑖𝑡ℎ) 𝑓𝑖𝑡ℎ (𝑦𝑡 |𝐼𝑖𝑡ℎ)𝑑𝑦𝑡 (7.4)

−(1−𝛼𝑖𝑡ℎ)
∫ 𝑦𝑖𝑡ℎ
−∞ (𝑦𝑡 − 𝑦𝑖𝑡ℎ) 𝑓𝑖𝑡ℎ (𝑦𝑡 |𝐼𝑖𝑡ℎ)𝑑𝑦𝑡 ]

The first order condition is:

𝛼𝑖𝑡ℎ

∫ ∞

𝑦𝑖𝑡ℎ

− 𝑓𝑖𝑡ℎ (𝑦𝑡 |𝐼𝑖𝑡ℎ)𝑑𝑦𝑡 − (𝑦𝑡 − 𝑦𝑖𝑡ℎ) 𝑓𝑖𝑡ℎ (𝑦𝑡 |𝐼𝑖𝑡ℎ) (7.5)

−(1−𝛼𝑖𝑡ℎ)
∫ 𝑦𝑖𝑡ℎ
−∞ − 𝑓𝑖𝑡ℎ (𝑦𝑡 |𝐼𝑖𝑡ℎ)𝑑𝑦𝑡 = 0

→−𝛼𝑖𝑡ℎ [1−𝐹𝑖𝑡ℎ (𝑦𝑖𝑡ℎ |𝐼𝑖𝑡ℎ)] + (1−𝛼𝑖𝑡ℎ)𝐹𝑖𝑡ℎ (𝑦𝑖𝑡ℎ |𝐼𝑖𝑡ℎ) = 0 (7.6)
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→ 𝛼𝑖𝑡ℎ = 𝐹𝑖𝑡ℎ (𝑦𝑖𝑡ℎ |𝐼𝑖𝑡ℎ), (7.7)

where 𝐹𝑖𝑡ℎ is the 𝑐.𝑑. 𝑓 of 𝑓𝑖𝑡ℎ.
Identity (7.7) indicates that, given the point forecast and underlying subjective

distribution, we could recover the loss function parameter. In addition, the
relationship between the point forecast and the median of its underlying subjective
density distribution could tell the direction of the asymmetry. If the point forecast is
above the median, then 𝛼𝑖𝑡ℎ is above 0.5, and under-prediction is valued more costly.
In this framework the asymmetry parameter could vary over time. Thus, we could
relax the assumption of constant loss function parameters over time and examine
forecaster’s asymmetry in every period.

Estimation of Asymmetry for Quad-Quad Loss Function

We first consider the case if the underlying subjective density function is normal. In
this case, the asymmetry parameter 𝛼𝑖𝑡ℎ could also be recovered under the Quad-Quad
loss function form as follows:

𝛼𝑖𝑡ℎ =
𝐷𝑖𝑡ℎ − 𝑏𝑖𝑡ℎ

2𝐷𝑖𝑡ℎ − 𝑏𝑖𝑡ℎ
, (7.8)

where 𝑏𝑖𝑡ℎ = 𝜇𝑖𝑡ℎ − 𝑦𝑖𝑡ℎ, 𝜇𝑖𝑡ℎ is the mean of the underlying subjective density fore-
cast 𝑓𝑖𝑡ℎ, 𝐷𝑖𝑡ℎ = 𝜎𝑖𝑡ℎ𝜙(𝑏𝑖𝑡ℎ/𝜎𝑖𝑡ℎ) ) + 𝑏𝑖𝑡ℎΦ((𝑏𝑖𝑡ℎ/𝜎𝑖𝑡ℎ), where 𝜎𝑖𝑡ℎ is the standard
deviation of 𝑓𝑖𝑡ℎ and 𝜙 is the density function of standard normal distribution, and Φ

is the cumulative density function of the standard normal distribution.
Equation (7.8) is more complicated than the case of Lin-Lin loss function, but

the stylized facts still hold that if the point forecast is above the central tendency (in
this case, the mean), then 𝛼𝑖𝑡ℎ is above 0.5, meaning under-prediction is more costly,
leading the forecaster to favor an over-the-mean point forecast, and vice versa.

Next consider the case if the underlying subjective density function is generalized
beta. EKT prove that, under certain conditions,

𝐸 [𝑣𝑖𝑡ℎ [1(𝑦𝑡 − 𝑦𝑖𝑡ℎ < 0) −𝛼𝑖ℎ]] |𝑦𝑡 − 𝑦𝑖𝑡ℎ |𝑝−1] = 0, (7.9)

where 𝑣𝑖𝑡ℎ is a sub-vector of forecaster’s information set . p=1 for Lin-Lin loss
function and p=2 for Quad-Quad loss function.

Note that, 𝛼 in Equation (7.9) is time-invariant. This condition could be relaxed if
the subjective distribution of 𝑦𝑡 is available. Setting 𝑣𝑖𝑡ℎ to be 1 (vector), Equation
(7.9) is reduced to
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𝐸 [1(𝑦𝑡 − 𝑦𝑖𝑡ℎ < 0) −𝛼𝑖ℎ |𝑦𝑡 − 𝑦𝑖𝑡ℎ |𝑝−1] = 0. (7.10)

We derive a solution to solve for 𝛼 from Equation (7.10) and then we could
estimate the asymmetry parameter alpha of each forecast under Quad-Quad loss.

Under Quad-Quad loss, 𝑝 = 2. When the density distribution of 𝑦𝑡 is known as
𝑓𝑖𝑡ℎ Equation (7.10) becomes

∫ 𝑦𝑖𝑡ℎ

−∞
(1−𝛼𝑖𝑡ℎ) (𝑦𝑖𝑡ℎ − 𝑦) 𝑓𝑖𝑡ℎ (𝑦 |𝐼𝑖𝑡ℎ)𝑑𝑦] +

∫ ∞

𝑦𝑖𝑡ℎ

(−𝛼𝑖𝑡ℎ) (𝑦− 𝑦𝑖𝑡ℎ) 𝑓𝑖𝑡ℎ (𝑦 |𝐼𝑖𝑡ℎ)𝑑𝑦 = 0

(7.11)

𝛼𝑖𝑡ℎ =

∫ 𝑦𝑖𝑡ℎ
−∞ (𝑦𝑖𝑡ℎ − 𝑦) 𝑓𝑖𝑡ℎ (𝑦 |𝐼𝑖𝑡ℎ)𝑑𝑦∫ 𝑦𝑖𝑡ℎ

−∞ (𝑦𝑖𝑡ℎ − 𝑦) 𝑓𝑖𝑡ℎ (𝑦 |𝐼𝑖𝑡ℎ)𝑑𝑦 +
∫ ∞
𝑦𝑖𝑡ℎ
(𝑦− 𝑦𝑖𝑡ℎ) 𝑓𝑖𝑡ℎ (𝑦 |𝐼𝑖𝑡ℎ)𝑑𝑦 = 0

. (7.12)

Equation (7.12) will produce loss function parameter for each forecaster period by
period.

7.2.3 Estimation of Loss Function Asymmetry by GMM (EKT)

Equation (7.9) above by EKT provides the basis for estimation of asymmetry and
joint testing of rationality and asymmetric loss using time series data. From Equation
(7.9) we could derive a GMM estimator of 𝛼𝑖ℎ as follows:

�̂�𝑖ℎ =
[∑𝑡 𝑣𝑖𝑡ℎ |𝑒∗𝑖𝑡ℎ |

𝑝−1]′𝑆−1
ℎ
[∑𝑡 𝑣𝑖𝑡ℎ1(𝑒∗

𝑖𝑡ℎ
< 0) |𝑒∗

𝑖𝑡ℎ
|𝑝−1

[∑𝑡 𝑣𝑖𝑡ℎ |𝑒∗𝑖𝑡ℎ |𝑝−1]′𝑆−1
ℎ
[∑𝑡 𝑣𝑖𝑡ℎ |𝑒∗𝑖𝑡ℎ |𝑝−1]]

, (7.13)

where 𝑒∗
𝑖𝑡ℎ

= 𝑦𝑡 − 𝑦𝑖𝑡ℎ is the ex post forecast error, 𝑆ℎ is a consistent estimate of
𝑆𝑖ℎ = 𝐸 [𝑣𝑖𝑡ℎ𝑣′𝑖𝑡ℎ (1(𝑒

∗
𝑖𝑡ℎ
< 0) −𝛼𝑖ℎ)2 |𝑒∗𝑖𝑡ℎ |

2𝑝−2.
Standard deviation of 𝛼𝑖ℎ is

(ℎ′𝑆−1
𝑖ℎ ℎ)

−1/𝑇1/2, (7.14)

where ℎ = 𝐸 (𝑣𝑖𝑡ℎ |𝑦𝑡 − 𝑦𝑖𝑡ℎ |𝑝−1).
A joint test of forecast rationality and the flexible loss function asymmetry can be
structured as:

𝐽 =
1
𝑇
[(

∑︁
𝑡

𝑣𝑖𝑡ℎ (1(𝑒∗𝑖𝑡ℎ < 0) − �̂�𝑖ℎ) |𝑒∗𝑖𝑡ℎ |
𝑝−1)′ (7.15)
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𝑆−1
ℎ
(∑𝑡 𝑣𝑖𝑡ℎ (1(𝑒∗𝑖𝑡ℎ < 0) − �̂�𝑖ℎ) |𝑒∗𝑖𝑡ℎ |

𝑝−1)] ∼ 𝜒2
𝑑−1,

where 𝑑 is the size of 𝑣𝑖𝑡ℎ and 𝑑 > 1.

Symmetric loss could also be tested by Equation (7.15) if we replace �̂�𝑖ℎ by 0.5
and 𝑆−1

ℎ
by 𝑆−1

ℎ
| (�̂�𝑖ℎ = 0.5).

7.3 Point and Density Forecasts in Survey of Professional
Forecasters

Without information on density forecasts 𝑓𝑖𝑡ℎ, one needs to assume unbiasedness of
the forecast and estimate asymmetry based on forecast error. The asymmetry cannot
change across time. The model in Section 7.2 could be implemented when we have
information of 𝑓𝑖𝑡ℎ. The Survey of Professional Forecasters data provide necessary
information since 1968: IV. We fit continuous distributions to the histogram density
forecasts, following Engelberg et al. (2009) and Lahiri and Wang (2020).

Each forecaster in SPF is asked to provide a point forecast for the level of output
and price of this year, not the growth rate. Therefore, to derive the point forecast for
the annual growth rate of the variable, we need the value of the variable for the year
prior to the forecast year. The value of a variable when a forecaster made his/her
forecast may not be the same as it is today for two reasons. First, the value went
through several revisions. Second, the base year of the variable (for real variables and
price level variables) often has changed. Therefore, we need the vintage observations
of such variables as they were available in real time. This is possible by utilizing “The
Real-Time Data Set for Macroeconomists” provided by the Philadelphia Fed. It tracks
the historical values of macroeconomic variables as they were observed in real time.
For example, for real GDP of 1999 Q1, the database records every observation of
‘1999 Q1 real GDP’ from 1999 Q2 until the most recent quarter. These observations
are not all the same, due to official data revisions and change of base year. Another
helpful fact is that the definition of output and inflation variables in this database is
identical to that of SPF throughout our sample period.

The SPF forecasts and Real-Time Data Set for Macroeconomists together provide
a longitudinal data set of matched point/density forecasts for output and inflation.
They provide sufficient observations for more than four decades at quarterly intervals.
We adopt real output forecasts from 1981 Q3 to 2022 Q2, and inflation forecasts
from 1968 Q4 to 2022 Q2. We have 5325 observations for real output forecasts
where both density forecast and corresponding point forecast are available, and 6751
for inflation. With each matched density and point forecast, we can backout the
asymmetry parameter 𝛼 without using sophisticated estimation method.
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7.4 Nonparametric Analysis by Combining Point and Density
Forecasts

Under flexible loss function asymmetry, rationality need not be rejected just because
the point forecast and the density mean/median/mode are different. Point forecasts
that are quite different from the central tendency of the density could be the result
of a rational decision-making process with an asymmetric loss function. We now
focus on recovering the asymmetry parameter values and a comparison of the point
forecast to the density forecast central tendencies.

A challenge in recovering the asymmetry parameter lies in the fact that sometimes
the density forecasts contain only a few probability values assigned to a set of
predefined bins, forming sparse histograms. In this section, we use non-parametric
analysis with regard to the histograms. Thus, we do not aim to recover the value of
the asymmetry parameter 𝛼 but only derive a range or the bounds of 𝛼. Here we use
a Lin-Lin loss function and Equation (7.7) to derive the bounds of 𝛼. Engelberg et al.
(2009) compare point forecast to the central tendencies of the densities using SPF
in the same way, though they did not point out that their innovative data analysis is
equivalent to finding the bounds on the asymmetry parameter.

For each forecast, we compute the upper and lower bounds of 𝛼 (alpha) from the
raw histograms. The upper and lower bounds of alpha are the values of the cumulative
distribution function at the right and left bounds of the bin that contains the point
forecast. Thus, we make no assumption on the distribution of the density within a bin.

For real output forecasts, 386 point forecasts (7.25%) have a lower bound of alpha
above 0.5. 333 point forecasts (6.25%) have an upper bound of alpha below 0.5. For
inflation forecasts, 371 point forecasts (5.49%) have a lower bound of alpha above 0.5.
993 point forecasts (14.71%) have an upper bound of alpha below 0.5. Details of these
statistics by horizon are reported in table 7.1. We also compare the point forecast and
the bounds of central tendency of the density forecast. Results are reported in table
7.2.

We find that, for real output forecasts, there is no systematic asymmetry, and the
occasional asymmetry can go on either side. For inflation forecasts, significantly more
forecasters view over-predictions more costly and provide lower point forecasts than
their density forecasts central tendencies. They are more optimistic when providing
the point forecasts than when providing the density forecasts. However, about 90% of
the cases suggest bellwether symmetry. Thus, asymmetry is not a dominant feature in
these forecast distributions.

7.5 Estimation of Asymmetry with Fitted Forecast Distributions
for Each Forecaster

In this section, we fit continuous distributions to each raw histogram in each quarter.
We fit generalized beta distributions or triangular distributions (in few unavoidable
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cases) to forecast histograms following Engelberg et al. (2009). For density forecasts
with more than two intervals, we fit generalized beta distributions. When the forecaster
attaches probabilities to only one or two bins, we assume that the subjective distribution
has the shape of an isosceles triangle. There are many different ways to generalize
beta distributions to generate other distributions.6 The generalized beta distribution
we choose has four parameters and its probability density function is defined as
follows:

𝑓 (𝑥,𝛼, 𝛽, 𝑙, 𝑟) = 1
𝐵(𝛼, 𝛽) (𝑟 − 𝑙)𝛼+𝛽−1 (𝑥− 𝑙)

𝛼−1 (𝑟 − 𝑥)𝛽−1, 𝑙 ≤ 𝑥 ≤ 𝑟,𝛼 > 0, 𝛽 > 0,

(7.16)

where 𝐵 is the beta function. We further restrict 𝛼 and 𝛽 to be greater than one to
maintain unimodality of the fitted individual density distribution.

The two parameters 𝛼 and 𝛽 define the shape of the distribution, and the other
two parameters 𝑙 and 𝑟 define the support. Histograms fitted to generalized beta
are also divided into four different cases depending on whether the open bin on
either end of the support has positive probabilities. Hence as few as two to as
many as four parameters may appear in the optimization problem for the fitting
process. If all probabilities are attached to closed bins, then for the generalized beta
distribution whose density is 𝑓 (𝑥,𝛼, 𝛽, 𝑙, 𝑟), 𝑙 and 𝑟 are set to be the lower bound
and upper bound of the bins which have positive probabilities. In these cases, only
the shape parameters 𝛼 and 𝛽 need to be solved in the optimization problem. If the
left (right) open bin has positive probabilities, then 𝑙 (𝑟) needs to be solved in the
optimization problem. The generalized beta distribution is preferred the recorded
histograms for several reasons. First, when the histograms are treated as discrete
distributions with the usual assumption that the probability mass within an interval is
assumed to be concentrated at the mid-point of each interval. It does not reflect the
expected continuity and uni-modality of the true underlying distributions. Second,
compared to the normal distribution, the generalized beta distribution is more flexible
to accommodate different shapes in the histograms. The histograms often display
excess skewness as well as different degrees of kurtosis. Finally, generalized beta
distributions are truncated at both sides, while the normal distribution is defined
over an open interval (−∞,+∞), which is not true with most of the histograms and
counterintuitive to the fact that the target variables have historical bounds.

We have adopted the triangular distributions when only one bin or two bins have
positive probability masses (nearly 8% of our histograms). Normal distributions
will shrink to a degenerate distribution in these cases. While the use of triangular
distribution yields a unique solution for each observation, we should be cognizant of
limitations of the assumption. The triangular distribution may exaggerate the spread
and uncertainty imbedded in the distribution. In the fitting process we restrict the
triangular distribution to be isosceles and allow the support to cover the whole bin
which has a probability not less than 50%. There are triangular distributions we

6 See, for instance, Gordy (1998) and Alexander, Cordeiro, Ortega and Sarabia (2012).
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could fit with shorter supports and smaller variances if we change the restrictions
and assumptions. However, to avoid multiple solutions for densities with only one or
two bins and in the absence of additional information, we choose isosceles triangular
distributions.

With the fitted density functions, we could estimate the value of alpha for each
forecast assuming either Lin-Lin or Quad-Quad loss function according to Equations
(7.7), (7.8) and (7.12). The results for Lin-Lin loss scenario are shown below in
Section 7.5.1. For Quad-Quad loss the results are shown in Section 7.5.2.

7.5.1 Asymmetry in Lin-Lin Loss Functions

Figure 7.1 shows the distribution of 𝛼𝑖𝑡ℎ for real output forecasts after fitting the
histograms with triangular or generalized beta distributions for each horizon. We can
see various levels of asymmetry in the loss functions over individuals, even though
symmetric loss function (𝛼 close to 0.5) is still the most frequent value. There are
slightly more observations with 𝛼 above 0.5 than below 0.5. It indicates slightly more
optimism in point forecasts for real output growth rate than in corresponding density
forecasts. Another interesting finding is, in horizon one forecasts (i.e., forecasts in the
fourth quarter of each year), the distribution of 𝛼 is more dispersed. In other horizons,
𝛼 is more likely to be around 0.5. It is interesting to note that, densities in horizon
one are more likely to have fewer bins due to lower uncertainty. For these densities
limited information about the distribution is available. It is an issue for histograms
with only one or two bins. When only one or two bins contain probability masses,
we fit triangular distributions. However, the true distribution may concentrate in one
side of the bins or have different bounds than that of the triangular distributions,
causing the location of the point forecast to be far from the mean/median of the
fitted triangular distribution. When there are more bins, such issues are not relevant.
Meanwhile when the density is bounded in a narrow range, a slight change of the
point forecast (for instance because of rounding) causes a substantial change in the
cumulative probability. This results in increased dispersion of 𝛼𝑖𝑡ℎ.

Figure 7.2 shows the distribution of 𝛼𝑖𝑡ℎ for inflation forecasts. Loss functions
in inflation forecasts are significantly more asymmetric and the asymmetry is
overwhelmingly towards one direction - more alphas are below 0.5. It shows forecasters
report significantly lower forecast of inflation rate than the median of the underlying
density distribution. Over-prediction is treated as more costly for forecasters with
𝛼𝑖𝑡ℎ below 0.5. They are significantly more optimistic in their point forecasts than
density forecasts when forecasting inflation. These results match with that of Lahiri
and Liu (2009) and Krüger and Hoss (2012) using German data also find significant
asymmetric loss in inflation forecasts and symmetric loss in output forecasts.
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7.5.2 Asymmetry of Quad-Quad Loss Functions

After fitting the histograms with generalized beta / triangular distributions we compute
values of alpha assuming Quad-Quad loss function using Equation (7.12). We plot
alphas from Quad-Quad loss function against Lin-Lin loss function in Figure 7.3.
They are strongly positively correlated, except that the correlation is not linear. Under
Quad-Quad loss function, due to higher losses when the forecast is farther from the
realization, it is more likely the forecaster reports a point forecast close to the central
tendency. Therefore, for the same reported point forecasts that is different from the
density mean, Quad-Quad loss function indicates a higher degree of asymmetry than
Lin-Lin loss for values of 𝛼 > 0.5 and indicates a lower degree of asymmetry for
𝛼 ≤ 0.5. This is true for both growth and inflation. The scatter plot in figure 7.3
also shows that relatively more forecasters report 𝛼 > 0.5 for growth and 𝛼 < 0.5 for
inflation forecasts.

7.5.3 Determinants of Loss Function Asymmetry

In the last section we reported asymmetry in forecasters’ loss functions and find that
the asymmetry in inflation forecasts is more prominent than in real output forecasts.
Now we look for determinants of loss function asymmetry as suggested first by
Granger and Pesaran (2000).

We are interested in whether forecasters’ loss function asymmetry depends on
the level of the macroeconomic variable being forecasted and other factors. We
run pooled regressions of the asymmetry on macroeconomic variables and horizon
dummies. The sample size is around 3000 for each regression. Here we limit the
sample to more prolific forecasters who make at least forty valid forecasts. There are
more than forty forecasters who qualify by this criterion. For explanatory variables,
horizon dummies are included since behavior of forecasters seems different for
forecast horizons. Macroeconomic variables are also included. For output growth
forecasts, “previous quarter growth” is included. It measures the newly observed
growth rate of real output of quarter 𝑞𝑡 −1 over 𝑞𝑡 −5 when the forecaster makes a
forecast in quarter 𝑞𝑡 . For inflation forecasts, a similar variable that measures the
growth rate of GDP Price Deflator from 𝑞𝑡 − 1 over 𝑞𝑡 − 5 is included. Individual
fixed effects are captured by individual forecaster dummies.

The results of the regressions for real GDP output growth are shown in Table
7.3. For real output forecasts, the coefficient of previous quarter growth is positive
and significant, indicating over-prediction in good times and under-prediction in bad
times.

For inflation forecasts, Table 7.4 shows that, the previous quarter’s inflation rate
significantly affects the asymmetry. It indicates a strong correlation between the
asymmetry and inflation rate itself. Its positive sign suggests a trend of over-prediction
when it is already high and under-prediction when it is already low. Therefore, it is
consistent with the finding that forecasters are more optimistic in good times and
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more pessimistic in bad times (here ‘optimistic’ means lower inflation, since a key
target is to keep inflation low for policy makers). None of the horizon dummies are
significant.

7.6 Time Invariant Alpha, Bias, and Comparison with EKT

Elliott et al. (2005) develop moment conditions implied by forecast rationality to
estimate the parameters of loss functions by GMM method, as illustrated in Section
7.2, Equations (7.13) - (7.15). With the GMM method by EKT, one can estimate
the value of asymmetry for a forecaster, and the asymmetry is time invariant. The
alphas from the combination method we estimate in Section 7.5 are time variant.
To compare the results in Section 7.5 to that calculated from the EKT method, we
first compute time invariant individual asymmetry from the alpha’s we got in the
combination method and then compare them to the computed values of asymmetry
and test rationality by the EKT method.

7.6.1 Combination Method

In section 7.5 we calculated asymmetry parameter by the combination method for
each forecast, after fitting continuous distributions to the raw histograms. Now we
extend this practice to derive a time invariant measure of the asymmetry for each
forecaster in each horizon. Under Lin-Lin loss function, time invariant alpha can be
obtained by regressing 1

2 [1−𝐸
𝑆 ( 𝑒

∗
𝑖𝑡ℎ

|𝑒∗
𝑖𝑡ℎ
| )] on a constant for each individual, where

𝑒∗
𝑖𝑡ℎ

= 𝑦𝑡 − 𝑦𝑖𝑡ℎ is forecast error.
The estimate of asymmetry and its standard deviation in this regression is equivalent

to finding the mean and standard deviation of time varying individual alphas that
are fixed over time. Therefore, we calculate the first two moments of the asymmetry
values from the generalized beta or triangular distributions of each frequent forecaster
for each horizon. These estimates can be compared with EKT.

7.6.2 GMM Method from EKT Approach

When we use GMM method to get our estimates, we follow EKT (Equations (7.13)
and (7.14)) to estimate asymmetry under flexible loss, and test rationality using
Equation (7.15). As a comparison, we also test rationality assuming symmetric loss,
still using Equation (7.15), with the value of �̂�𝑖ℎ pegged to 0.5.

The null hypothesis of 𝛽 = 0 is used for the rationality test. For Lin-Lin loss
𝑝 = 1 and for Quad-Quad loss 𝑝 = 2. When applying EKT approach to SPF data, we
adopted the following specifications: 1). 𝑣 is a 2 by 1 vector containing a constant and
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�̂�𝑡−ℎ−1 (most recent realization of y observed at the time of forecast). 2). Forecast
errors are computed from the final values observed at 2022 Q2, not the first or the
second release of these macroeconomic variables. The reason is because EKT was
implemented over the whole sample.

For frequent forecasters and each forecast horizon (forecasters who provided ten
or more forecasts for that horizon), we report how many times the null hypothesis
is rejected in Tables 7.5 and 7.6. The results reveal several findings. First, under
GMM-EKT approach, without asymmetric loss, rationality is more frequently rejected.
However, with asymmetric loss, only a few cases are rejected. This is true regardless
of target variable or horizon or the form of loss function. This is convincing evidence
to support that conventional tests for rationality without considering asymmetric
loss can be misleading, and methods in this section may explain the phenomena
better. Second, under GMM-EKT approach, when the null includes symmetric loss,
rationality is more frequently rejected in inflation forecasts than in output forecasts.
Third, GMM-EKT method produces more asymmetric loss cases than that of the
combination method. It is common that the two methods – GMM and the combination
method produce different results. EKT estimates of alphas are quite different. When
the symmetric loss is rejected under GMM may not be rejected by the “combining
density and point forecasts” method and vice versa. There are only a few cases where
under both methods symmetric loss is simultaneously rejected. However, there are also
a few cases where they are both rejected, while the direction of asymmetry is opposite
under the two methods, such as forecaster #535 in horizon three output forecast.7
Despite this there are many cases the two methods support each other, revealing same
direction of asymmetry. Furthermore, under the combination method, most alphas are
below 0.5 for inflation forecast. This reconfirms the stylized facts in Section 7.5 that
for inflation forecast, the asymmetry towards favoring under-prediction is significant.
The GMM-EKT method does not reveal the same information. Lastly, it is quite
noteworthy that the standard deviation of alpha under GMM is much smaller than
that under “combining density and point forecasts” method. Since in the latter case
we do observe time varying alphas and see that for the same forecaster, it varies, it is
plausible to assume that the GMM method underestimates the variance of asymmetry
parameter by ignoring the cross-sectional variation in the asymmetry parameter.

7.7 Concluding Remarks

In this chapter, we consider how to use information in density forecasts to conduct
rationality test under asymmetric loss function and to estimate the loss function
parameters based on first order condition of forecast optimality. We estimate the
asymmetry of SPF forecasters’ loss functions by combining point forecasts and
density forecasts. A triangular or generalized beta distributions are fitted to the raw

7 To maintain the anonymity of the individual forecasters, yet keeping the panel structure of the data
set, each forecaster is coded with an identification number. The forecaster #535 stayed on the survey
during 2005 Q2 - 2023 Q2.
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histograms. We find that forecasters treat underestimation of real output more dearly
than over prediction, and the reverse is true for inflation. After computing these
measures carefully based on the above distributions, we find that forecasters are more
optimistic in their point forecasts than in their density forecasts for the same target
variable. This is consistent with other literature. Forecasters tend to predict a higher
point forecast of real output than its density central tendency measures and predict a
lower point forecast of inflation than its density central tendency. This optimism is
more prominent in inflation forecasts. We also find that forecasters are more optimistic
in good times and more pessimistic in bad times. Since good quarters are far more
frequent than bad quarters in the sample, forecasters show overall optimism.

By restricting asymmetry to be time invariant, we could estimate individual
asymmetry from two alternative methods - the combination method and the GMM-
EKT approach. For Lin-Lin loss, the two approaches produce quite different results.
The GMM estimation reconfirms that allowing for asymmetry in loss function will
significantly reduce the number of rejections for rationality test. The estimates of alpha
obtained from the two methods often differ. This difference can also be attributed
to measurement errors in the histograms, which are after all subjective. The GMM
method produces a much smaller variance for alpha than the combination method.
We also compute asymmetry parameter for Quad-Quad loss function and find that
Quad-Quad loss yields higher degrees of asymmetry than under Lin-Lin loss. Time
variation in the asymmetry is partly determined by the level of the target variable and
the forecast horizon.

Acknowledgements This chapter was presented at the 2023 IAAE Annual Conference in Oslo,
Norway.
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Appendix: Tables and Figures

Table 7.1: Nonparametric analysis: counts of asymmetry parameter above or below
0.5

Output, post 1981Q2

upper bound<0.5 bound contains 0.5 lower bound>0.5

h=1 62 1230 59

h=2 71 1135 93

h=3 96 1177 105

h=4 104 1064 129

total 333 4606 386

inflation

upper bound<0.5 bound contains 0.5 lower bound>0.5

h=1 149 1190 50

h=2 216 1311 127

h=3 308 1482 89

h=4 320 1405 105

total 993 5388 371
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Fig. 7.1: Distribution of 𝛼𝑖𝑡ℎ for real output forecasts (1981 Q3-2022 Q2) when
fitting with generalized beta and triangular distributions under Lin-Lin loss
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Fig. 7.2: Distribution of 𝛼𝑖𝑡ℎ inflation forecasts (1969 Q1-2022 Q2) (1981 Q3-2022
Q2) when fitting with generalized beta and triangular distributions under Lin-Lin loss
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Table 7.2: Comparison of point forecasts and bounds of density mean/median/mode (lower bounds
‘LB’, upper bounds ‘UB’, and 𝑦∗ is the point forecast)

Mean y* bounded y* median y* bounded y* mode y* bounded y*

/Output <LB >UB /output <LB >UB /output <LB >UB

h=1 38 1266 47 h=1 91 1184 76 h=1 63 1234 54

h=2 46 1157 96 h=2 112 1063 124 h=2 80 1142 77

h=3 57 1214 107 h=3 136 1094 148 h=3 101 1206 71

h=4 55 1114 128 h=4 145 950 202 h=4 106 1106 85

Mean y* bounded y* median y* bounded y* mode y* bounded y*

/Inflation <LB >UB /inflation <LB >UB /inflation <LB >UB

h=1 122 1222 45 h=1 192 1112 85 h=1 144 1194 51

h=2 199 1334 121 h=2 290 1177 187 h=2 208 1310 136

h=3 284 1508 87 h=3 405 1336 138 h=3 278 1514 87

h=4 295 1445 89 h=4 438 1222 169 h=4 285 1436 108

Table 7.3: Determinants of asymmetry – fixed effect regression, real output forecasts.

Variable Estimate Standard Deviation p-value

(Intercept) 0.6721 (0.0695) 0.0000

Horizon 2 dummy 0.0069 (0.0094) 0.4589

Horizon 3 dummy 0.0001 (0.0092) 0.9931

Horizon 4 dummy 0.0184 (0.0093) 0.0473

Previous quarter growth 0.0030 (0.0026) 0.2581

𝑅2 0.15. 𝐴𝑑 𝑗𝑅2 : 0.12

Dependent variable: 𝛼𝑖𝑡ℎ from Real Output Forecasts

Independent variables also include individual and year dummies
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Table 7.4: Determinants of asymmetry – fixed effect regression, inflation forecasts.

Variable Estimate Standard Deviation t-statistic p-value

(Intercept) 0.4535 0.0704 6.4383 0.0000

Horizon 2 dummy -0.0071 0.0102 -0.6925 0.4887

Horizon 3 dummy -0.0174 0.0100 -1.7402 0.0819

Horizon 4 dummy -0.0149 0.0101 -1.4809 0.1387

Previous quarter inflation 0.0479 0.0098 4.8770 0.0000

𝑅2 0.18. 𝐴𝑑 𝑗𝑅2 0.15

Dependent variable: 𝛼𝑖𝑡ℎ for Inflation Forecasts

Independent variables also include individual and year dummies

Table 7.5: Statistics for Individual time invariant asymmetry – Real output

GMM-EKT Combine density

and point forecast

# (%) of forecasters

Output # of asymmetric rationality rationality rejected if asymmetric rationality

/Lin-Lin forecasters loss rejected symmetric loss allowed loss rejected

h=1 53 27 (51%) 0 11 (21%) 1 (2%) 1 (2%)

h=2 47 26 (55%) 1 (2%) 14 (30%) 10 (21%) 3 (6%)

h=3 49 24 (49%) 0 12 (24%) 5 (10%) 3 (6%)

h=4 48 33 (69%) 3 (6%) 20 (41%) 10 (21%) 2 (4%)

Output

/Quad-Quad

h=1 53 37 (70%) 2 (4%) 10 (19%) 1 (2%) 0

h=2 47 29 (62%) 0 11 (23%) 9 (19%) 14 (30%)

h=3 49 32 (65%) 0 15 (31%) 5 (10%) 6 (12%)

h=4 48 34 (71%) 1 (2%) 20 (42%) 13 (27%) 3 (6%)
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Table 7.6: Statistics for Individual time invariant asymmetry - Inflation

GMM-EKT Combine density

and point forecast

# (%) of forecasters

Inflation # of asymmetric rationality rationality rejected if asymmetric rationality

/Lin-Lin forecasters loss rejected symmetric loss allowed loss rejected

h=1 51 29 (57%) 3 (6%) 15 (29%) 11 (22%) 4 (8%)

h=2 55 31 (56%) 3 (5%) 14 (25%) 18 (33%) 2 (4%)

h=3 65 37 (57%) 2 (3%) 20 (31%) 26 (40%) 2 (3%)

h=4 70 39 (56%) 2 (3%) 23 (33%) 32 (46%) 5 (7%)

Inflation

/Quad-Quad

h=1 51 27 (53%) 1 (2%) 12 (24%) 12 (24%) 2 (4%)

h=2 55 30 (55%) 3 (5%) 11 (20%) 18 (33%) 9 (16%)

h=3 65 40 (62%) 3 (5%) 20 (31%) 29 (45%) 4 (6%)

h=4 70 46 (66%) 0 20 (29%) 34 (49%) 6 (9%)

Fig. 7.3: Comparison of Lin-Lin and Quad-Quad loss function asymmetry
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Chapter 8
Estimating Dynamic Probit Models with
Higher-order Time- and Network-lag Structure
and Correlated Random Effects

Peter H. Egger and Michaela Kesina

Abstract Many strategic choices in the social sciences involve sluggish adjustment
with an ex-ante unknown lag structure as well as patterns of interdependency among
the cross-sectional units, which call for a flexible parameterization based on multiple
networks. This chapter proposes straightforward panel-probit estimation approaches
based on control functions for such problems. The paper outlines the estimation
approaches and illustrates their suitability by simulation examples.

8.1 Introduction

The importance of sluggish adjustment and inertia in the responses of economic
outcomes to shocks is well acknowledged and received tremendous attention in
the social sciences at large and economics in particular. The possibility of pooling
cross-section and time-series data provides a particularly rich data environment
which enables the identification of key structural parameters of dynamic behavior
of economic agents (see the seminal articles by Balestra & Nerlove, 1966, Nerlove,
1971a, Nerlove, 1971b, and Nerlove, 1972; and see the overviews in Arellano, 2003,
Nerlove, 2005, Baltagi, 2015, 2021, Mátyás & Sevestre, 2008, 2015, Hsiao, 2022).

Social scientists often encounter situations where agents make discrete choices
depending on past outcomes (sluggish adjustment) and on the ones of other agents
(network interdependence).

For instance, companies may decide upon contracting input suppliers depending
on their past experience with them. One reason for inertia in this choice might be
that search costs or information costs incentivize them to stay with earlier suppliers.
Similarly, companies may consider how their competitors, their suppliers, or their
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customers behave in that regard. The latter creates network interdependencies. The
dynamic (time-lag) pattern and the strength of links to other agents in the game (the
order of the network pattern) may not be fully known ex-ante. Then, the researcher
might wish to parameterize it by considering higher-order time-lag and network-lag
structures to estimate the response function. Higher-order network-lag structures of
the envisaged kind are also referred to as ones with multiplex networks. Those are
ones where the nodes, such as firms, sectors, countries, etc., are defined to be the
same across different networks, but the links between them are generated by different
network concepts or different brackets of closeness or distance.

That discrete-choice problems pose specific challenges with dynamic data-
generating processes is well understood for decades (see Heckman, 1981). Wooldridge
(2005) proposed an elegant solution to dynamic choice problems, where contempor-
aneous latent outcome is a function of lagged observed binary outcome. He focused
on choice problems with a first-order own time-lag structure using an ordinary panel-
probit model combined with a control-function approach. However, Wooldridge
(2005) did not consider network interdependencies in the agents’ choices.

Egger and Kesina (2023) introduce contemporaneous and lagged network inter-
dependencies among agents in a first-order-lag dynamic choice setting. Contempor-
aneous interdependencies mean that agents play games, reflecting on other agents’
payoffs. In such a setting, they cannot condition on the actual choices of other agents,
as those will only be simultaneously revealed with theirs’. Such a problem is eventually
complex to estimate, and Egger and Kesina (2023) resort to Bayesian Markov Chain
Monte Carlo sampling. In any case, their approach focuses on first-order time- and
network-lag structures. Hence, agents’ contemporaneous choices depend on one
type of (ex-ante unobserved) contemporaneous, network-weighted latent outcome.
There is one network that is involved in generating that outcome. Moreover, their
contemporaneous choices depend on one time lag of own (or network-weighted)
outcome. Apart from the relatively computation-intensive routine to estimate such a
problem, the considered design is restrictive because it permits only one network and
one time lag.

In many problems, the time-lag structure may be richer, and several different
networks may connect agents simultaneously. Examples of the latter are rings of
neighbors or geographical, cultural, economic, and other networks whose relative
importance is not known ex-ante. Then, one might wish to allow for this richer time
lag and network context in estimation.

We propose straightforward estimation routines that rely on maximum-likelihood-
based panel-probit estimation with correlated random effects. We do so while
permitting a rich higher-order time-lag structure and a higher-order network-lag
structure (meaning that several networks may be present to link the economic agents).
This is done by enriching the control-function approach to account for higher-order
initial conditions in the time lag and the network structure.

Specifically, we consider a framework with so-called correlated random effects.
Hence, the explanatory variables may all or partly be correlated with the time-invariant
residual component. Due to the latter, eventually, none of the model parameters of
interest can be estimated consistently and, in finite samples, without bias when not
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addressed in estimation. Hence, a panel-probit model assuming uncorrelated random
effects would be biased and inconsistent.

We demonstrate by way of Monte Carlo simulations that the proposed control-
function approach can be used to estimate parameters without significant bias, even
in small to medium-sized samples with 250 and 500 cross-sectional units and a time
horizon of 5 and 10 periods.

The remainder of the paper is organized as follows. Section 8.2 introduces the
process of interest, featuring own-time-lag and network-lag structures, both of a
higher order. This is done in a setting where regressors are correlated with the
individual time-invariant error component. We propose a control-function approach
as a remedy. Section 8.3 describes stylized examples of network interdependence.
Section 8.4 outlines a Monte Carlo simulation setting and associated simulation
results. We discuss impact estimation in Section 8.5, and we offer a brief conclusion
in the last section.

8.2 Variants of a Dynamic Panel-probit Model with Higher-order
Lagged Own and Network Effects as well as Correlated
Random Effects

We will propose approaches to estimate models that have at least two or all of the
three subsequent features, namely the presence of:

• higher order time lags the binary dependent variable,
• higher order time lags of the network lags of the binary dependent variable,
• correlated random effects, whereby the time averages of the explanatory variables

are correlated with the time-invariant random effects,

all in the latent process generating a cross-sectional unit’s contemporary binary
outcome.

Solutions for estimating dynamic binary-choice models where the observables
include past realized binary outcomes have been proposed by Wooldridge (2005),
Chib and Jeliazkov (2006), Arulampalam and Stewart (2009), Rabe-Hesketh and
Skrondal (2013), Arbia, Bille and Leorato (2023), and others. However, that work
did not consider the simultaneous presence of network lags of binary outcome in the
process.

8.2.1 Notation

We will use the convention to index cross-sectional units by 𝑖 = 1, ..., 𝑁 and time
periods by 𝑡 = 0, ...,𝑇 . We will use 𝑛 = 𝑁𝑇 to denote the number of observations.

Moreover, we will use {𝑦𝑖,𝑡 , 𝑦∗𝑖,𝑡 } to denote the binary and the latent outcome of
the choice process with
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𝑦𝑖,𝑡 = 1(𝑦∗𝑖,𝑡 > 0). (8.1)

The 1×𝐾𝐵 vector 𝑥𝑖,𝑡 collects the explanatory variables.
We will furthermore introduce network weights, which parameterize the strength

of ties between cross-sectional units 𝑖 and 𝑗 . To this end, consider the following two
notions of network weights.

• Various rings of neighbors as multiple network concepts: Let us consider
an example of a lattice, where units {𝑖, 𝑗} are located and separated by borders.
Let us focus on unit 𝑖 and suppose that {𝑜, 𝑎} index the coordinates of units on
a lattice. Then, with {𝑜𝑖 , 𝑎𝑖} being the cell address of unit 𝑖 on the lattice, all
units with cell addresses in the set {{𝑜𝑖 +1, 𝑎𝑖}, {𝑜𝑖 , 𝑎𝑖 +1}, {𝑜𝑖 +1, 𝑎𝑖 +1}} and
{{𝑜𝑖 − 1, 𝑎𝑖}, {𝑜𝑖 , 𝑎𝑖 − 1}, {𝑜𝑖 − 1, 𝑎𝑖 − 1}} could be called first-order (or direct)
neighbors. By the same token, all direct neighbors of those first-order neighbors
that do not belong in the first-order-neighbor set and exclude unit 𝑖 may be called
second-order neighbors of 𝑖, etc. Figure 8.1 portrays rings of neighbors of the
corner unit 𝑖 = 1 on a 5×5 lattice, where darker-gray color indicates higher-order
(further-away) rings of neighbors relative to unit 1. We will use 𝑚 = 1, ..., 𝑀 to
index such rings of neighbors, and, for convenience, we could then think of 𝑚 = 1
as the first ring containing the direct (adjacent) neighbors, and𝑚 = 2, ..., 𝑀 indexes
the sets of outer rings of neighbors. In practice, such rings could be generated by
literally considering land borders (e.g., with spatial units such as housing blocks,
municipalities and cities, prefectures, etc.). Or they could be generated based on
some continuous distance metric (e.g., geographical distance, some Mahalanobis
distance about continuous variables, etc.) together with some threshold values. E.g.,
one could dub all firms within a range of 15 kilometers as first-order neighbors,
the ones in 15-30 kilometers as second-order neighbors, etc. One could choose the
mentioned distance threshold values in terms of fixed distances or make sure that
the number of neighbors within a concentric ring is the same across the rings, etc.

• Various network channels as multiple network concepts: In contrast to rings
of neighbors, one could instead consider a situation with alternative network
concepts linking the cross-sectional units. E.g., with units 𝑖 and 𝑗 being companies,
geographical distance, input-output distance (distance in terms of forward or
backward links), or spatial- as well as product-market overlap could be generating
distance concepts. Then, each one of those channels could serve to generate
respective weights (which decline with the respective distance: in terms of
kilometers, in terms of inverse spatial-market overlap, in terms of inverse product-
market overlap, etc.).

What will be important in what follows is that we use 𝑤 to denote pairwise network
weights, an index 𝑚 to denote the network ring or concept, and indices {𝑖 𝑗} to
denote the units the weight pertains to. Accordingly, we will use 𝑤𝑚,𝑖 𝑗 to denote
the 𝑚th network weight pertaining to the pair of units {𝑖 𝑗}. We will use so-called
normalization by degree (also called row-normalization) for those weights by which
they will have the properties: (i) 𝑤𝑚,𝑖 𝑗 = [0,1] and

∑𝑁
𝑗=1𝑤𝑚,𝑖 𝑗 = 1.
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Finally, we will generally use Greek letters to denote unknown parameters and
error components. Specifically, we will use 𝜈𝑖,𝑡 to denote an idiosyncratic normal
disturbance term, 𝜒𝑖 to denote an unobservable individual effect which may be
correlated with one or all columns of 𝑥𝑖,𝑡 , and 𝛿 = (𝛼′,𝜆′, 𝛽′)′ for the 𝐾 ×1 parameter
vector of interest. Notably, 𝛼 will be a 𝐾𝐴×1 vector of parameters on own binary
lags, 𝜆 is a 𝐾𝐿 ×1 vector of parameters on network (as well as time) lags of other
units’ binary outcomes, and 𝛽 is a 𝐾𝐵 ×1 vector of parameters on 𝑥𝑖,𝑡 .

Using ℓ = 1, ..., 𝐿 to index lags, we can define the ℓth own time lag of binary outcome
as 𝑦𝑖,𝑡−ℓ . And we can collect all considered time lags into the 1× 𝐿 vector 𝑦

𝑖,𝑡
=

(𝑦𝑖,𝑡−1, ..., 𝑦𝑖,𝑡−𝐿). Moreover, we denote the scalar-valued, 𝑚th-network-weighted,
lagged binary outcome for 𝑖 at 𝑡 as �̄�𝑚,𝑖,𝑡−1 =

∑𝑁
𝑗=1𝑤𝑚,𝑖 𝑗 𝑦𝑚, 𝑗,𝑡−1. We collect all 𝑀

types of the latter into the 1×𝑀 vector �̄�𝑖,𝑡−1 = ( �̄�𝑖,1,𝑡−1, ..., �̄�𝑖,𝑀,𝑡−1). Considering
𝐿 lags with the latter as with 𝑦𝑖,𝑡−ℓ , we can define �̄�

𝑖,𝑡−1
= ( �̄�𝑖,𝑡−1, ...�̄�𝑖,𝑡−𝐿), noting

that �̄�
𝑖,𝑡−1

is a 1×𝑀𝐿 vector.

8.2.2 Model Outline

With the above notation at hand, we will consider versions of the stochastic latent
process of the form

𝑦∗𝑖,𝑡 = 𝜁 + 𝑦𝑖,𝑡−1
𝛼+ �̄�

𝑖,𝑡−1
𝜆+ 𝑥𝑖,𝑡 𝛽+ 𝜒𝑖 + 𝜈𝑖,𝑡 . (8.2)

The following considerations are important in the present context. In particular,
the parameters of the model in (8.2) cannot be estimated by standard binary-choice
cross-sectional or panel-data models.

First, the component structure of the residuals with

𝑢𝑖,𝑡 = 𝜒𝑖 + 𝜈𝑖,𝑡 (8.3)

including a time-invariant effect 𝜒𝑖 means that cross-sectional models (probit or logit)
will not be applicable.

Second, the presence of the time-invariant stochastic term 𝜒𝑖 entails that both the
contemporaneous 𝑦𝑖,𝑡 and 𝑦∗

𝑖,𝑡
as well as all elements of the vector of lagged binary

terms 𝑦
𝑖,𝑡−1

are functions of 𝜒𝑖 .
Third, in case the random effects 𝜒𝑖 are correlated with some or all of the regressors

in 𝑥𝑖,𝑡 , 𝐸 (𝑥𝑖,𝑡 𝜒𝑖) ≠ 0, not even the parameters 𝛽 can be estimated consistently.
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8.2.3 Control-function (CF) Approach

It turns out that in models of the type in (8.2), consistency of the parameters can be
achieved when conditioning on a control function. Two considerations are relevant
here.

First, the correlation of the (time-invariant) random effects 𝜒𝑖 with the regressors
in 𝑥𝑖,𝑡 can be addressed by conditioning on the time-invariant component in 𝑥𝑖,𝑡 . This
can be done by relying on the so-called Mundlak-Chamberlain-Wooldridge device.
Mundlak (1978) introduced the concept in the context of linear panel-data models
and demonstrated that when conditioning on the time-average regressors in 𝑥𝑖,𝑡 , say,
𝑥𝑖 , any difference in the parameters between a linear random-effects and a linear
fixed-effects model is eliminated.1 Chamberlain (1984) introduced the concept to
the estimation of nonlinear models, including binary-choice models. Specifically,
Chamberlain (1984) proposed using a generalized version of the time-invariant terms
𝑥𝑖 , expanding the averaged vector term into a longer vector which includes each year
of the data as a separate time-invariant vector. Amemiya and MaCurdy (1986) and
Breusch, Mizon and Schmidt (1989) followed Chamberlain in doing so for linear
models. The latter approach has been used and popularized by Wooldridge (1995,
2005).

Second, the presence of lagged binary regressors in (8.2) additionally requires
conditioning on initial conditions. Wooldridge (2005) proposed a first-order lag
model of the form

𝑦∗𝑖,𝑡 = 𝜁 + 𝑦𝑖,𝑡−1
𝛼+ 𝑥𝑖,𝑡 𝛽+ 𝜒𝑖 + 𝜈𝑖,𝑡 , (8.4)

where 𝑦
𝑖,𝑡−1

= 𝑦𝑖,𝑡−1 was a scalar. He suggested including the pre-observation-period
binary outcome 𝑦𝑖,0 into the control function to remove the bias in 𝛼. In our case,
𝑦
𝑖,𝑡−1

is a vector, and we suggest using the pre-period lag scalar 𝑦𝑖,0 for it in the
control function, as in Wooldridge (2005). For convenience, we will use for the scalar-
or vector-valued term of own initial binary lags the term 𝑦

𝑖,0
in what follows.

Moreover, the proposed model includes the network-weighted terms �̄�
𝑖,𝑡−1

as
regressors. Those terms are a source of endogeneity in case 𝜒𝑖 exhibits some network
structure. Then, 𝐸 (𝜒𝑖𝜒 𝑗 ) ≠ 0, resulting in 𝐸 (𝑥𝑖𝜒 𝑗 ) ≠ 0 as well as 𝐸 ( �̄�

𝑖,𝑡−1
𝜒 𝑗 ) ≠ 0. To

address the latter form of dynamic network interdependence, we propose including the
network-weighted regressor averages ¯̆𝑥𝑖 =

∑𝑁
𝑗=1𝑤𝑚,𝑖 𝑗𝑥 𝑗 as well as the pre-observation-

period term �̄�𝑖,0 in the control function. For the same convenience as above, we will
use for the scalar- or vector-valued term of network-weighted initial binary lags of
outcome the notation �̄�

𝑖,0
in what follows.

With these arguments at hand, we suggest defining a vector

𝑔𝑖 =

(
𝑥𝑖 , 𝑦

𝑖,0
, ¯̆𝑥𝑖 , �̄�

𝑖,0

)
. (8.5)

1 As the root of this difference could only be an endogeneity of the regressors in 𝑥𝑖,𝑡 with respect to
𝜒𝑖 .
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The control-function-augmented binary choice model we propose then reads

𝑦∗𝑖,𝑡 = 𝜁 + 𝑦𝑖,𝑡−1
𝛼+ �̄�

𝑖,𝑡−1
𝜆+ 𝑥𝑖,𝑡 𝛽+𝑔𝑖𝛾 +𝜗𝑖 + 𝜈𝑖,𝑡 . (8.6)

In Section 8.4, we will demonstrate the applicability of this approach in small to
medium-sized samples by way of Monte Carlo simulations.

8.3 Stylized Examples of Network Interdependence

It is useful to briefly reflect on higher-order network interdependence in terms of
specific stylized examples.

Fig. 8.1: Matrix capturing three rings of neighbors in terms of adjacency on a lattice
for unit 1

Units 𝑗

Units 𝑖 1 2 3 4 5 · · ·

1 X 1 2 3 · · ·

2 1 1 2 3 · · ·

3 2 2 2 3 · · ·

4 3 3 3 3 · · ·

5 · · ·
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
. . .

Figure 8.1 illustrates the notion of rings of neighbors, here on a lattice and from
the perspective of cross-sectional unit 1. Unit 1’s cell is marked by 𝑋 . Adjacent to it
are first-order neighbors, which are depicted in light-gray color. Outside the ring of
first-order neighbors are the second-order neighbors of unit 1 in normal gray color,
followed by the third-order neighbors in dark gray color.

In that figure, we assumed that only three rings of neighbors exist. For that reason,
units with numbers 5 and higher are not neighbors of unit 1.

When considering a lattice with only nine units (e.g., firms), the first-, second-, and
third-order neighborhood matrices corresponding to rings of neighbors, as depicted
above, would be banded matrices.

What is specific about these matrices is that (i) every unit has either one or two
neighbors (depending on its address) of every type, and (ii) the rings of neighbors are
mutually exclusive (whoever is a first-degree neighbor cannot be a second-degree
neighbor). While in some contexts, this might make sense, it is too restrictive to think
of networks of such kind only.
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Fig. 8.2: Matrix capturing first-order neighborliness in terms of adjacency on a lattice
with nine units
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Fig. 8.3: Matrix capturing second-order neighborliness in terms of adjacency on a
lattice with nine units
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E.g., in input-output networks, one might consider the up-to-ten most important
suppliers of a company and its up-to-ten most important customers. Clearly, such
relationships would not be ordered as symmetrically as in the above matrices.
Moreover, the number of neighbors would be up to 10 for the input network and up
to 10 for the output network. However, a company could simultaneously be a key
supplier and a key customer to another company. Then, the input-network matrix
could have a neighbor entry in the same cell as the output matrix.

The matrices in Figures 8.5 and 8.6 represent examples of a multiplex network
with two neighborhood concepts supporting a second-order network process. These
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Fig. 8.4: Matrix capturing third-order neighborliness in terms of adjacency on a
lattice with nine units
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Fig. 8.5: Matrix capturing asymmetric first-order neighborliness in terms of adjacency
on a lattice with nine units
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matrices differ from the earlier ones in two to three important regards. First, the
number of 𝑚-order neighbors is not the same across the units. Second, already the
unnormalized matrices are asymmetric. And, third, the two neighborhood concepts
are not mutually exclusive. E.g., unit 4 is a first-order as well as a second-order
neighbor of unit 2 in these two matrices. Conversely, unit 2 is neither a first-order
nor a second-order neighbor of unit 4. As said, an example of such a situation could
emerge from first-degree importance in input and in output matrices across sectors or
firms.
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Fig. 8.6: Matrix capturing asymmetric second-order neighborliness in terms of
adjacency on a lattice with nine units
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In the simulations, we will consider cases of up to two network matrices with
mutually exclusive entries (i.e., they are not overlapping) but are much less structured
than the ones above.

8.4 Monte Carlo Simulations

8.4.1 Dimensionality

In this section, we present results from Monte Carlo simulations, with 𝑁 = {250;500}
cross-sectional units and 𝑇 = {5;10} time periods. Most of the results will be based
on 𝑇 = 10.

Consider the following specific remarks regarding the data-generating process.

8.4.2 Concrete Sources of Network Interdependence in the Simulations

It may be illustrative to think of the network processes that emerge from the interaction
of companies. Think of firm 𝑖 as being embedded in a supplier-buyer network. Every
company has some input providers and output customers within a neighborhood.
We consider three neighborhoods regarding the number of companies they host
{10;15;25}. With 𝑁 = 250 companies, we assume that there are 5 regions with three
neighborhoods of each type, and with 𝑁 = 500 companies, there are 10 regions with
three neighborhoods of each type.



8 Dynamic Probit Models with Higher-order Time- and Network-lag 243

Firms are characterized by three aspects: (i) incorporation (binary; 𝑧1,𝑖);
employment-size class (integer-values [1;10]; 𝑧2,𝑖 , ten-pronged); and (iii) standard-
normal log productivity (𝑧3,𝑖). All of these aspects are assumed to be time-invariant.

We build a non-negative distance metric for all pairs using the form

𝑑𝑖, 𝑗 = |0.4 · (𝑧1,𝑖 − 𝑧1, 𝑗 )/
√

0.25+0.4 · (𝑧2,𝑖 − 𝑧2, 𝑗 )/
√︁

99/12+0.2 · (𝑧3,𝑖 − 𝑧3, 𝑗 ) |,

where the square-root scalars are normalizing factors.
We then assume that companies with a distance of 𝑑𝑖, 𝑗 ≤ 0.3 exhibit a close input-

output (supplier-buyer) relationship and ones in the distance interval 𝑑𝑖, 𝑗 ∈ (0.3;0.8]
exhibit a medium-close one.

We will define unnormalized input-output-closeness links 𝑤0
1,𝑖, 𝑗 = 1(𝑑𝑖, 𝑗 ≤ 0.3)

and 𝑤0
2,𝑖, 𝑗 = 1(𝑑𝑖, 𝑗 ∈ (0.3;0.8]). We will normalize the latter so as to obtain 𝑤𝑚,𝑖, 𝑗 =

𝑤0
𝑚,𝑖, 𝑗∑𝑁

𝑗=1𝑤
0
𝑚,𝑖, 𝑗

for 𝑚 = 1,2.
Given the seed we choose, the median number of first-order input-output-linked

companies is 4, and that of second-order input-output-linked companies is 7 with
both 𝑁 = 250 and 𝑁 = 500. With 𝑁 = 250, the inter-quartile range of the number of
first-linked companies is [2;7] and that of second-linked companies is [4;10]. With
𝑁 = 500, the inter-quartile ranges of the number of first-linked and second-linked
companies are [3;6] and [4;9].

8.4.3 Continuous Regressors, Correlated Random Effects, and
Remainder Residual

We consider a single explanatory variable,

𝑥𝑖,𝑡 = 𝑥𝑖 + 𝑥𝑖,𝑡 , (8.7)

where we ensure that
∑𝑁
𝑖=1 𝑥𝑖 = 0 and

∑𝑇
𝑡=1 𝑥𝑖,𝑡 = 0. Hence, 𝑥𝑖 is cross-sectionally

demeaned and 𝑥𝑖,𝑡 is time-demeaned for each company. Otherwise, 𝑥𝑖,𝑡 is drawn from
a standard normal distribution.

Also, the random effect 𝜒𝑖 exhibits zero mean, whereby
∑𝑁
𝑖=1 𝜒𝑖 = 0 in each Monte

Carlo draw. (𝑥𝑖 , 𝜒𝑖) are otherwise drawn as bivariate normal with unitary variance and
covariance of 0.25. Hence, the random effects are correlated with the time-invariant
component of 𝑥𝑖,𝑡 .

We do not consider the case where 𝜒𝑖 is cross-sectionally correlated. However, we
always consider a model that includes a control function that would allow for it as in
(8.5) and (8.6).

The remainder residual is drawn independently from a standard normal distribution.
By this token, we have 𝐸 (𝑥𝑖,𝑡𝜈𝑖,𝑡 ) = 0.
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8.4.4 Initialization of the Process

We consider the case where the lag order is (up to) 𝐿 = 3. Consequently, we specify
three initial values for the binary outcome, namely, 𝑦

𝑖,0
= (𝑦𝑖,0, 𝑦𝑖,−1, 𝑦𝑖,−2). Each

one of the latter is determined by 𝑦𝑖,−ℓ = 1(𝜂𝑖,ℓ ≥ 0), where 𝜂𝑖,ℓ is standard normally
distributed with 𝐸 (𝜂𝑖,ℓ𝜂 𝑗 ,𝑘) = 0 for all (𝑖, 𝑗), (𝑘, ℓ) = 1,2,3 and 𝑘 ≠ ℓ.

We start the process in year 𝑡 = 1, using 𝑦
𝑖,𝑡−1

= 𝑦
𝑖,0

and �̄�
𝑖,𝑡−1

= 𝑦
𝑖,0

. Using the
respective model parameters 𝛼, 𝜆, and 𝛽 together with {𝑥𝑖,1, 𝜒𝑖 , 𝜈𝑖,1} obtains the value
of the latent outcome variable 𝑦∗

𝑖,1. The latter generates the binary counterpart as
𝑦𝑖,1 = 1(𝑦∗

𝑖,1 ≥ 0). We continue with this procedure iteratively up until the last period
in the sample (𝑇 = 5 or 𝑇 = 10). The outcome in periods 𝑡 = 2 and 𝑡 = 3 depends
on two and one pre-sample binary outcome terms, respectively. From period 𝑡 = 4
onwards, all binary-outcome lags on the right-hand side of the model are from within
the sample period.

8.4.5 Estimated Models

We estimate three alternative models with every Monte Carlo draw.
Model M0 is a panel probit with random effects based on the assumed latent

process of

𝑦∗𝑖,𝑡 = 𝜁 + 𝑦𝑖,𝑡−1
𝛼+ �̄�

𝑖,𝑡−1
𝜆+ 𝑥𝑖,𝑡 𝛽+ 𝜒𝑖 + 𝜈𝑖,𝑡 , (8.8)

which excludes the control function 𝑔𝑖𝛾 on the right-hand side.
Models M1 and M2 are panel probits with random effects based on the assumed

latent process of

𝑦∗𝑖,𝑡 = 𝜁 + 𝑦𝑖,𝑡−1
𝛼+ �̄�

𝑖,𝑡−1
𝜆+ 𝑥𝑖,𝑡 𝛽+𝑔𝑖𝛾 + 𝜒𝑖 + 𝜈𝑖,𝑡 . (8.9)

They differ to the extent that �̄�
𝑖,𝑡−1

and ( ¯̆𝑥𝑖 , 𝑦
𝑖,0
) only include first-order or closest-

neighbor links based on 𝑤1,𝑖, 𝑗 in Model 1, whereas Model M2 includes twice as many
terms in each, involving interdependence terms based on 𝑤1,𝑖, 𝑗 as well as 𝑤2,𝑖, 𝑗 .

We consider data-generating processes where Model M1 is suitable. As Model
M2 nests M1, both should eliminate larger biases in that case, but Model M1 will be
more efficient. If the true process involves higher-(second-)order interdependence
terms based on 𝑤1,𝑖, 𝑗 as well as 𝑤2,𝑖, 𝑗 , Model M1 will display a nontrivially large
bias.
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8.4.6 Parameter Designs

We consider four alternative parameterizations, which we refer to as Designs D1-D4.
Table 8.1 provides a summary. In each and every case, the true model excludes a
constant (𝜁 = 0) and assumes that 𝛽 = 1. However, the designs differ in terms of the
lag structure and the order of the network interdependence in terms of the parameters
𝛼 and 𝜆.

Design D1 assumes a third-order time-lag structure (𝐿 = 3) and a first-order
network structure (𝑀 = 1) with as many time lags. In this case, both Models M1 and
M2 are suitable, but Model M1 is more efficient. Design D2 assumes a third-order
time-lag structure (𝐿 = 3) and a second-order network structure (𝑀 = 2) with as
many time lags each. There, only Model M2 is suitable to avoid larger parameter
biases. Design D3 is a variant of D2 in that it assumes some cyclical lag-parameter
pattern (the second time lag on any lagged variable exhibits a negative sign relative
to Design D2, all else being equal). Design D4 assumes a second-order time-lag
structure (𝐿 = 2) and a second-order network structure (𝑀 = 2). However, only the
first two time lags matter with regard to the closest-neighbor network lags, whereas
only the first time lag matters with regard to the medium-close-neighbor network
lags. In this case, only Model M2 is consistent, but it is inefficient because it includes
irrelevant regressors.

8.4.7 Main Results

We summarize the results in Tables 8.2-8.6. In Tables 8.2-8.5, the sample period is
𝑇 = 10, whereas it is only 𝑇 = 5 in Table 8.6.

Tables 8.2 and 8.6 are each based on the parameter Design D1. Table 8.3 uses
Design D2, Table 8.4 uses Design D3, and Table 8.5 uses Design D4.

Each table exhibits a 2×2 block structure. In the upper block of rows, we report
on the median bias (MBias, i.e., the difference in the median of a parameter across
1,000 Monte Carlo draws and the true value). In the lower block, we report on the
robust root mean-squared error. The latter is defined as

𝑅𝑅𝑀𝑆𝐸 = (MBias2 + (IQ/1.35)2)0.5, (8.10)

where IQ is the inter-quartile range of a parameter across 1,000 Monte Carlo
draws. The inter-quartile range is normalized by 1.35 because, asymptotically, the
inter-quartile range of a normal distribution amounts to 1.35 times the standard error.

The results in Tables 8.2-8.6 are consistent with our expectations. First, Model
M2 exhibits a small bias which fades with sample size throughout the experiments.
Model M0 is always biased. The bias on the network-lagged terms is absent in Model
M0, because we generated the true process assuming 𝐸 (𝜒𝑖𝜒 𝑗 ) for companies 𝑖 ≠ 𝑗 .

The results consistently suggest that Model M2 – and, where applicable, Model
M1 – is well suited to avoid larger parameter biases by including a control function
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of the suggested form. Whenever both M1 and M2 eliminate larger biases, Model
M2 tends to exhibit a larger RRMSE than Model M1, as expected.

8.4.8 Extension 1: Network Interdependence in the Correlated Random
Effects

In the discussion above, we acknowledged that the independent distribution of the
(correlated) random component 𝜒𝑖 between individuals implied that the parameters
𝜆 on the time-and-network-lagged binary outcome variable were unbiased even in
the simple panel-probit model without control function. The reason was that, in
expectation, 𝐸 (𝑦𝑖,𝑡−ℓ �̄�𝑖,𝑡−𝑘) = 0 for all {ℓ, 𝑘} due to the assumption of 𝐸 ( �̄�𝑖,𝑡−𝑘 𝜒 𝑗 ) = 0
and 𝐸 (𝑦𝑖,𝑡−ℓ 𝜒 𝑗 ) = 0 for all {𝑖, 𝑗} (as well as 𝐸 (𝜈𝑖,𝑡𝜈 𝑗 ,𝑠) = 0 for all {𝑡, 𝑠}).

In this subsection, we consider, for parameter Design D1 and 𝑁 = {250;500} as
well as 𝑇 = 10 as in Table 8.2, a modified structure, where the model without control
function is

𝑦∗𝑖,𝑡 = 𝜁 + 𝑦𝑖,𝑡−1
𝛼+ �̄�

𝑖,𝑡−1
𝜆+ 𝑥𝑖,𝑡 𝛽+ 𝜉𝑖 + 𝜈𝑖,𝑡 (8.11)

with the random component 𝜉𝑖 being not only correlated with the regressors but also
interdependent among the residuals. Specifically, we assume

𝜉𝑖 = 𝜒𝑖 + 𝑥𝑖𝜌, 𝑥𝑖 = (𝑥1,𝑖 , 𝑥2,𝑖), (8.12)

where 𝑥𝑚,𝑖 =
∑𝑁
𝑗=1𝑤𝑚,𝑖, 𝑗𝑥 𝑗 and 𝜌 = (𝜌1, 𝜌2)′ with 𝜌𝑚 = 1 for 𝑚 = 1,2.

Clearly, the latter implies that 𝐸 ( �̄�
𝑖,𝑡−1

𝜉𝑖) ≠ 0, and 𝜆 cannot be estimated consist-
ently in that case and requires specific treatment in the control function. However,
this is already incorporated in what we have proposed in 𝑔𝑖𝛾.

Table 8.7 summarizes the respective results. Indeed, we now find that the parameters
𝜆 display a substantial bias in Model 0 as well as in Model 1, neither of which is
correctly specified and utilizes an appropriate control function. On the contrary, the
approach of Model 2 works well in addressing this case.

8.4.9 Extension 2: an Alternative Network Design

Instead of the block-diagonal network design considered above, we consider a so-
called rook design here. For this, we consider a grid of 961 units among which we
generate a generalized rook design on a lattice following the approach in Drukker,
Egger and Prucha (2023). For this, we choose a scalar 𝜅 = 31, and note that 𝜅2 = 961.
We then consider all first neighbors who can be reached exactly by rules-conform
one-step moves from any unit 𝑖. We generate a raw (unnormalized) matrix with
unit-pair binary entries 𝑤0

1,𝑖 𝑗 . We do the same with all second neighbors who can
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be reached exactly by rules-conform two-step moves from any unit 𝑖, obtaining a
raw (unnormalized) matrix with unit-pair binary entries 𝑤0

2,𝑖 𝑗 . We note that, due to
mutual exclusivity, 𝑤0

1,𝑖 𝑗 +𝑤
0
2,𝑖 𝑗 = {0,1}. Finally, we normalize the network weights

so as to obtain 𝑤𝑚,𝑖 𝑗 = 𝑤0
𝑚,𝑖 𝑗
/∑𝑁

𝑗=1𝑤
0
𝑚,𝑖 𝑗

for each neighbor concept 𝑚 ∈ {1,2}.
Then we run the same simulations as with design D1 and present them in Table

8.8. A comparison of the results in this table with the ones in Table 8.2 suggests that
the performance of the proposed models is as well as it had been before. The simple
probit model (M0) appears to fare somewhat worse in Table 8.8 than in Table 8.2
with 𝑁 = 500, which is owed to the difference in the degree of neighborliness in the
network matrices considered.

8.4.10 Extension 3: an Alternative Initial Condition

In the analysis above, we formulated the initial condition as to contain four terms:
averages of the explanatory variables in 𝑥𝑖 , the level of the binary dependent variable
measured in the first year prior to the sample period (𝑦

𝑖,0
), network-weighted averages

of 𝑥𝑖 ( ¯̆𝑥𝑖), and network-weighted averages of the binary dependent variable in the first
year prior to the sample period (�̄�

𝑖,0
). It turned out that this was sufficient with the

proposed data-generating process.
In this subsection, we modify the initial condition so as to include as many

lags of the binary dependent variables measured immediately prior to the sample
period as there are lags involved in the model. And, additionally, we include all
network-weighted averages of the latter as well. Hence, with a third-order time-lag
model, there are four additional terms in what we refer to as Model 1A (as this model
considers only a single network), and there are six additional terms in what we call
Model 2A. Model 1A is the same as Model 1, except for also including the two
pre-period lags (𝑦

𝑖,0−1
, 𝑦
𝑖,0−2
) as well as ( �̄�

𝑖,0−1
, �̄�
𝑖,0−2
), all else equal. Model 2A

is the same as Model A1, except that each term in ( �̄�
𝑖,0−1

, �̄�
𝑖,0−2
) is a 1×𝑀 vector

(with the number of network matrices being 𝑀 = 2 in the simulations) instead of a
scalar.

With these arguments at hand, we suggest defining the vector

𝑔A
𝑖 =

(
𝑥𝑖 , 𝑦

𝑖,0
, ¯̆𝑥𝑖 , �̄�

𝑖,0

)
, (8.13)

𝑦
𝑖,0

=
(
𝑦𝑖,0, 𝑦𝑖,0−1, 𝑦𝑖,0−2

)
, (8.14)

�̄�
𝑖,0

=
(
�̄�𝑖,0, �̄�𝑖,0−1, �̄�𝑖,0−2

)
, (8.15)

and using it in estimation.
Tables 8.9 and 8.10 summarize the associated results for the same design as in

Table 8.2 for 𝑁 = 250 and 𝑁 = 500 cross-sectional units, respectively, and 𝑇 = 10
time periods. In both tables, we report on the bias and RMSE of Models 1 and 2,
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which are the same as in Table 8.2. Moreover, we contrast those results with the ones
based on the modified initial condition, dubbed Models 1A and 2A.

An inspection of the two tables suggests that using the augmented control function
is not necessary here, as expected. The reason is that the bias of Model 0 stems
from the presence of a time-invariant error component which is correlated with the
regressors in 𝑥𝑖𝑡 . This bias can sufficiently be captured when conditioning on one
pre-period lag as well as, eventually, its properly network-weighted counterpart. With
the assumed data-generating process, it is confirmed that the biases in Models 1 and 2
are small and not substantially further reduced when considering Models 1A and 2A,
respectively, instead. These patterns emerge consistently for the case with 𝑁 = 250
cross-sectional units in Table 8.9 as well as the one with 𝑁 = 500 units in Table 8.10.

8.5 Discussion: Effect Estimates

It should be noted that, due to the dynamic nature of the problem, changes in 𝑥𝑖,𝑡 do
not exert contemporaneous effects on latent outcome (and binary outcome) only but
will have lagged effects with sluggish adjustment.

For evaluating contemporaneous (short-run) and cumulative (long-run) marginal
effects of one-shot changes in 𝑥𝑖,𝑡 , there is no other way than to compute these effects
for each period separately.

The long-run effect will be the state of 𝑦𝑖,𝑡+ 𝑓 , where no further change in 𝑦∗
𝑖,𝑡+ 𝑓

materializes relative to the earlier period. However, it should also be noted that in
empirically relevant settings, this will probably emerge only a few periods after the
shock in 𝑥𝑖,𝑡 occurs. The reason for the latter lies in the fact that 𝑦∗

𝑖,𝑡+ 𝑓 will change in
periods after the shock only as long as 𝑦𝑖,𝑡+ 𝑓 keeps changing. However, the latter,
as a discrete variable, changes much more sluggishly than this is the case for linear
dynamic processes with continuous dependent variables and continuous regressors.

8.6 Conclusions

We outline control-function strategies for dynamic probit models, which include
higher-order own time lags as well as higher-order network-and-time lags of the
binary dependent outcome variable.

Such models can be useful when estimating entry choices with sluggish adjustment
and network interdependencies when data on binary outcomes are repeatedly observed
over time.

We demonstrate in Monte Carlo simulations that the proposed approach can
successfully absorb the bias in the parameters of lagged dependent binary outcome
indicators already in small to medium-sized samples.
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Appendix: Tables

Table 8.1: Parameter designs considered in the Monte Carlo simulations

Design-specific

true values

Parameter on Parameter D1 D2 D3 D4

𝑦𝑖,𝑡−1 𝛼1 1 1 1 1

𝑦𝑖,𝑡−2 𝛼2 0.6 0.6 -0.6 0.6

𝑦𝑖,𝑡−3 𝛼3 0.2 0.2 0.2 0

𝑦𝑖,1,𝑡−1 𝜆1,1 0.5 0.5 0.5 0.5

𝑦𝑖,1,𝑡−2 𝜆1,2 0.3 0.3 -0.3 0.3

𝑦𝑖,1,𝑡−3 𝜆1,3 0.1 0.1 0.1 0

𝑦𝑖,2,𝑡−1 𝜆2,1 0 0.8 0.8 0.8

𝑦𝑖,2,𝑡−2 𝜆2,2 0 0.6 -0.6 0

𝑦𝑖,3,𝑡−3 𝜆2,3 0 0.4 0.4 0

𝑥𝑖,𝑡 𝛽 1 1 1 1
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Table 8.2: Bias and RMSE for 1,000 Monte Carlo runs, parameter Design D1, and
T=10

Median Bias (MBias)

N=250 N=500

Parameter on Parameter True value Model 0 Model 1 Model 2 Model 0 Model 1 Model 2

𝑦𝑖,𝑡−1 𝛼1 1 0.1500 0.0008 0.0059 0.1467 0.0059 0.0090

𝑦𝑖,𝑡−2 𝛼2 0.6 0.0904 -0.0098 -0.0083 0.0907 -0.0028 -0.0006

𝑦𝑖,𝑡−3 𝛼3 0.2 0.0862 0.0026 0.0027 0.0871 0.0049 0.0052

𝑦𝑖,1,𝑡−1 𝜆1,1 0.5 -0.0660 -0.0160 -0.0080 -0.0411 0.0050 0.0033

𝑦𝑖,1,𝑡−2 𝜆1,2 0.3 -0.0526 0.0083 0.0012 -0.0536 0.0050 0.0031

𝑦𝑖,1,𝑡−3 𝜆1,3 0.1 -0.0515 0.0051 0.0049 -0.0399 -0.0018 0.0008

𝑦𝑖,2,𝑡−1 𝜆2,1 0 -0.0081 -0.0074

𝑦𝑖,2,𝑡−2 𝜆2,2 0 0.0052 -0.0024

𝑦𝑖,3,𝑡−3 𝜆2,3 0 -0.0084 0.0002

𝑥𝑖,𝑡 𝛽 1 0.0910 0.0063 0.0104 0.0892 0.0098 0.0117

Robust RMSE (RRMSE)

N=250 N=500

Parameter on Parameter True value Model 0 Model 1 Model 2 Model 0 Model 1 Model 2

𝑦𝑖,𝑡−1 𝛼1 1 0.1847 0.1108 0.1151 0.1635 0.0785 0.0773

𝑦𝑖,𝑡−2 𝛼2 0.6 0.1360 0.1099 0.1083 0.1222 0.0834 0.0839

𝑦𝑖,𝑡−3 𝛼3 0.2 0.1358 0.1090 0.1119 0.1140 0.0793 0.0786

𝑦𝑖,1,𝑡−1 𝜆1,1 0.5 0.2254 0.2329 0.2438 0.1691 0.1760 0.1741

𝑦𝑖,1,𝑡−2 𝜆1,2 0.3 0.2166 0.2169 0.2312 0.1568 0.1623 0.1599

𝑦𝑖,1,𝑡−3 𝜆1,3 0.1 0.2142 0.2256 0.2306 0.1489 0.1514 0.1544

𝑦𝑖,2,𝑡−1 𝜆2,1 0 0.2943 0.1958

𝑦𝑖,2,𝑡−2 𝜆2,2 0 0.2847 0.1877

𝑦𝑖,3,𝑡−3 𝜆2,3 0 0.2671 0.1713

𝑥𝑖,𝑡 𝛽 1 0.1124 0.0734 0.0736 0.1011 0.0527 0.0527
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Table 8.3: Bias and RMSE for 1,000 Monte Carlo runs, parameter Design D2, and
T=10

Median Bias (MBias)

N=250 N=500

Parameter on Parameter True value Model 0 Model 1 Model 2 Model 0 Model 1 Model 2

𝑦𝑖,𝑡−1 𝛼1 1 0.2606 0.1291 0.0312 0.2111 0.1148 0.0165

𝑦𝑖,𝑡−2 𝛼2 0.6 0.1394 0.0641 -0.0126 0.1287 0.0680 -0.0013

𝑦𝑖,𝑡−3 𝛼3 0.2 0.1148 0.0524 -0.0053 0.1106 0.0640 0.0063

𝑦𝑖,1,𝑡−1 𝜆1,1 0.5 0.0753 0.2099 -0.0220 0.0604 0.1747 -0.0068

𝑦𝑖,1,𝑡−2 𝜆1,2 0.3 0.1486 0.2476 -0.0001 0.1578 0.2345 0.0045

𝑦𝑖,1,𝑡−3 𝜆1,3 0.1 0.0953 0.2335 -0.0091 0.1057 0.2226 0.0084

𝑦𝑖,2,𝑡−1 𝜆2,1 0.8 0.8338 0.8189

𝑦𝑖,2,𝑡−2 𝜆2,2 0.6 0.6458 0.5919

𝑦𝑖,3,𝑡−3 𝜆2,3 0.4 0.4304 0.4059

𝑥𝑖,𝑡 𝛽 1 0.0668 -0.0358 0.0313 0.0378 -0.0382 0.0212

Robust RMSE (RRMSE)

N=250 N=500

Parameter on Parameter True value Model 0 Model 1 Model 2 Model 0 Model 1 Model 2

𝑦𝑖,𝑡−1 𝛼1 1 0.3043 0.2106 0.1865 0.2376 0.1579 0.1149

𝑦𝑖,𝑡−2 𝛼2 0.6 0.2083 0.1721 0.1635 0.1676 0.1289 0.1177

𝑦𝑖,𝑡−3 𝛼3 0.2 0.1912 0.1758 0.1801 0.1511 0.1252 0.1129

𝑦𝑖,1,𝑡−1 𝜆1,1 0.5 0.3287 0.4094 0.3600 0.2359 0.2989 0.2346

𝑦𝑖,1,𝑡−2 𝜆1,2 0.3 0.3373 0.3995 0.3348 0.2838 0.3373 0.2407

𝑦𝑖,1,𝑡−3 𝜆1,3 0.1 0.3000 0.3902 0.3454 0.2214 0.2998 0.2142

𝑦𝑖,2,𝑡−1 𝜆2,1 0.8 0.9373 0.8620

𝑦𝑖,2,𝑡−2 𝜆2,2 0.6 0.7562 0.6527

𝑦𝑖,3,𝑡−3 𝜆2,3 0.4 0.5822 0.4672

𝑥𝑖,𝑡 𝛽 1 0.1164 0.1150 0.1255 0.0756 0.0802 0.0803
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Table 8.4: Bias and RMSE for 1,000 Monte Carlo runs, parameter Design D3, and
T=10

Median Bias (MBias)

N=250 N=500

Parameter on Parameter True value Model 0 Model 1 Model 2 Model 0 Model 1 Model 2

𝑦𝑖,𝑡−1 𝛼1 1 0.1338 -0.0139 0.0071 0.1266 -0.0168 0.0047

𝑦𝑖,𝑡−2 𝛼2 -0.6 -1.0594 -1.1774 -1.2079 -1.0649 -1.1760 -1.2061

𝑦𝑖,𝑡−3 𝛼3 0.2 0.0989 -0.0135 -0.0052 0.1019 -0.0090 -0.0005

𝑦𝑖,1,𝑡−1 𝜆1,1 0.5 -0.0369 -0.0094 -0.0111 -0.0215 0.0021 0.0034

𝑦𝑖,1,𝑡−2 𝜆1,2 -0.3 -0.5593 -0.5469 -0.5983 -0.5501 -0.5465 -0.6047

𝑦𝑖,1,𝑡−3 𝜆1,3 0.1 -0.0242 -0.0120 -0.0015 -0.0187 -0.0128 -0.0058

𝑦𝑖,2,𝑡−1 𝜆2,1 0.8 0.7938 0.7992

𝑦𝑖,2,𝑡−2 𝜆2,2 -0.6 -0.6002 -0.6045

𝑦𝑖,3,𝑡−3 𝜆2,3 0.4 0.3996 0.3917

𝑥𝑖,𝑡 𝛽 1 0.0654 -0.0131 0.0050 0.0669 -0.0106 0.0073

Robust RMSE (RRMSE)

N=250 N=500

Parameter on Parameter True value Model 0 Model 1 Model 2 Model 0 Model 1 Model 2

𝑦𝑖,𝑡−1 𝛼1 1 0.1634 0.0962 0.0990 0.1422 0.0679 0.0662

𝑦𝑖,𝑡−2 𝛼2 -0.6 1.0644 1.1822 1.2125 1.0674 1.1784 1.2086

𝑦𝑖,𝑡−3 𝛼3 0.2 0.1325 0.0910 0.0942 0.1187 0.0629 0.0632

𝑦𝑖,1,𝑡−1 𝜆1,1 0.5 0.1777 0.1860 0.1841 0.1320 0.1368 0.1371

𝑦𝑖,1,𝑡−2 𝜆1,2 -0.3 0.5869 0.5763 0.6258 0.5640 0.5617 0.6184

𝑦𝑖,1,𝑡−3 𝜆1,3 0.1 0.1706 0.1744 0.1836 0.1137 0.1213 0.1208

𝑦𝑖,2,𝑡−1 𝜆2,1 0.8 0.8241 0.8155

𝑦𝑖,2,𝑡−2 𝜆2,2 -0.6 0.6390 0.6227

𝑦𝑖,3,𝑡−3 𝜆2,3 0.4 0.4542 0.4148

𝑥𝑖,𝑡 𝛽 1 0.0871 0.0634 0.0613 0.0765 0.0413 0.0408
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Table 8.5: Bias and RMSE for 1,000 Monte Carlo runs, parameter Design D4, and
T=10

Median Bias (MBias)

N=250 N=500

Parameter on Parameter True value Model 0 Model 1 Model 2 Model 0 Model 1 Model 2

𝑦𝑖,𝑡−1 𝛼1 1 0.1805 0.0388 0.0159 0.1546 0.0317 0.0124

𝑦𝑖,𝑡−2 𝛼2 0.6 0.1069 0.0134 -0.0124 0.1038 0.0223 0.0005

𝑦𝑖,𝑡−3 𝛼3 0 -0.0962 -0.1807 -0.2006 -0.1057 -0.1784 -0.1953

𝑦𝑖,1,𝑡−1 𝜆1,1 0.5 0.0240 0.1193 -0.0029 0.0334 0.1037 -0.0113

𝑦𝑖,1,𝑡−2 𝜆1,2 0.3 0.0148 0.0937 0.0151 0.0165 0.0792 0.0008

𝑦𝑖,1,𝑡−3 𝜆1,3 0 -0.1252 -0.0599 -0.1122 -0.1150 -0.0610 -0.1019

𝑦𝑖,2,𝑡−1 𝜆2,1 0.8 0.7844 0.8031

𝑦𝑖,2,𝑡−2 𝜆2,2 0 0.0307 0.0078

𝑦𝑖,3,𝑡−3 𝜆2,3 0 0.0070 -0.0053

𝑥𝑖,𝑡 𝛽 1 0.0836 -0.0028 0.0182 0.0730 -0.0078 0.0105

Robust RMSE (RRMSE)

N=250 N=500

Parameter on Parameter True value Model 0 Model 1 Model 2 Model 0 Model 1 Model 2

𝑦𝑖,𝑡−1 𝛼1 1 0.2209 0.1363 0.1341 0.1749 0.0921 0.0874

𝑦𝑖,𝑡−2 𝛼2 0.6 0.1602 0.1142 0.1200 0.1311 0.0859 0.0833

𝑦𝑖,𝑡−3 𝛼3 0 0.1523 0.2168 0.2367 0.1307 0.1967 0.2110

𝑦𝑖,1,𝑡−1 𝜆1,1 0.5 0.2536 0.2978 0.2697 0.1742 0.2040 0.1861

𝑦𝑖,1,𝑡−2 𝜆1,2 0.3 0.2394 0.2695 0.2687 0.1621 0.1893 0.1729

𝑦𝑖,1,𝑡−3 𝜆1,3 0 0.2502 0.2409 0.2737 0.1893 0.1724 0.1869

𝑦𝑖,2,𝑡−1 𝜆2,1 0.8 0.8516 0.8292

𝑦𝑖,2,𝑡−2 𝜆2,2 0 0.2985 0.2083

𝑦𝑖,3,𝑡−3 𝜆2,3 0 0.2701 0.1856

𝑥𝑖,𝑡 𝛽 1 0.1105 0.0790 0.0839 0.0881 0.0521 0.0543
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Table 8.6: Bias and RMSE for 1,000 Monte Carlo runs, parameter Design D1, and
T=5

Median Bias (MBias)

N=250 N=500

Parameter on Parameter True value Model 0 Model 1 Model 2 Model 0 Model 1 Model 2

𝑦𝑖,𝑡−1 𝛼1 1 0.1913 0.0161 0.0254 0.1787 0.0076 0.0132

𝑦𝑖,𝑡−2 𝛼2 0.6 0.0948 0.0101 0.0153 0.0876 0.0061 0.0080

𝑦𝑖,𝑡−3 𝛼3 0.2 0.0525 0.0052 0.0076 0.0530 0.0043 0.0063

𝑦𝑖,1,𝑡−1 𝜆1,1 0.5 -0.1064 -0.0080 -0.0134 -0.0606 -0.0054 -0.0015

𝑦𝑖,1,𝑡−2 𝜆1,2 0.3 -0.0869 -0.0108 -0.0132 -0.0571 0.0027 0.0050

𝑦𝑖,1,𝑡−3 𝜆1,3 0.1 -0.0254 0.0265 0.0306 -0.0289 0.0017 0.0087

𝑦𝑖,2,𝑡−1 𝜆2,1 0 -0.0204 -0.0119

𝑦𝑖,2,𝑡−2 𝜆2,2 0 0.0251 -0.0027

𝑦𝑖,3,𝑡−3 𝜆2,3 0 0.0091 -0.0014

𝑥𝑖,𝑡 𝛽 1 0.1432 0.0221 0.0324 0.1267 0.0091 0.0133

Robust RMSE (RRMSE)

N=250 N=500

Parameter on Parameter True value Model 0 Model 1 Model 2 Model 0 Model 1 Model 2

𝑦𝑖,𝑡−1 𝛼1 1 0.2360 0.1479 0.1518 0.2030 0.1088 0.1105

𝑦𝑖,𝑡−2 𝛼2 0.6 0.1773 0.1586 0.1576 0.1310 0.1076 0.1072

𝑦𝑖,𝑡−3 𝛼3 0.2 0.1527 0.1552 0.1580 0.1060 0.1006 0.1004

𝑦𝑖,1,𝑡−1 𝜆1,1 0.5 0.2959 0.2994 0.3084 0.1926 0.2026 0.2109

𝑦𝑖,1,𝑡−2 𝜆1,2 0.3 0.2800 0.2883 0.2945 0.1774 0.1734 0.1853

𝑦𝑖,1,𝑡−3 𝜆1,3 0.1 0.2480 0.2776 0.2776 0.1651 0.1750 0.1830

𝑦𝑖,2,𝑡−1 𝜆2,1 0 0.3304 0.2548

𝑦𝑖,2,𝑡−2 𝜆2,2 0 0.3178 0.2262

𝑦𝑖,3,𝑡−3 𝜆2,3 0 0.2997 0.1948

𝑥𝑖,𝑡 𝛽 1 0.1717 0.1087 0.1127 0.1427 0.0730 0.0747
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Table 8.7: Bias and RMSE for 1,000 Monte Carlo runs, parameter Design D1, and
T=10 with network-correlated random effects

Median Bias (MBias)

N=250 N=500

Parameter on Parameter True value Model 0 Model 1 Model 2 Model 0 Model 1 Model 2

𝑦𝑖,𝑡−1 𝛼1 1 0.1007 0.0036 0.0156 0.0937 -0.0015 0.0111

𝑦𝑖,𝑡−2 𝛼2 0.6 0.0380 -0.0185 -0.0093 0.0433 -0.0137 -0.0023

𝑦𝑖,𝑡−3 𝛼3 0.2 0.0499 -0.0041 0.0082 0.0364 -0.0134 -0.0017

𝑦𝑖,1,𝑡−1 𝜆1,1 0.5 0.4205 0.1285 -0.0144 0.3892 0.1947 -0.0087

𝑦𝑖,1,𝑡−2 𝜆1,2 0.3 0.1702 0.0849 0.0062 0.1481 0.0964 -0.0008

𝑦𝑖,1,𝑡−3 𝜆1,3 0.1 0.0865 0.0506 -0.0030 0.0769 0.0659 0.0004

𝑦𝑖,2,𝑡−1 𝜆2,1 0 -0.0180 -0.0062

𝑦𝑖,2,𝑡−2 𝜆2,2 0 0.0074 -0.0006

𝑦𝑖,3,𝑡−3 𝜆2,3 0 -0.0056 0.0003

𝑥𝑖,𝑡 𝛽 1 0.0768 0.0138 0.0172 0.0631 0.0055 0.0076

Robust RMSE (RRMSE)

N=250 N=500

Parameter on Parameter True value Model 0 Model 1 Model 2 Model 0 Model 1 Model 2

𝑦𝑖,𝑡−1 𝛼1 1 0.1509 0.1223 0.1207 0.1220 0.0835 0.0817

𝑦𝑖,𝑡−2 𝛼2 0.6 0.1270 0.1266 0.1240 0.0849 0.0801 0.0770

𝑦𝑖,𝑡−3 𝛼3 0.2 0.1245 0.1232 0.1251 0.0878 0.0836 0.0848

𝑦𝑖,1,𝑡−1 𝜆1,1 0.5 0.4846 0.2862 0.2516 0.4205 0.2608 0.1758

𝑦𝑖,1,𝑡−2 𝜆1,2 0.3 0.2822 0.2573 0.2410 0.2140 0.1948 0.1671

𝑦𝑖,1,𝑡−3 𝜆1,3 0.1 0.2186 0.2264 0.2220 0.1713 0.1724 0.1638

𝑦𝑖,2,𝑡−1 𝜆2,1 0 0.3117 0.1907

𝑦𝑖,2,𝑡−2 𝜆2,2 0 0.2811 0.1840

𝑦𝑖,3,𝑡−3 𝜆2,3 0 0.2633 0.1695

𝑥𝑖,𝑡 𝛽 1 0.1048 0.0752 0.0760 0.0806 0.0530 0.0533
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Table 8.8: Bias and RMSE for 1,000 Monte Carlo runs, parameter Design D1, and
T=10 with second-order rook-design network

Median Bias (MBias)

N=250 N=500

Parameter on Parameter True value Model 0 Model 1 Model 2 Model 0 Model 1 Model 2

𝑦𝑖,𝑡−1 𝛼1 1 0.1587 0.0008 0.0084 0.1530 0.0067 0.0089

𝑦𝑖,𝑡−2 𝛼2 0.6 0.0915 -0.0134 -0.0113 0.0956 -0.0031 -0.0022

𝑦𝑖,𝑡−3 𝛼3 0.2 0.0868 -0.0004 0.0018 0.0821 0.0023 0.0022

𝑦𝑖,1,𝑡−1 𝜆1,1 0.5 -0.0589 0.0010 0.0141 -0.0534 0.0003 0.0005

𝑦𝑖,1,𝑡−2 𝜆1,2 0.3 -0.0580 0.0070 0.0180 -0.0538 0.0036 0.0062

𝑦𝑖,1,𝑡−3 𝜆1,3 0.1 -0.0589 0.0048 0.0033 -0.0499 0.0030 -0.0017

𝑦𝑖,2,𝑡−1 𝜆2,1 0 -0.0123 -0.0117

𝑦𝑖,2,𝑡−2 𝜆2,2 0 -0.0104 -0.0024

𝑦𝑖,3,𝑡−3 𝜆2,3 0 -0.0103 0.0110

𝑥𝑖,𝑡 𝛽 1 0.0891 0.0065 0.0112 0.0870 0.0072 0.0098

Robust RMSE (RRMSE)

N=250 N=500

Parameter on Parameter True value Model 0 Model 1 Model 2 Model 0 Model 1 Model 2

𝑦𝑖,𝑡−1 𝛼1 1 0.1924 0.1137 0.1163 0.1698 0.0802 0.0799

𝑦𝑖,𝑡−2 𝛼2 0.6 0.1413 0.1096 0.1106 0.1240 0.0790 0.0798

𝑦𝑖,𝑡−3 𝛼3 0.2 0.1404 0.1166 0.1197 0.1110 0.0791 0.0779

𝑦𝑖,1,𝑡−1 𝜆1,1 0.5 0.2448 0.2587 0.2631 0.1848 0.1851 0.1816

𝑦𝑖,1,𝑡−2 𝜆1,2 0.3 0.2218 0.2330 0.2450 0.1647 0.1589 0.1693

𝑦𝑖,1,𝑡−3 𝜆1,3 0.1 0.2128 0.2134 0.2185 0.1590 0.1549 0.1585

𝑦𝑖,2,𝑡−1 𝜆2,1 0 0.2394 0.1792

𝑦𝑖,2,𝑡−2 𝜆2,2 0 0.2247 0.1683

𝑦𝑖,3,𝑡−3 𝜆2,3 0 0.2077 0.1403

𝑥𝑖,𝑡 𝛽 1 0.1114 0.0739 0.0749 0.0983 0.0527 0.0530



8 Dynamic Probit Models with Higher-order Time- and Network-lag 257

Table 8.9: Bias and RMSE for 1,000 Monte Carlo runs, parameter Design D1, N=250,
and T=10, using alternative initial conditions for Models M1 and M2 each

Median Bias (MBias), N=250

Parameter on Parameter True value Model 1 Model 1A Model 2 Model 2A

𝑦𝑖,𝑡−1 𝛼1 1 0.0008 0.0007 0.0059 0.0030

𝑦𝑖,𝑡−2 𝛼2 0.6 -0.0098 -0.0102 -0.0083 -0.0080

𝑦𝑖,𝑡−3 𝛼3 0.2 0.0026 0.0035 0.0027 0.0018

𝑦𝑖,1,𝑡−1 𝜆1,1 0.5 -0.0160 -0.0120 -0.0080 -0.0226

𝑦𝑖,1,𝑡−2 𝜆1,2 0.3 0.0083 0.0029 0.0012 -0.0016

𝑦𝑖,1,𝑡−3 𝜆1,3 0.1 0.0051 0.0091 0.0049 0.0031

𝑦𝑖,2,𝑡−1 𝜆2,1 0 -0.0081 0.0023

𝑦𝑖,2,𝑡−2 𝜆2,2 0 0.0052 0.0005

𝑦𝑖,3,𝑡−3 𝜆2,3 0 -0.0084 0.0005

𝑥𝑖,𝑡 𝛽 1 0.0063 0.0069 0.0104 0.0117

Robust RMSE (RRMSE), N=250

Parameter on Parameter True value Model 1 Model 1A Model 2 Model 2A

𝑦𝑖,𝑡−1 𝛼1 1 0.1847 0.1108 0.1151 0.1175

𝑦𝑖,𝑡−2 𝛼2 0.6 0.1360 0.1099 0.1083 0.1094

𝑦𝑖,𝑡−3 𝛼3 0.2 0.1358 0.1090 0.1119 0.1131

𝑦𝑖,1,𝑡−1 𝜆1,1 0.5 0.2254 0.2329 0.2438 0.2619

𝑦𝑖,1,𝑡−2 𝜆1,2 0.3 0.2166 0.2169 0.2312 0.2323

𝑦𝑖,1,𝑡−3 𝜆1,3 0.1 0.2142 0.2256 0.2306 0.2300

𝑦𝑖,2,𝑡−1 𝜆2,1 0 0.2943 0.3064

𝑦𝑖,2,𝑡−2 𝜆2,2 0 0.2847 0.2891

𝑦𝑖,3,𝑡−3 𝜆2,3 0 0.2671 0.2697

𝑥𝑖,𝑡 𝛽 1 0.1124 0.0734 0.0736 0.0742
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Table 8.10: Bias and RMSE for 1,000 Monte Carlo runs, parameter Design D1,
N=500, and T=10, using alternative initial conditions for Models M1 and M2 each

Median Bias (MBias), N=500

Parameter on Parameter True value Model 1 Model 1A Model 2 Model 2A

𝑦𝑖,𝑡−1 𝛼1 1 0.0008 0.0007 0.0059 0.0030

𝑦𝑖,𝑡−2 𝛼2 0.6 -0.0098 -0.0102 -0.0083 -0.0080

𝑦𝑖,𝑡−3 𝛼3 0.2 0.0026 0.0035 0.0027 0.0018

𝑦𝑖,1,𝑡−1 𝜆1,1 0.5 -0.0160 -0.0120 -0.0080 -0.0226

𝑦𝑖,1,𝑡−2 𝜆1,2 0.3 0.0083 0.0029 0.0012 -0.0016

𝑦𝑖,1,𝑡−3 𝜆1,3 0.1 0.0051 0.0091 0.0049 0.0031

𝑦𝑖,2,𝑡−1 𝜆2,1 0 -0.0081

𝑦𝑖,2,𝑡−2 𝜆2,2 0 0.0052

𝑦𝑖,3,𝑡−3 𝜆2,3 0 -0.0084

𝑥𝑖,𝑡 𝛽 1 0.0063 0.0069 0.0104 0.0117

Robust RMSE (RRMSE), N=500

Parameter on Parameter True value Model 1 Model 1A Model 2 Model 2A

𝑦𝑖,𝑡−1 𝛼1 1 0.1847 0.1108 0.1151 0.1635

𝑦𝑖,𝑡−2 𝛼2 0.6 0.1360 0.1099 0.1083 0.1222

𝑦𝑖,𝑡−3 𝛼3 0.2 0.1358 0.1090 0.1119 0.1140

𝑦𝑖,1,𝑡−1 𝜆1,1 0.5 0.2254 0.2329 0.2438 0.1691

𝑦𝑖,1,𝑡−2 𝜆1,2 0.3 0.2166 0.2169 0.2312 0.1568

𝑦𝑖,1,𝑡−3 𝜆1,3 0.1 0.2142 0.2256 0.2306 0.1489

𝑦𝑖,2,𝑡−1 𝜆2,1 0 0.2943

𝑦𝑖,2,𝑡−2 𝜆2,2 0 0.2847

𝑦𝑖,3,𝑡−3 𝜆2,3 0 0.2671

𝑥𝑖,𝑡 𝛽 1 0.1124 0.0734 0.0736 0.1011
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Chapter 9
Horizontal Regression or Vertical Regression to
Generate Counterfactuals?

Cheng Hsiao, Jing Kong, Yimeng Xie and Qiankun Zhou

Abstract Generating counterfactuals through treating a variable as a function of its
own past values or treating a variable as a function of other units, typically being
referred to as horizontal or vertical regression, respectively, is widely used in the
panel measurement of treatment effects. However, their inferences are often based
on different assumptions for the data generating process. We consider unifying the
underlying assumptions of the two approaches by a factor approach and compare their
respective predictive power in terms of the sample configuration of the cross-section
dimension 𝑁 and the time dimension 𝑇 .

9.1 Introduction

Treatment effects for the 𝑖th unit at time 𝑡, Δ𝑖𝑡 are typically defined as the difference
between the outcomes receiving the treatment, denoted as 𝑦1

𝑖𝑡
, and the outcome in

the absence of treatment, denoted as 𝑦0
𝑖𝑡
, such that Δ𝑖𝑡 = 𝑦1

𝑖𝑡
− 𝑦0

𝑖𝑡
. However, it is

impossible to simultaneously observe both 𝑦1
𝑖𝑡

and 𝑦0
𝑖𝑡
. Under the assumption that 𝑦1

𝑖𝑡

is observed, we need to predict 𝑦0
𝑖𝑡
, say �̂�0

𝑖𝑡
, to obtain the estimated treatment effects

Δ̂𝑖𝑡 = 𝑦
1
𝑖𝑡 − �̂�0

𝑖𝑡 .
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With panel data , a linear projection approach is often used to predict the missing
𝑦0
𝑖𝑡

(for example, Hsiao & Zhou, 2024). There is no loss of generality to assume all
the observed values are untreated for 𝑖 = 1, . . . , 𝑁 and 𝑡 = 1, . . . ,𝑇 . Suppose at time
𝑇 +1, the first unit received the treatment, but the rest of the units remain untreated,
then

Y =

©«

𝑦11 · · · 𝑦1𝑇 ?

𝑦21 · · · 𝑦2𝑇 𝑦2,𝑇+1
...

. . .
...

...

𝑦𝑁1 · · · 𝑦𝑁𝑇 𝑦𝑁,𝑇+1

ª®®®®®®®¬
=

©«
y0′

1 ?

Y0 y0
𝑇+1

ª®¬ , (9.1)

where Y0 =
(
y0

2, . . . ,y
0
𝑁

) ′ and y0
𝑖
=

(
𝑦0
𝑖1, . . . , 𝑦

0
𝑖𝑇

) ′
, ”?” denotes the data is unavailable.

Since in this paper, we consider 𝑦1
1𝑡 is observed for 𝑇 +1, . . . ,𝑇 +𝑚, then the issue

of estimating Δ𝑖𝑡 conditional on y1
𝑇+1 is an issue of predicting 𝑦0

1𝑡 (e.g., Hsiao &
Zhou, 2019, 2024). For notational simplicity, we shall drop the superscript 𝑦0

𝑖𝑡
for

𝑖 = 1, . . . , 𝑁 for the prediction of 𝑦0
1,𝑇+1 such that the data matrix takes the form

Y =
©«

y′1 ?

Y0 y𝑇+1

ª®¬ . (9.2)

Under the nonconfoundedness assumption

𝑓 (𝑦𝑖𝑡 |𝑑1𝑡 ) = 𝑓 (𝑦𝑖𝑡 ) for 𝑖 = 1, . . . , 𝑁; 𝑡 = 1, . . . ,𝑇 +𝑚, (9.3)

one may either project 𝑦1,𝑇+1 on its own past value,1

𝑦1,𝑇+1 =
𝑇∑︁
𝑠=1

𝑎𝑠𝑦1,𝑠 + 𝑣1,𝑇+1. (9.4)

or on other units,

𝑦1,𝑇+1 =
𝑁∑︁
𝑗=2
𝑏 𝑗 𝑦 𝑗 ,𝑇+1 +𝑢1,𝑇+1, (9.5)

The former is referred to as the horizontal regression model (HR) and the latter is
referred to as the vertical regression model (VR) by Athey, Bayati, Doudchenko,
Imbens and Khosravi (2021).

Shen, Ding, Sekhon and Yu (2023) showed that the HR and VR regressions
gave identical point estimates of �̂�1,𝑇+1. However, the results of Shen et al. (2023)
only demonstrate the numerical equivalence of the point estimates of �̂�1,𝑇+1. To
obtain the inferential properties of VR and HR estimates, �̂�1,𝑇+1, we need to postulate

1 We consider our 𝑦𝑖𝑡 as the observed sample value deviating from the cross-sectional mean at 𝑡 or
the time series mean for each 𝑖, i.e., there is no intercept for model (9.4) and (9.5).
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explicitly the data generating process of 𝑦𝑖𝑡 . Moreover, Shen et al. (2023) only consider
the prediction of 𝑦1,𝑇+1. In panel measurement literature, often there are multiple
measures of the outcomes of the first unit under the treatment, 𝑦1,𝑇+1, . . . , 𝑦1,𝑇+ℎ, and
multiple outcomes of control units in the absence of treatment, i.e., the data are in the
form

Y =
©«

y′1 ?

Y0 Y1

ª®¬ , (9.6)

where Y1 =
(
y𝑚2,𝑇0+1, . . . ,y

𝑚
𝑁,𝑇0+1

) ′
denotes the (𝑁 −1) ×𝑚 matrix of observations

with y𝑚
𝑗,𝑇+1 =

(
𝑦 𝑗 ,𝑇+1, . . . , 𝑦 𝑗 ,𝑇+𝑚

) ′ for 𝑗 = 2, . . . , 𝑁, and ”?” denotes the data y𝑚1,𝑇+1 =(
𝑦1,𝑇+1, . . . , 𝑦1,𝑇+𝑚

) ′ are missing for 𝑚 > 1. Since 𝑦1,𝑇+ 𝑗 are not available for the HR
regression while 𝑦𝑖,𝑇+ℎ are available, the identity of the point prediction of �̂�1,𝑇+ℎ
between HR and VR no longer holds. This raises the questions: (i) What are the
statistical properties of HR vs VR? (ii) How best to generate HR prediction for ℎ > 1?

In this paper, we give conditions for the DGP for the expected values of
{
𝑎 𝑗

}
and

{𝑏𝑠} to be independent of 𝑁 or 𝑇, respectively in Section 2. In Section 3, we suggest
to formulate the data generating process of 𝑦𝑖𝑡 in terms of a factor model as a unified
framework for considering the statistical properties of HR or VR under (9.4) or (9.5).
Section 4 considers the predictive power of VR and HR . Section 5 provides some
Monte Carlo results. Concluding remarks are in Section 6.

9.2 Assumptions Underlying HR or VR for Statistical Inference

Shen et al. (2023) showed the identity of HR and VR point prediction for 𝑦1,𝑇+1,

�̂�𝐻𝑅1,𝑇+1 = y′𝑇+1Y0
(
Y′0Y0

)− y1, (9.7)

and
�̂�𝑉𝑅1,𝑇+1 = y′1Y′0

(
Y0Y′0

)− y𝑇+1, (9.8)

in terms of the 𝑙2-norm, where y1,y𝑇+1 and Y0 are defined in (9.2) and (·)− denotes
the generalized inverse.

For statistical inference of HR or VR predictors, the underlying data generating
process of 𝑦𝑖𝑡 needs to be postulated. One set of assumptions postulated by Shen et
al. (2023) are

Assumption A1:

𝑦𝑖,𝑇+1 =
𝑇∑︁
𝑠=1

𝛼𝑠𝑦𝑖,𝑠 + 𝜀1,𝑇+1 = 𝛼
′y𝑖 + 𝜀𝑖,𝑇+1, 𝑖 = 1, . . . , 𝑁, (9.9)
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where 𝛼 = (𝛼1, . . . , 𝛼𝑇 )′ is a 𝑇 × 1 vector of constants and y𝑖 = (𝑦𝑖1, . . . , 𝑦𝑖𝑇 )′ is
the observation for 𝑖th unit in the pre-treatment periods. The error 𝜀𝑖,𝑇+1 satisfies
𝐸

(
𝜀𝑖,𝑇+1 |y𝑖

)
= 0 and are independent over 𝑖.

Assumption A2:

𝑦1,𝑡 =

𝑁∑︁
𝑖=2

𝛽𝑖𝑦𝑖,𝑡 + 𝜖1,𝑡 = 𝛽
′ỹ𝑡 + 𝜖1,𝑡 , 𝑡 = 1, . . . ,𝑇 +1, (9.10)

where 𝛽 = (𝛽2, . . . , 𝛽𝑁 )′ is a (𝑁 −1) ×1 vector of constants and ỹ𝑡 = (𝑦2𝑡 , . . . , 𝑦𝑁𝑡 )′
is the observation for control units at time 𝑡. The error 𝜖1,𝑡 satisfies 𝐸

(
𝜖1,𝑡 |ỹ𝑡

)
= 0

and are independent over 𝑡.
However, Assumption A1 and A2 are specific assumptions conditional on sample

configuration of 𝑁 and𝑇 . Assumption A1 assumes that 𝑦𝑖𝑡 is an autoregressive process
of order 𝑇. Assumption A2 assumes 𝑦𝑖𝑡 are cross-correlated over 𝑁 cross-sectional
units.

Under Assumption A1, the algebraic identity between HR and VR predictors no
longer holds when 𝑁 is fixed and 𝑇 increased to 𝑇∗, similarly, for 𝑁 increases to 𝑁∗
under assumption A2. Furthermore, the weight vector𝛼 and 𝛽 are sample configuration
specific. It is not clear what they will approach when 𝑁 and/or 𝑇 increase. Moreover,
the randomness of 𝑦𝑖𝑡 is due to 𝜀𝑖,𝑇+1 or 𝜖1,𝑡 . To justify �̂� =

(
Y′0Y0

)−Y′0y𝑇+1 or
𝛽 =

(
Y0Y′0

)−Y0y′1 being the 𝑙2-norm estimates of the weights 𝛼 and 𝛽, we will need
additional assumptions, where ()− denotes generalized inverse. To justify (9.7) and
(9.8) being the 𝑙2-norm estimates under the panel structure, we propose to replace
Assumption A1 and A2 by2

Assumption B1. For any 𝑁, the 𝑁 × 1 vector y𝑡 = (𝑦1𝑡 , . . . , 𝑦𝑁𝑡 )′ is randomly
distributed with mean 𝜇𝑁 and constant nonsingular covariance matrix Σ𝑁 .

Assumption B2. For any 𝑇, the 𝑇 × 1 vector y𝑖 = (𝑦𝑖1, . . . , 𝑦𝑖𝑇 )′ is randomly
distributed with mean 𝜇𝑇 and constant nonsingular covariance matrix Σ𝑇 .

Under Assumption B1, the 𝑙2-norm estimate of the weight vector 𝛽 converges to a
constant when 𝑇 →∞, [

𝐸
(
ỹ𝑡 ỹ′𝑡

) ]−
𝐸

(
ỹ𝑡 𝑦1,𝑡

)
. (9.11)

Under Assumption B2, the 𝑙2-norm estimate of the weight vector 𝛼 converges to a
constant when 𝑁→∞, [

𝐸
(
y𝑖y′𝑖

) ]−
𝐸

(
y𝑖𝑦𝑖,𝑇+1

)
. (9.12)

9.3 Factor Modeling to Unify the Derivation of Statistical
Properties of HR and VR

The HR model is defined as

𝑦𝑖,𝑇+1 = 𝐸
(
𝑦𝑖,𝑇+1 |y𝑖

)
+𝜂𝑖,𝑇+1 = 𝛼′y𝑖 +𝜂𝑖,𝑇+1. (9.13)

2 Assumption B1 and B2 can allow 𝛼 and 𝛽 being random (e.g., Swamy, 1971, Hsiao, 1974, 1975).
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The VR model is defined as

𝑦𝑖,𝑇+1 = 𝐸
(
𝑦𝑖,𝑇+1 |ỹ−𝑖𝑇+1

)
+𝜂∗𝑖,𝑇+1 = 𝛽

′ỹ−𝑖𝑇+1 +𝜂
∗
𝑖,𝑇+1, (9.14)

where y𝑖 = (𝑦𝑖1, . . . 𝑦𝑖𝑇 )′ , ỹ−𝑖
𝑇+1 =

(
𝑦1𝑡 , . . . , 𝑦𝑖−1,𝑡 , 𝑦𝑖+1,𝑡 , . . . 𝑦𝑁𝑡

) ′ denotes (𝑁 −1) ×1
vector of 𝑦 𝑗𝑡 excluding 𝑦𝑖𝑡 .the data for control units at time 𝑡. 𝐸 (·|·) denotes
linear projection or conditional expectation if 𝑦𝑖𝑡 are jointly normally distributed.
We consider the probability distribution of HR or VR predictor �̂�1,𝑇+1 under the
assumption that the data generating process of 𝑦𝑖𝑡 is given by 3

𝑦𝑖𝑡 = 𝜆
′
𝑖f𝑡 +𝑢𝑖𝑡 , 𝑖 = 1, . . . , 𝑁; 𝑡 = 1, . . . ,𝑇 +𝑚, (9.15)

where the time-varying factors , f𝑡 , are common across 𝑖 with their impact on the
𝑖-th individual measured by 𝜆𝑖 , where 𝜆𝑖 are time-invariant but vary across 𝑖 due to
difference in endowment and innate ability. The idiosyncratic component 𝑢𝑖𝑡 varies
over 𝑖 and 𝑡 with 𝐸 (𝑢𝑖𝑡 |𝜆𝑖 , f𝑡 ) = 0. The number of factors is unknown, but can be
identified following the procedure of Bai and Ng (2002) or Ahn and Horenstein
(2013).

Let Λ = (𝜆1,𝜆2, . . . ,𝜆𝑁 )′ = (𝜆1, Λ̃)′, F = (f1, . . . , f𝑇 )′, u𝑖 = (𝑢𝑖1, . . ., 𝑢𝑖𝑇 )′, and
u𝑡 = (𝑢1𝑡 , 𝑢2𝑡 , . . . , 𝑢𝑁𝑡 )′ = (𝑢1𝑡 , ũ′𝑡 )′. Stacking all 𝑁 cross-sectional units one after
another at time 𝑡, y𝑡 = (𝑦1𝑡 , 𝑦2𝑡 , . . ., 𝑦𝑁𝑡 )′ = (𝑦1𝑡 , ỹ′𝑡 )′, we have

y𝑡 = Λf𝑡 +u𝑡 , 𝑡 = 1, . . . ,𝑇 +𝑚. (9.16)

Alternatively, we can stack 𝑖th individual’s 𝑇 time series observations as y𝑖 =
(𝑦𝑖1, . . ., 𝑦𝑖𝑇 )′, then

y𝑖 = F𝜆𝑖 +u𝑖 , 𝑖 = 1, . . . , 𝑁. (9.17)

For model (9.15), the common assumption for 𝜆𝑖 and f𝑡 are (e.g., Bai & Ng, 2006,
2021, Bai, 2009, Li, Shen & Zhou, 2024):

(i) both 𝜆𝑖 and f𝑡 are fixed constants (e.g., Hsiao, Ching & Wan, 2012 );
(ii) 𝜆𝑖 is fixed and f𝑡 is randomly distributed with 𝐸 (f𝑡 ) = 𝜇 𝑓 ; 4

(iii) f𝑡 is fixed and 𝜆𝑖 is randomly distributed with 𝐸 (𝜆𝑖) = 𝜇𝜆; 5

Following Bai (2003, 2009) and Bai and Ng (2002, 2021), we assume:
Assumption C1: The factor process satisfies 𝐸 ∥f𝑡 ∥4 ≤ 𝑀 <∞ and 1

𝑇

∑𝑇
𝑡=1 f𝑡 f′𝑡 →𝑝

Σ 𝑓 , if f𝑡 is random or
 1
𝑇

∑𝑇
𝑡=1 f𝑡 f′𝑡 −Σ 𝑓

→ 0 if f𝑡 is fixed constant, where Σ 𝑓 is an
𝑟 × 𝑟 positive definite matrix with bounded eigenvalues.6

3 It may be worthwhile to explore treatment effects for sub-layer units within the context of 3D
factor models , as discussed by Jin, Lu and Su (2024).
4 Here, we are considering 𝑦𝑖𝑡 as the deviation from its time series mean, it is equivalent to assuming
𝜇 𝑓 = 0.
5 When we are considering 𝑦𝑖𝑡 as the deviation from its cross-sectional mean, it is equivalent to
assuming 𝜇𝜆 = 0.
6 We let ∥A∥ =

√︁
𝑡𝑟 (AA′ ) .
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Assumption C2: The loading 𝜆𝑖 is either fixed constant with ∥𝜆𝑖 ∥ < ∞ or is
stochastic with 𝐸 ∥𝜆𝑖 ∥4 ≤ 𝑀 < ∞. If 𝜆𝑖 is random, then 1

𝑁

∑𝑁
𝑖=1𝜆𝑖𝜆

′
𝑖
→𝑝 Σ𝜆. If 𝜆𝑖

is fixed, then
 1
𝑁

∑𝑁
𝑖=1𝜆𝑖𝜆

′
𝑖
−Σ𝜆

→ 0, where Σ𝜆 is an 𝑟 × 𝑟 positive definite matrix
with bounded eigenvalues.

and either
Assumption C3: The random error terms u𝑡 is independently identically distributed

over 𝑡 with nonsingular covariance matrix

𝐸 (u𝑡u′𝑡 ) = Ω̃ =
©«
𝜎2

1 c′

c Ω

ª®¬ , (9.18)

where 𝜎2
1 = 𝐸

(
𝑢2

1𝑡
)
, Ω = 𝐸 (ũ𝑡 ũ′𝑡 ), and c = 𝐸 (ũ𝑡𝑢1𝑡 ) with ũ𝑡 = (𝑢2𝑡 , . . . , 𝑢𝑁𝑡 )′.

Moreover, all 𝑁 nonzero eigenvalues of Ω̃ are 𝑂 (1).
or
Assumption C4: The random error terms u𝑖 is independently identically distributed

over 𝑖 with nonsingular covariance matrix

𝐸
©«
𝑢𝑖,𝑇+1

u𝑖

ª®¬
(
𝑢𝑖,𝑇+1,u′𝑖

)
=

©«
𝜎2

1 c∗′

c∗ Ω∗
ª®¬ .

where 𝜎2
1 = 𝐸

(
𝑢2
𝑖1
)
, Ω∗ = 𝐸 (u𝑖u′𝑖), and c∗ = 𝐸 (u𝑖𝑢𝑖,𝑇+1) with u𝑖 = (𝑢𝑖1, . . ., 𝑢𝑖𝑇 )′.

Moreover, all 𝑇 nonzero eigenvalues of Ω∗ are 𝑂 (1).
Assumptions C1 and C2 are standard assumptions for factor models . They allow

Λ and F to be either fixed constants or random. Assumption C3 allows 𝑢𝑖𝑡 to be
heteroskedastic and weakly cross-correlated but independent over 𝑡. Assumption C4
allows 𝑢𝑖𝑡 to be serially correlated but independent over 𝑖. In principle, one can allow
𝑢𝑖𝑡 to be both weakly cross-correlated and weakly time-dependent as Bai (2003,
2009) or Hsiao, Shi and Zhou (2022).

There is no loss of generality to let 𝑖 = 1 and 𝑡 = 𝑇 +1 in (9.13) or (9.14), i.e., only
the first unit is treated and there is only one post-treatment period.

Lemma 9.1 For cases (i), (ii) and (iii), conditional on (Y0,y1, ỹ𝑇+1) ,
(a) Under Assumption C1, C2 and C4, the HR model is a constant parameter

regression model

𝑦1,𝑇+1 = 𝐸
(
𝑦1,𝑇+1 |y1

)
+𝜂𝑇+1 = 𝛼′y1 +𝜂𝑇+1, (9.19)

where
𝛼 = (FΣ𝜆F′ +Ω∗)−1 (FΣ𝜆f𝑇+1 + c∗) , (9.20)

and the variance of 𝜂𝑇+1 equals to

𝜎2
𝜂 = 𝜎

2
1 + f′𝑇+1Σ𝜆f𝑇+1− (f′𝑇+1Σ𝜆F′ + c∗′) (FΣ𝜆F′ +Ω∗)−1 (FΣ𝜆f𝑇+1 + c∗) . (9.21)

The 𝑙2-norm weight vector for 𝛼 is estimated by
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�̂� =

(
𝑁∑︁
𝑖=2

y𝑖y′𝑖

)−1 𝑁∑︁
𝑖=2

y𝑖𝑦𝑖,𝑇+1 =
(
Y′0Y0

)−1 Y′0y𝑇+1. (9.22)

When 𝑁→∞, �̂�→𝑝 𝛼.

(b) Under Assumption C1-C3, the VR model is a constant parameter regression
model

𝑦1,𝑇+1 = 𝐸
(
𝑦1,𝑇+1 |ỹ𝑇+1

)
+𝜂∗𝑇+1 = 𝛽

′ỹ𝑇+1 +𝜂∗𝑇+1, (9.23)

where
𝛽 = (Λ̃Σ 𝑓 Λ̃′ +Ω)−1 (Λ̃Σ 𝑓 𝜆1 + c), (9.24)

and

𝜎2
𝜂∗ = 𝜎

2
1 +𝜆

′
1Σ 𝑓 𝜆1− (𝜆′1Σ 𝑓 Λ̃

′ + c′) (Λ̃Σ 𝑓 Λ̃′ +Ω)−1 (Λ̃Σ 𝑓 𝜆1 + c). (9.25)

The 𝑙2-norm weight vector for 𝛽 is estimated by

𝛽 =

(
𝑇∑︁
𝑡=1

ỹ𝑡 ỹ′𝑡

)−1 𝑇∑︁
𝑡=1

ỹ𝑡 𝑦1𝑡 =
(
Y0Y′0

)−1 Y0y1. (9.26)

When 𝑇 →∞, 𝛽→𝑝 𝛽.

Proof is provided in the Appendix.
Given the results of Lemma 9.1, the HR predictor of 𝑦1,𝑇+1 is

�̂�𝐻𝑅1,𝑇+1 = �̂�
′y1, (9.27)

where �̂� is provided in (9.22), and the VR prediction of 𝑦1,𝑇+1 is

�̂�𝑉𝑅1,𝑇+1 = 𝛽
′ỹ𝑇+1, (9.28)

where 𝛽 is provided in (9.26).

Lemma 9.2 Under Assumptions C1 and C2, conditional on (Y0,y1, ỹ𝑇+1) , when 𝑢𝑖𝑡
is i.i.d over 𝑖 and 𝑡,

(a) The MSPE for VR is smaller than that of the HR when 𝑇 →∞ and 𝑁 is finite
or when (𝑁,𝑇) →∞ and 𝑁

𝑇
→ 0.

(b) When 𝑁→∞ and 𝑇 is fixed or when (𝑁,𝑇) →∞ and 𝑇
𝑁
→ 0, the MSPE for

HR is smaller than that of the VR.

Proof is provided in the Appendix.
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9.4 More than One Period Ahead Measurement of Treatment
Effects

When 𝑦1,𝑇+1, . . . , 𝑦1,𝑇+𝑚 and Y1 are unknown, Bai and Ng (2006) suggest to predict
𝑦1,𝑇+ℎ by the diffusion model approach, namely, predicting 𝑦1,𝑇+ℎ by

�̂�1,𝑇+ℎ = �̂�
′
1 f̂𝑇 , (9.29)

which in the case of HR or VR model, would imply predicting 𝑦1,𝑇+ℎ by (9.27) or
(9.28), where �̂� and 𝛽 are given by (9.22) and (9.26), respectively. In other words, the
diffusion model prediction of 𝑦1,𝑇+ℎ is a constant for ℎ = 1, . . . ,𝑚. However, in the
case of panel treatment effects measurement, there are post-treatment control units
information such as the data in the form of (9.6) that can be exploited to get more
accurate prediction of 𝑦1,𝑇+ℎ . Here, we suggest three approaches:

Approach 1: VR prediction

�̂�𝑉𝑅1,𝑇+ℎ = 𝛽
′ỹ𝑇+ℎ, (9.30)

where 𝛽 is estimated by (9.26) and ỹ𝑇+ℎ =
(
𝑦2,𝑇+ℎ, 𝑦3,𝑇+ℎ, . . . , 𝑦𝑁,𝑇+ℎ

) ′.
Approach 2: HR prediction conditional on Y0, ỹ𝑇+ℎ and y1,

𝑦1,𝑇+ℎ = 𝐸
(
𝑦1,𝑇+ℎ |Y0, ỹ𝑇+ℎ,y1

)
+𝜂𝑇+ℎ = 𝛼 (ℎ)′y1 +𝜂𝑇+ℎ, (9.31)

where 𝛼 (ℎ) =
(
𝐸

(
y𝑖y′𝑖

) )−1
𝐸

(
y𝑖𝑦𝑖,𝑇+ℎ

)
. Then the 𝑙2-norm estimate of 𝛼 (ℎ) is given

by

�̂� (ℎ) =

(
𝑁∑︁
𝑖=2

y𝑖y′𝑖

)−1 𝑁∑︁
𝑖=2

y𝑖𝑦𝑖,𝑇+ℎ =
(
Y′0Y0

)−1 Y′0ỹ𝑇+ℎ, (9.32)

and the associated HR predicted outcome

�̂�
𝐻𝑅,1
1,𝑇+ℎ = �̂�

(ℎ)′y1, ℎ = 1, . . . ,𝑚. (9.33)

Approach 3: HR prediction conditional on y1, Y0 and Y1

𝑦1,𝑇+ℎ = 𝐸
(
𝑦1,𝑇+ℎ |y1,Y0, ŷ𝑇+ℎ−1

1

)
+𝜂∗∗𝑇+ℎ, (9.34)

where ŷ𝑇+ℎ−1
1 =

(
y′1, �̂�1,𝑇+1, . . . , �̂�1,𝑇+ℎ−1

) ′
. Since the outcomes of the first unit at

period 𝑇 + 𝑗 , denoted as �̂�1,𝑇+ 𝑗 are not available for 𝑗 = 1, . . . , ℎ− 1, we consider
replacing unknown 𝑦1,𝑇+ 𝑗 by VR predictor

�̂�1,𝑇+ 𝑗 = 𝛽
′ỹ𝑇+ 𝑗 , 𝑗 = 1, . . . , ℎ−1, (9.35)

in implementing HR. Then the associated predictor is:

�̂�
𝐻𝑅,2
1,𝑇+ℎ = �̂�

′ŷ𝑇+ℎ−1
1 , ℎ = 1, . . . ,𝑚, (9.36)
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where ŷ𝑇+ℎ−1
1 = (y′1, �̂�1,𝑇+1, ..., �̂�1,𝑇+ℎ−1),

�̂� =

(
𝑁∑︁
𝑖=2

y𝑇+ℎ−1
𝑖 y𝑇+ℎ−1′

𝑖

)−1 (
𝑁∑︁
𝑖=2

y𝑇+ℎ−1
𝑖 𝑦𝑖,𝑇+ℎ

)
=

(
Y𝑇+ℎ−1′Y𝑇+ℎ−1

)−1
Y𝑇+ℎ−1′ỹ𝑇+ℎ, (9.37)

Y𝑇+ℎ−1 =
(
Y0,Y1,𝑇+ℎ−1

)
, Y1,𝑇+ℎ−1 = (ỹ𝑇+1, ỹ𝑇+2, . . . , ỹ𝑇+ℎ−1) and

ỹ𝑇+𝑠 =
(
𝑦2,𝑇+𝑠 , 𝑦3,𝑇+𝑠 , . . . , 𝑦𝑁,𝑇+𝑠

) ′ for 𝑠 = 1,2, . . . , ℎ−1.

Lemma 9.3 Approach 1 (e.g., (9.30)), Approach 2 (e.g., (9.33)) and Approach 3 (e.g.,
(9.36)) yield identical point prediction for 𝑦1,𝑇+ℎ .

Proof is provided in the Appendix.

Lemma 9.4 Suppose Assumption C1 and C2 hold, ℎ is fixed and 𝑢𝑖𝑡 is i.i.d over 𝑖
and 𝑡. Denote y𝑇+ℎ−1

1 = (y′1, 𝑦1,𝑇+1, 𝑦1,𝑇+2, . . . , 𝑦1,𝑇+ℎ−1)′.
(i) When 𝑇 →∞ and 𝑁 is finite or (𝑁,𝑇) →∞ and 𝑁

𝑇
→ 0, the VR prediction of

𝑦1,𝑇+ℎ using �̂�𝑉𝑅1,𝑇+ℎ has smaller MSPE than that using �̂�𝐻𝑅,11,𝑇+ℎ.
(ii) When 𝑁→∞ and 𝑇 is finite or (𝑁,𝑇) →∞ and 𝑇

𝑁
→ 0, the HR prediction of

𝑦1,𝑇+ℎ using �̂�𝐻𝑅,11,𝑇+ℎ has a smaller MSPE than that using �̂�𝑉𝑅1,𝑇+ℎ.
(iii) If y1, Y0, Y1, y𝑇+ℎ−1

1 are available, define the VR prediction as

�̂�
𝑉𝑅,0
1,𝑇+ℎ = 𝛽

′ỹ𝑇+ℎ, (9.38)

where 𝛽 =
(
Y𝑇+ℎ−1Y𝑇+ℎ−1′)−1 Y𝑇+ℎ−1 (

y𝑇+ℎ1
) ′
, where Y𝑇+ℎ−1 =

(
Y0,Y𝑇+ℎ−1

1
)
. Sup-

pose 𝑇 →∞ and 𝑁
𝑇
→ 0, then prediction of 𝑦1,𝑇+ℎ using �̂�𝑉𝑅1,𝑇+ℎ has the same MSPE

as that using �̂�𝑉𝑅,01,𝑇+ℎ.
(iv) If y1, Y0, Y1, y𝑇+ℎ−1

1 are available, define the HR prediction as

�̂�
𝐻𝑅,0
1,𝑇+ℎ = �̂�

′y𝑇+ℎ−1
1 , (9.39)

where �̂� is defined in (9.37). Suppose 𝑁→∞ and 𝑇
𝑁
→ 0, then the prediction using

�̂�
𝐻𝑅,0
1,𝑇+ℎ is smaller than that using �̂�𝐻𝑅,11,𝑇+ℎ in (9.33).

Proof is provided in the Appendix.

Remark 9.1 Under Assumption C1 and C2, Lemma 9.3 implies that the diffusion
index prediction of 𝑦1,𝑇+ℎ in (9.30) or (9.31) yields identical point prediction. There
is no need to consider making use of observed ỹ𝑇+1, . . . , ỹ𝑇+ℎ−1 as by (9.36). They do
not change the prediction of 𝑦1,𝑇+ℎ . However, their prediction error variance depends
on the sample configuration of 𝑁 and 𝑇. Moreover, when VR prediction is considered
and sample size is sufficiently large, the feasible predictor �̂�𝑉𝑅1,𝑇+ℎ is shown to be as
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accurate as the infeasible predictor �̂�𝑉𝑅,01,𝑇+ℎ. In the case where HR prediction is used,
however, the feasible predictor �̂�𝐻𝑅,11,𝑇+ℎ is shown to be less accurate as the infeasible
predictor �̂�𝐻𝑅,01,𝑇+ℎ.

9.5 Monte Carlo Simulations

We consider a panel model with only one factor:

𝑦𝑖𝑡 = 𝜆𝑖 𝑓𝑡 +𝑢𝑖𝑡 (9.40)

where 𝜆𝑖 ∼ 𝑖.𝑖.𝑑. N(1,1) are independent of the error term 𝑢𝑖𝑡 ∼ 𝑖.𝑖.𝑑. N(0,𝜎2
𝑢)

with 𝜎𝑢 = 1 and the factor 𝑓𝑡 is generated as

(1) 𝑓𝑡 = 𝑣𝑡 ,
(2) 𝑓𝑡 = 0.5 𝑓𝑡−1 + 𝑣𝑡 ,
(3) 𝑓𝑡 = 0.9 𝑓𝑡−1 + 𝑣𝑡 ,

(9.41)

where 𝑣𝑡 ∼ 𝑖.𝑖.𝑑. N(0,𝜎2
𝑣 ) with 𝜎𝑣 = 1. We set the number of control units to be

𝑁 = 30,50,100, the pre-treatment time𝑇 = 30,50,100, and the post-treatment periods
ℎ = 1,2,3,4,5. The number of replications is set at 𝑅 = 1000.

Though there is algebraic equivalence among Approach 1, 2 , and 3, we include all
of them to verify our Lemma 9.3. We also compare the multi-period ahead prediction
accuracy of feasible horizontal regression (Approach 3 defined in (9.36)), infeasible
horizontal regression7 (9.39), and the diffusion model prediction (Bai & Ng, 2006)
under the assumption that the factor dimension 𝑟 is known (here 𝑟 = 1), but the factor
and factor loading are unknown. We consider two versions of the diffusion model
method.

Diffusion model method A:

• Step 1: Use PCA approach to estimate 𝑓𝑡 for 𝑡 = 1, · · · ,𝑇 based on the data
{𝑦𝑖𝑡 }𝑖=1, · · · ,𝑁+1

𝑡=1, · · · ,𝑇 ;
• Step 2: Regress 𝑦1,𝑡 on 𝑓𝑡 for 𝑡 = 1, ...,𝑇 to get estimated factor loading �̂�1 =∑𝑇

𝑡=1 𝑓𝑡 𝑦1,𝑡∑𝑇
𝑡=1 𝑓

2
𝑡

;
• Step 3: Compute predicted value for 𝑦1,𝑇+ℎ by:

�̂�
𝐷𝐹,𝐴

1,𝑇+ℎ = �̂�1 𝑓𝑇 (9.42)

Diffusion model method B:

7 It is unnecessary to include the infeasible vertical regression (9.38), as it produces identical
predictions to the infeasible horizontal regression by Shen et al. (2023).
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• Step 1: Use PCA approach to estimate 𝑓𝑡 for 𝑡 = 1, · · · ,𝑇 based on the data
{𝑦𝑖𝑡 }𝑖=1, · · · ,𝑁+1

𝑡=1, · · · ,𝑇 ;
• Step 2: Regress 𝑦1,𝑡 on 𝑓𝑡−ℎ for 𝑡 = ℎ + 1, ...,𝑇 to get estimated coefficients
𝑐ℎ =

∑𝑇
𝑡=ℎ+1 𝑓𝑡−ℎ𝑦1,𝑡∑𝑇
𝑡=ℎ+1 𝑓

2
𝑡−ℎ

8;
• Step 3: Compute predicted value for 𝑦1,𝑇+ℎ by:

�̂�
𝐷𝐹,𝐵

1,𝑇+ℎ = 𝑐ℎ 𝑓𝑇 . (9.43)

We consider three criteria for comparisons: Bias, Mean Absolute Bias (MAB), and
Root Mean Squared Prediction Error (RMSPE). Bias represents the mean difference
between the true value and the predicted value at each post-treatment time point,
while MAB is the mean of the absolute bias. RMSPE is the square root of the mean
of the squared difference between the true value and the predicted value.

Table 9.1: Simulation Results for 2-period ahead predictions using Approach 1, 2, 3
and the diffusion method under DGP (1).

N T
Approach 1 Approach 2 Approach 3

Bias MAB RMSPE Bias MAB RMSPE Bias MAB RMSPE

10
30 0.0146 1.0183 1.2925 0.0146 1.0183 1.2925 0.0146 1.0183 1.2925

50 -0.0301 0.9186 1.1558 -0.0301 0.9186 1.1558 -0.0301 0.9186 1.1558

100 -0.0012 0.8635 1.0791 -0.0012 0.8635 1.0791 -0.0012 0.8635 1.0791

20
30 -0.0004 1.4036 1.7925 -0.0004 1.4036 1.7925 -0.0004 1.4036 1.7925

50 0.0012 1.0433 1.3149 0.0012 1.0433 1.3149 0.0012 1.0433 1.3149

100 0.0448 0.9175 1.1603 0.0448 0.9175 1.1603 0.0448 0.9175 1.1603

30
10

0.0508 1.0386 1.3261 0.0508 1.0386 1.3261 0.0508 1.0386 1.3261

50 -0.0393 0.9035 1.1489 -0.0393 0.9035 1.1489 -0.0393 0.9035 1.1489

100 0.0011 0.8746 1.0861 0.0011 0.8746 1.0861 0.0011 0.8746 1.0861

8 Our data is generated with 𝐸 ( 𝑓𝑡 ) = 0 in the current simulation. If 𝐸 ( 𝑓𝑡 ) = 𝜇 𝑓 ≠ 0, then we regress
𝑦1,𝑡 on the intercept and 𝑓𝑡−ℎ and generate the prediction for 𝑦1,𝑇+ℎ by the estimated intercept plus
�̂�ℎ 𝑓𝑇 .
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Table 9.2: Simulation Results for 2-period ahead predictions using Approach 1, 2, 3
and the diffusion method under DGP (2).

N T
Approach 1 Approach 2 Approach 3

Bias MAB RMSPE Bias MAB RMSPE Bias MAB RMSPE

10
30 -0.0148 1.0269 1.2883 -0.0148 1.0269 1.2883 -0.0148 1.0269 1.2883

50 0.0221 0.9766 1.2178 0.0221 0.9766 1.2178 0.0221 0.9766 1.2178

100 -0.0361 0.8715 1.0958 -0.0361 0.8715 1.0958 -0.0361 0.8715 1.0958

20
30 0.0197 1.4870 1.8576 0.0197 1.4870 1.8576 0.0197 1.4870 1.8576

50 -0.0730 1.0697 1.3421 -0.0730 1.0697 1.3421 -0.0730 1.0697 1.3421

100 -0.0455 0.9572 1.2063 -0.0455 0.9572 1.2063 -0.0455 0.9572 1.2063

30
10

-0.0427 0.9788 1.2483 -0.0427 0.9788 1.2483 -0.0427 0.9788 1.2483

50 -0.0620 0.9056 1.1545 -0.0620 0.9056 1.1545 -0.0620 0.9056 1.1545

100 -0.0045 0.9007 1.1299 -0.0045 0.9007 1.1299 -0.0045 0.9007 1.1299

Table 9.3: Simulation Results for 5-period ahead predictions using Approach 1, 2, 3
and the diffusion method under DGP (3).

N T
Approach 1 Approach 2 Approach 3

Bias MAB RMSPE Bias MAB RMSPE Bias MAB RMSPE

10
30 -0.0391 1.0682 1.3359 -0.0391 1.0682 1.3359 -0.0391 1.0682 1.3359

50 -0.0064 0.9561 1.2048 -0.0064 0.9561 1.2048 -0.0064 0.9561 1.2048

100 -0.0096 0.8722 1.0954 -0.0096 0.8722 1.0954 -0.0096 0.8722 1.0954

20
30 -0.0505 1.4530 1.8572 -0.0505 1.4530 1.8572 -0.0505 1.4530 1.8572

50 0.0068 1.0723 1.3506 0.0068 1.0723 1.3506 0.0068 1.0723 1.3506

100 -0.0113 0.8984 1.1354 -0.0113 0.8984 1.1354 -0.0113 0.8984 1.1354

30
10

-0.0047 1.0710 1.3443 -0.0047 1.0710 1.3443 -0.0047 1.0710 1.3443

50 -0.0483 0.9615 1.2174 -0.0483 0.9615 1.2174 -0.0483 0.9615 1.2174

100 0.0093 0.8956 1.1317 0.0093 0.8956 1.1317 0.0093 0.8956 1.1317
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Table 9.4: Simulation Results for 1-period ahead predictions using infeasible hori-
zontal method (9.39), Approach 3, and the diffusion methods (9.42), (9.43) under
DGP 1-3.

N T
Infeasible HR Approach 3 DiffusionA DiffusionB

Bias MAB RMSPE Bias MAB RMSPE Bias MAB RMSPE Bias MAB RMSPE

DGP (1)

10
50 -0.0120 0.9240 1.1642 -0.0120 0.9240 1.1642 -0.0823 1.5900 2.1726 -0.1054 1.2581 1.6746

100 0.0007 0.8841 1.1219 0.0007 0.8841 1.1219 -0.1309 1.6457 2.2551 -0.0400 1.3373 1.7847

200 0.0416 0.8173 1.0269 0.0416 0.8173 1.0269 0.0583 1.5768 2.2154 0.0707 1.2896 1.7507

500
20

0.0269 0.8166 1.0174 0.0269 0.8166 1.0174 -0.0118 1.5920 2.2089 0.0052 1.3360 1.7979

700 0.0143 0.8372 1.0393 0.0143 0.8372 1.0393 0.0462 1.5707 2.1943 0.0071 1.3004 1.7556

1000 0.0390 0.8167 1.0335 0.0390 0.8167 1.0335 0.1781 1.5891 2.2087 0.0695 1.2596 1.7118

DGP (2)

10
50 -0.0224 0.9303 1.1691 -0.0224 0.9303 1.1691 -0.0229 1.3545 1.8484 -0.0055 1.2839 1.7455

100 -0.0736 0.8689 1.1076 -0.0736 0.8689 1.1076 -0.0725 1.3811 1.8696 -0.0392 1.2841 1.7270

200 -0.0346 0.8592 1.0875 -0.0346 0.8592 1.0875 -0.0265 1.4030 1.9315 -0.0407 1.2888 1.7297

500
20

-0.0019 0.8495 1.0475 -0.0019 0.8495 1.0475 -0.0603 1.4844 2.0122 -0.0441 1.3526 1.7819

700 0.0010 0.8510 1.0621 0.0010 0.8510 1.0621 0.0731 1.4960 2.0053 0.0720 1.3923 1.8465

1000 0.0162 0.8415 1.0333 0.0162 0.8415 1.0333 0.0215 1.4609 2.0344 0.0223 1.3668 1.8265

DGP (3)

10
50 -0.0217 0.9354 1.1724 -0.0217 0.9354 1.1724 -0.0287 1.2874 1.7343 -0.0203 1.2811 1.7412

100 -0.0715 0.8707 1.1029 -0.0715 0.8707 1.1029 -0.0448 1.3246 1.7743 -0.0468 1.3126 1.7628

200 -0.0305 0.8613 1.0884 -0.0305 0.8613 1.0884 -0.0336 1.3297 1.8035 -0.0371 1.3032 1.7609

500
20

-0.0023 0.8438 1.0456 -0.0023 0.8438 1.0456 -0.0567 1.3608 1.8252 -0.0632 1.3571 1.8033

700 0.0002 0.8501 1.0656 0.0002 0.8501 1.0656 0.0750 1.4004 1.8772 0.0681 1.4032 1.8631

1000 0.0093 0.8306 1.0314 0.0093 0.8306 1.0314 0.0186 1.3648 1.8336 0.0026 1.3667 1.8145
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Table 9.5: Simulation Results for 2-period ahead predictions using infeasible hori-
zontal method (9.39), Approach 3, and the diffusion methods (9.42), (9.43) under
DGP 1-3.

N T
Infeasible HR Approach 3 DiffusionA DiffusionB

Bias MAB RMSPE Bias MAB RMSPE Bias MAB RMSPE Bias MAB RMSPE

DGP (1)

10
50 0.0028 0.9349 1.1701 0.0026 0.9372 1.1754 -0.1393 1.6082 2.1775 -0.0390 1.2641 1.6763

100 -0.0088 0.8761 1.1252 -0.0089 0.8766 1.1261 0.0055 1.6386 2.3981 -0.0100 1.3065 1.7775

200 -0.0629 0.9114 1.1290 -0.0629 0.9113 1.1295 -0.0447 1.6896 2.3160 -0.0697 1.3203 1.7755

500
20

-0.0136 0.8445 1.0581 -0.0124 0.8441 1.0578 0.0125 1.6642 2.2295 0.0148 1.3586 1.7619

700 0.0276 0.8155 1.0299 0.0259 0.8149 1.0306 -0.0932 1.5292 2.0718 -0.0304 1.3165 1.7328

1000 -0.0522 0.8134 1.0212 -0.0541 0.8125 1.0200 -0.0978 1.6266 2.2929 -0.0991 1.3201 1.7740

DGP (2)

10
50 -0.0354 0.9104 1.1469 -0.0322 0.9123 1.1503 0.0477 1.5771 2.1909 0.0142 1.3070 1.7813

100 -0.0181 0.8829 1.1074 -0.0183 0.8838 1.1091 0.0390 1.7132 2.4040 -0.0267 1.4467 2.0194

200 -0.0395 0.8559 1.0728 -0.0390 0.8559 1.0725 -0.0158 1.6585 2.2874 -0.0126 1.4081 1.8793

500
20

0.0307 0.8405 1.0773 0.0359 0.8401 1.0774 0.0595 1.5945 2.2163 0.0170 1.4291 1.9067

700 0.0277 0.8266 1.0395 0.0273 0.8271 1.0388 0.0326 1.5639 2.1350 0.0795 1.4220 1.9086

1000 0.0089 0.8310 1.0443 0.0132 0.8301 1.0450 0.0891 1.6463 2.2449 0.0940 1.4510 1.9237

DGP (3)

10
50 -0.0341 0.9231 1.1567 -0.0322 0.9259 1.1626 0.0358 1.5947 2.2056 0.0325 1.5214 2.1030

100 -0.0122 0.8780 1.1029 -0.0124 0.8790 1.1041 -0.0059 1.6989 2.4129 -0.0248 1.6683 2.3586

200 -0.0362 0.8634 1.0770 -0.0354 0.8629 1.0765 0.0096 1.6875 2.3306 0.0165 1.6231 2.2210

500
20

0.0377 0.8517 1.0875 0.0462 0.8506 1.0873 0.0200 1.6407 2.2488 0.0016 1.6598 2.2800

700 0.0318 0.8213 1.0367 0.0299 0.8257 1.0383 0.0667 1.6010 2.2022 0.1052 1.6147 2.2407

1000 0.0181 0.8328 1.0454 0.0207 0.8358 1.0523 0.1224 1.6509 2.2167 0.1285 1.6880 2.2960
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Table 9.6: Simulation Results for 3-period ahead predictions using infeasible hori-
zontal method (9.39), Approach 3, and the diffusion methods (9.42), (9.43) under
DGP 1-3.

N T
Infeasible HR Approach 3 DiffusionA DiffusionB

Bias MAB RMSPE Bias MAB RMSPE Bias MAB RMSPE Bias MAB RMSPE

DGP (1)

10
50 0.0210 0.9686 1.2158 0.0246 0.9763 1.2234 0.0341 1.6888 2.3420 -0.0435 1.3222 1.7397

100 0.0225 0.9011 1.1249 0.0219 0.9047 1.1291 -0.0503 1.5504 2.1339 -0.0566 1.2972 1.7532

200 -0.0042 0.8750 1.0962 -0.0040 0.8757 1.0964 -0.0833 1.6316 2.3081 0.0018 1.2922 1.7201

500
20

0.0089 0.8149 1.0172 0.0120 0.8127 1.0172 0.0947 1.6050 2.2517 0.0368 1.3255 1.7911

700 -0.0217 0.8182 1.0180 -0.0230 0.8193 1.0203 -0.0989 1.5808 2.2137 -0.0322 1.2792 1.6977

1000 0.0103 0.8375 1.0366 0.0078 0.8374 1.0360 -0.0990 1.6593 2.2967 -0.0843 1.3897 1.8376

DGP (2)

10
50 0.0177 0.9032 1.1434 0.0178 0.9018 1.1442 -0.0030 1.7456 2.4549 -0.0009 1.4764 2.0111

100 0.0167 0.8732 1.0944 0.0167 0.8757 1.0963 0.0740 1.6687 2.2955 0.0592 1.4055 1.8923

200 0.0239 0.8816 1.1021 0.0239 0.8827 1.1029 -0.0240 1.7642 2.3747 0.0300 1.4504 1.9515

500
20

-0.0008 0.8265 1.0142 0.0067 0.8304 1.0149 0.1705 1.7326 2.4055 0.0955 1.4787 2.0337

700 -0.0704 0.8157 1.0195 -0.0721 0.8215 1.0229 -0.0715 1.7479 2.4310 -0.0774 1.4649 2.0060

1000 -0.0592 0.8445 1.0662 -0.0560 0.8458 1.0687 0.0668 1.6746 2.3368 -0.0049 1.4368 1.9507

DGP (3)

10
50 0.0184 0.8971 1.1381 0.0195 0.8975 1.1410 -0.0536 1.9073 2.7191 -0.0444 1.8639 2.6126

100 0.0108 0.8771 1.1035 0.0120 0.8794 1.1054 0.0317 1.8278 2.5562 0.0419 1.7643 2.5191

200 0.0247 0.8820 1.1020 0.0246 0.8832 1.1030 0.0595 1.9593 2.6865 0.0826 1.8275 2.5160

500
20

-0.0027 0.8335 1.0244 0.0073 0.8375 1.0264 0.1749 1.8344 2.6083 0.1451 1.9268 2.7513

700 -0.0724 0.8241 1.0290 -0.0695 0.8348 1.0369 -0.0608 1.8422 2.6216 -0.0988 1.8518 2.5878

1000 -0.0437 0.8453 1.0620 -0.0386 0.8509 1.0693 -0.0243 1.7240 2.4129 -0.0366 1.7542 2.5283
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Table 9.7: Simulation Results for 4-period ahead predictions using infeasible hori-
zontal method (9.39), Approach 3, and the diffusion methods (9.42), (9.43) under
DGP 1-3.

N T
Infeasible HR Approach 3 DiffusionA DiffusionB

Bias MAB RMSPE Bias MAB RMSPE Bias MAB RMSPE Bias MAB RMSPE

DGP (1)

10
50 -0.0570 0.8833 1.1361 -0.0639 0.8944 1.1515 -0.0056 1.5612 2.1453 -0.0062 1.2599 1.6748

100 0.0051 0.8941 1.1039 0.0047 0.8965 1.1066 -0.0550 1.5588 2.1522 -0.0227 1.2815 1.7317

200 0.0112 0.8615 1.0791 0.0119 0.8619 1.0796 0.0011 1.5618 2.1286 -0.0054 1.2342 1.6325

500
20

0.0455 0.8154 1.0209 0.0475 0.8126 1.0216 0.0264 1.6306 2.2648 -0.0006 1.3350 1.7921

700 -0.0284 0.8283 1.0404 -0.0303 0.8261 1.0382 -0.0741 1.6081 2.1977 -0.0638 1.2847 1.7814

1000 0.0153 0.8577 1.0651 0.0179 0.8576 1.0646 -0.0209 1.6444 2.2859 -0.0003 1.3651 1.7934

DGP (2)

10
50 -0.0256 0.9256 1.1717 -0.0163 0.9315 1.1803 0.0225 1.8126 2.4738 -0.0256 1.4606 1.9524

100 0.0285 0.8905 1.1135 0.0255 0.8926 1.1167 0.0176 1.6676 2.3864 0.0026 1.4222 1.9107

200 -0.0892 0.8530 1.0642 -0.0903 0.8531 1.0653 -0.1187 1.8413 2.5983 -0.0955 1.4674 1.9796

500
20

0.0414 0.8932 1.0882 0.0399 0.8880 1.0882 -0.0742 1.7823 2.4569 -0.0447 1.4717 1.9509

700 0.0164 0.8266 1.0224 0.0195 0.8257 1.0245 -0.0052 1.7395 2.4224 -0.0329 1.4459 1.9598

1000 0.0114 0.7920 0.9962 0.0065 0.7911 0.9990 0.0281 1.6988 2.4471 0.0131 1.4394 1.9688

DGP (3)

10
50 -0.0150 0.9313 1.1822 -0.0049 0.9349 1.1883 0.0112 2.0804 2.8881 -0.0237 1.9380 2.6881

100 0.0281 0.8887 1.1121 0.0268 0.8902 1.1152 0.0235 1.9925 2.8312 0.0324 1.9130 2.6913

200 -0.0910 0.8471 1.0597 -0.0918 0.8467 1.0607 -0.1112 2.1363 2.9827 -0.1211 1.9943 2.7940

500
20

0.0352 0.9023 1.0899 0.0282 0.9045 1.0958 -0.0432 1.9667 2.7216 -0.0301 1.9759 2.8129

700 0.0169 0.8290 1.0295 0.0216 0.8308 1.0330 -0.1180 2.0734 2.9439 -0.0788 2.1114 3.1093

1000 0.0170 0.7992 1.0007 0.0095 0.7999 1.0070 0.0801 1.9517 2.7888 0.0530 1.9414 2.7877
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Table 9.8: Simulation Results for 5-period ahead predictions using infeasible hori-
zontal method (9.39), Approach 3, and the diffusion methods (9.42), (9.43) under
DGP 1-3.

N T
Infeasible HR Approach 3 DiffusionA DiffusionB

Bias MAB RMSPE Bias MAB RMSPE Bias MAB RMSPE Bias MAB RMSPE

DGP (1)

10
50 -0.0225 0.9376 1.1797 -0.0236 0.9494 1.1913 -0.0898 1.6287 2.2567 -0.0288 1.2936 1.7259

100 0.0363 0.9185 1.1456 0.0374 0.9199 1.1477 0.0684 1.6358 2.2589 0.0797 1.3004 1.7656

200 0.0008 0.8467 1.0706 0.0012 0.8473 1.0714 -0.0162 1.5875 2.2103 0.0168 1.3489 1.7908

500
20

-0.0014 0.8599 1.0837 0.0017 0.8567 1.0850 -0.0243 1.5803 2.1376 0.0111 1.2732 1.6769

700 -0.0142 0.8395 1.0459 -0.0183 0.8398 1.0464 0.0671 1.6555 2.2610 0.0420 1.3797 1.8761

1000 0.0382 0.8267 1.0453 0.0396 0.8284 1.0463 0.1067 1.6365 2.2102 0.0375 1.3309 1.7825

DGP (2)

10
50 0.0414 0.9305 1.1681 0.0494 0.9422 1.1829 0.1074 1.7647 2.5001 0.1255 1.4395 1.9625

100 -0.0335 0.8859 1.1074 -0.0301 0.8903 1.1140 0.0609 1.8624 2.5789 0.0172 1.5021 2.0621

200 0.0279 0.8348 1.0588 0.0267 0.8351 1.0600 0.1182 1.7576 2.4780 0.0707 1.3962 1.9376

500
20

-0.0004 0.8339 1.0424 0.0037 0.8303 1.0419 0.0183 1.7513 2.3943 0.0088 1.4165 1.9125

700 -0.0168 0.8084 1.0177 -0.0256 0.8115 1.0215 -0.0120 1.7867 2.4914 -0.0216 1.4809 2.0695

1000 -0.0025 0.8332 1.0564 -0.0077 0.8450 1.0640 -0.1912 1.8315 2.5033 -0.0120 1.5449 2.0829

DGP (3)

10
50 0.0378 0.9336 1.1690 0.0477 0.9485 1.1867 0.0960 2.1489 3.0661 0.1002 2.0316 2.8772

100 -0.0349 0.8869 1.1140 -0.0318 0.8892 1.1196 0.0227 2.2797 3.2564 0.0278 2.1557 3.0786

200 0.0308 0.8396 1.0624 0.0296 0.8402 1.0633 0.1186 2.1182 3.1232 0.0815 1.9396 2.8433

500
20

-0.0032 0.8320 1.0440 -0.0036 0.8433 1.0609 0.0146 2.1130 2.9300 -0.0135 2.1872 3.1165

700 -0.0127 0.7993 1.0111 -0.0204 0.8155 1.0372 -0.1559 2.2054 3.1280 -0.1012 2.2508 3.2677

1000 -0.0062 0.8380 1.0592 -0.0083 0.8508 1.0739 -0.0819 2.2090 3.0388 -0.0418 2.2219 3.0722

Tables 9.1, 9.2, and 9.3 report the results for 2, 3 and 5 periods ahead prediction
under DGP 1-3, respectively. The results for other periods are available upon request.
Tables 9.4-9.8 report the results for 1-5 periods ahead prediction under DGP 1-3,
respectively.

To compare the prediction accuracy between the diffusion method and HR or VR,
we only report the results in terms of Approach 3 for 𝑇 +1, ...,𝑇 +5 because as shown
by Lemma 9.3 and confirmed by our simulations all three approaches yield identical
results.

The simulation results confirm that Approach 1 (9.30), Approach 2 (9.33) and
Approach 3 (9.36) yield identical point prediction. Additionally, the Infeasible HR
and Approach 3 yield identical results for 𝑇 +1 in Table 9.4 because both methods use
the same set of information for a prediction in one period. The simulation results also
show that HR (both infeasible and feasible) yields a more accurate prediction than
the diffusion model method. Moreover, if 𝑇 is large and ℎ is small, although knowing



278 Hsiao et al.

𝑦1,𝑇+1, ...𝑦1,𝑇+ℎ−1 to predict 𝑦1,𝑇+ℎ is more accurate than (9.36), the difference is
negligible. However, when 𝑁 is large, knowing 𝑦1,𝑇+1, ...𝑦1,𝑇+ℎ−1 not only produces
smaller RMSPE but also maintains a notable difference from (9.36) even as 𝑁 grows.
This finding echoes (iii) and (iv) in Lemma 9.4.

9.6 Concluding Remarks

We argued that the measurement of treatment effects using panel data is essentially
a prediction issue. There are multiple ways to construct counterfactuals based on
a hypothetical data generating process (DGP) of the observed data. Under the
unconfoundedness assumption, the linear projection approach is widely applied (e.g.,
Hsiao, 2022). Shen et al. (2023) showed that the projection based on a unit’s own
past values or based on the contemporary outcomes of other units in the panel data,
respectively referred as horizontal regression and vertical regression by Athey et al.
(2021), yield identical numerical values. However, Shen et al. (2023) results only hold
for the construction of counterfactual first post-treatment period and their statistical
inferences are based on different assumptions about the underlying data generating
process. We suggested using a factor approach as a unified framework to link the HR
and VR approach to counterfactuals and derived their statistical distributions. We
showed that the multi-period ahead construction of counterfactuals between the HR
and VR are different and their prediction accuracy depends on whether the time series
dimension 𝑇 is fixed and the cross-sectional dimensions 𝑁 is large, or 𝑁 is fixed 𝑇
is large, or both 𝑁 and 𝑇 are large. We also suggested different ways to construct
multi-period ahead predictions based on the HR regression. We showed that for
multi-period post-treatment measurement of treatment effects, in general, the linear
projection approach based on the VR yields more accurate measurement than those
based on the HR or the diffusion model approach suggested by Bai and Ng (2006).

Appendix: Mathematical Proofs and Further Discussions

This appendix provides the proofs and heuristic arguments that are omitted in the
paper.

Proof for Lemma 9.1

Proof For (a), under Assumption C1, C2 and C4, we have
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�̂� =

(
1
𝑁

𝑁∑︁
𝑖=2

y𝑖y′𝑖

)−1
1
𝑁

𝑁∑︁
𝑖=2

y𝑖𝑦𝑖,𝑇+1

=

(
1
𝑁

𝑁∑︁
𝑖=2
(F𝜆𝑖 +u𝑖) (F𝜆𝑖 +u𝑖)′

)−1
1
𝑁

𝑁∑︁
𝑖=2
(F𝜆𝑖 +u𝑖)

(
𝜆′𝑖f𝑇+1 +𝑢𝑖,𝑇+1

)
→ 𝑝𝛼 = (FΣ𝜆F′ +Ω∗)−1 (FΣ𝜆f𝑇+1 + c∗) ,

because 1
𝑁

∑𝑁
𝑖=2𝜆𝑖𝜆

′
𝑖
→ Σ𝜆,

1
𝑁

∑𝑁
𝑖=2 u𝑖u′𝑖 →𝑝 Ω∗, 1

𝑁

∑𝑁
𝑖=2 u𝑖𝑢𝑖,𝑇+1 →𝑝 c∗ and

1
𝑁

∑𝑁
𝑖=2 u𝑖𝜆′𝑖→𝑝 0.

For 𝜎2
𝜂 , under Assumption C1, C2 and C4, we have

𝜎2
𝜂 = plim𝑁→∞

1
𝑁

𝑁∑︁
𝑖=2

(
𝑦𝑖,𝑇+1−𝛼′y𝑖

)2

= plim𝑁→∞
1
𝑁

𝑁∑︁
𝑖=2

(
𝜆′𝑖f𝑇+1 +𝑢𝑖,𝑇+1−𝛼′F𝜆𝑖 −𝛼′u𝑖

)2

= plim𝑁→∞
1
𝑁

𝑁∑︁
𝑖=2
𝑢2
𝑖,𝑇+1 + f′𝑇+1

(
plim𝑁→∞

1
𝑁

𝑁∑︁
𝑖=2
𝜆𝑖𝜆
′
𝑖

)
f𝑇+1

+𝛼′F
(
plim𝑁→∞

1
𝑁

𝑁∑︁
𝑖=2
𝜆𝑖𝜆
′
𝑖

)
F′𝛼+𝛼′

(
plim𝑁→∞

1
𝑁

𝑁∑︁
𝑖=2

u𝑖u′𝑖

)
𝛼

−2f′𝑇+1

(
plim𝑁→∞

1
𝑁

𝑁∑︁
𝑖=2
𝜆𝑖𝜆
′
𝑖

)
F′𝛼−2

(
plim𝑁→∞

1
𝑁

𝑁∑︁
𝑖=2
𝑢𝑖,𝑇+1u′𝑖

)
𝛼

= 𝜎2
1 + f′𝑇+1Σ𝜆f𝑇+1 +𝛼′FΣ𝜆F′𝛼+𝛼′Ω∗𝛼−2f′𝑇+1Σ𝜆F′𝛼−2c∗′𝛼

= 𝜎2
1 + f′𝑇+1Σ𝜆f𝑇+1− (f′𝑇+1Σ𝜆F′ + c∗′) (FΣ𝜆F′ +Ω∗)−1 (FΣ𝜆f𝑇+1 + c∗)

where the last identity holds since

𝛼′FΣ𝜆F′𝛼+𝛼′Ω∗𝛼−2f′𝑇+1Σ𝜆F′𝛼−2c∗′𝛼
=

(
𝛼′FΣ𝜆F′ +𝛼′Ω∗−2f′𝑇+1Σ𝜆F′ −2c∗′

)
𝛼

=
(
𝛼′ (FΣ𝜆F′ +Ω∗) −2f′𝑇+1Σ𝜆F′ −2c∗′

)
𝛼

=

( (
f′𝑇+1Σ𝜆F′ + c∗′

)
(FΣ𝜆F′ +Ω∗)−1 (FΣ𝜆F′ +Ω∗) −2f′𝑇+1Σ𝜆F′ −2c∗′

)
𝛼

=
( (

f′𝑇+1Σ𝜆F′ + c∗′
)
−2f′𝑇+1Σ𝜆F′ −2c∗′

)
𝛼

= −
(
f′𝑇+1Σ𝜆F′ + c∗′

)
(FΣ𝜆F′ +Ω∗)−1 (FΣ𝜆f𝑇+1 + c∗) .

For (b), it can be derived similarly. □
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Proof for Lemma 9.2

Proof When 𝑢𝑖𝑡 is i.i.d over 𝑖 and 𝑡, we have Ω∗ = I𝑇 and c∗ = 0, if Σ𝜆 = I𝑟 , then by
Woodbury matrix identity,

𝜎2
𝜂 = 𝜎2

1 + f′𝑇+1f𝑇+1− f′𝑇+1F′ (FF′ + I𝑇 )−1 Ff𝑇+1

= 𝜎2
1 + f′𝑇+1

(
I𝑟 −F′ (FF′ + I𝑇 )−1 F

)
f𝑇+1

= 𝜎2
1 + f′𝑇+1 (I𝑟 +F′F)−1 f𝑇+1. (9.44)

Similarly, if Σ 𝑓 = I𝑟 , then

𝜎2
𝜂∗ = 𝜎

2
1 +𝜆

′
1
(
I𝑟 + Λ̃′Λ̃

)−1
𝜆1. (9.45)

Let 𝑒𝐻𝑅1,𝑇+1 = 𝑦1,𝑇+1− �̂�𝐻𝑅1,𝑇+1 be the prediction error, under Σ𝜆 = I𝑟 , then

𝑒𝐻𝑅1,𝑇+1 = 𝛼
′y1 +𝜂1− �̂�′y1 = 𝜂1 + (𝛼′ − �̂�′) y1, (9.46)

with the mean square prediction error equals, conditional on y1,

𝑀𝑆𝑃𝐸

(
�̂�𝐻𝑅1,𝑇+1

)
= 𝑉𝑎𝑟

(
𝑒𝐻𝑅1,𝑇+1

)
= 𝜎2

𝜂 +y′1𝑉𝑎𝑟 (�̂�) y1

= 𝜎2
𝜂

(
1+y′1

(
Y′0Y0

)−1 y1

)
. (9.47)

On the other hand, we have

1
𝑁

Y′0Y0 =
1
𝑁

𝑁∑︁
𝑖=2

y𝑖y′𝑖 ,

where y𝑖 = (𝑦𝑖1, . . ., 𝑦𝑖𝑇 )′ is a 𝑇 ×1 vector. Also, from (9.17), we have y𝑖 = F𝜆𝑖 +u𝑖 ,
then as 𝑁→∞,

1
𝑁

Y′0Y0 =
1
𝑁

𝑁∑︁
𝑖=2
(F𝜆𝑖 +u𝑖) (F𝜆𝑖 +u𝑖)′

→ 𝑝 (FΣ𝜆F′ +Ω∗)𝑇×𝑇 . (9.48)

Since Ω∗ is a 𝑇 ×𝑇 p.d. matrix with bounded eigenvalues, and FΣ𝜆F′ is a 𝑇 ×𝑇
matrix p.s.d matrix of rank 𝑟,whose largest eigenvalue is of order𝑇 since 1

𝑇
F′F→ Σ 𝑓 ,

which is a 𝑟 × 𝑟 matrix with bounded eigenvalues under Assumption 1. The above
results show that the minimum eigenvalue of FΣ𝜆F′ +Ω∗ is 𝑂 (1) and the maximum
eigenvalue of FΣ𝜆F′ +Ω∗ is𝑂 (𝑇) . Then the minimum eigenvalue of (FΣ𝜆F′ +Ω∗)−1

is 𝑂
(

1
𝑇

)
and the maximum eigenvalue of (FΣ𝜆F′ +Ω∗)−1 is 𝑂 (1) .

Consequently, we have
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𝑀𝑆𝑃𝐸

(
�̂�𝐻𝑅1,𝑇+1

)
= 𝜎2

𝜂

(
1+ 1

𝑁
y′1

(
1
𝑁

Y′0Y0

)−1
y1

)
≤ 𝜎2

𝜂

(
1+𝐶 1

𝑁
y′1y1

)
≤ 𝜎2

𝜂

(
1+𝐶 𝑇

𝑁

)
, (9.49)

since 1
𝑇

y′1y1 =
1
𝑇

∑𝑇
𝑡=1 𝑦

2
1𝑡 will converge to a finite constant under Assumption C1 and

C2 as 𝑇 →∞.
In sum, we have

𝑀𝑆𝑃𝐸

(
�̂�𝐻𝑅1,𝑇+1

)
→ 𝜎2

𝜂 as
𝑇

𝑁
→ 0. (9.50)

Similarly, let 𝑒𝑉𝑅1,𝑇+1 = 𝑦1,𝑇+1− �̂�𝑉𝑅1,𝑇+1, then

𝑒𝑉𝑅1,𝑇+1 = 𝛽
′ỹ𝑇+1 +𝜂∗1− 𝛽

′ỹ𝑇+1 = 𝜂∗1 +
(
𝛽′ − 𝛽′

)
ỹ𝑇+1, (9.51)

with the mean square prediction error equals and conditional on ỹ𝑇+1,

𝑀𝑆𝑃𝐸

(
�̂�𝑉𝑅1,𝑇+1

)
=𝑉𝑎𝑟

(
𝑒𝑉𝑅1,𝑇+1

)
= 𝜎2

𝜂∗ + ỹ′
𝑇+1𝑉𝑎𝑟

(
𝛽

)
ỹ𝑇+1

= 𝜎2
𝜂∗

(
1+ ỹ′

𝑇+1
(
Y0Y′0

)−1 ỹ𝑇+1
)
= 𝜎2

𝜂∗

(
1+ 1

𝑇
ỹ′
𝑇+1

(
1
𝑇

Y0Y′0
)−1

ỹ𝑇+1
)
.

(9.52)

As shown above, we can obtain

𝑀𝑆𝑃𝐸

(
�̂�𝑉𝑅1,𝑇+1

)
→ 𝜎2

𝜂∗ as
𝑁

𝑇
→ 0. (9.53)

For (a), when (𝑁,𝑇) →∞ and 𝑇
𝑁
→ 0, from (9.44) and (9.50), we have

𝜎2
𝜂 → 𝜎2

1 , (9.54)

since F′F is of order 𝑇. Moreover,

𝑀𝑆𝑃𝐸

(
�̂�𝑉𝑅1,𝑇+1

)
= 𝜎2

𝜂∗

(
1+ 1

𝑇
ỹ′𝑇+1

(
1
𝑇

Y0Y′0

)−1
ỹ𝑇+1

)
≥ 𝜎2

𝜂∗ > 𝜎
2
1 . (9.55)

Thus, we can claim

𝑀𝑆𝑃𝐸

(
�̂�𝑉𝑅1,𝑇+1

)
> 𝑀𝑆𝑃𝐸

(
�̂�𝐻𝑅1,𝑇+1

)
as (𝑁,𝑇) →∞ and

𝑇

𝑁
→ 0.

Similar result can be obtained when 𝑇 →∞ only since 𝑁
𝑇
→ 0 when 𝑁 is finite.

For (b), when (𝑁,𝑇) →∞ and 𝑁
𝑇
→ 0, from (9.45) and (9.53), we have

𝜎2
𝜂∗ → 𝜎2

1 , (9.56)
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since Λ̃′Λ̃ is of order 𝑁. Moreover,

𝑀𝑆𝑃𝐸

(
�̂�𝐻𝑅1,𝑇+1

)
= 𝜎2

𝜂

(
1+ 1

𝑁
y′1

(
1
𝑁

Y′0Y0

)−1
y1

)
≥ 𝜎2

𝜂 > 𝜎
2
1 . (9.57)

Consequently, we have

𝑀𝑆𝑃𝐸

(
�̂�𝐻𝑅1,𝑇+1

)
> 𝑀𝑆𝑃𝐸

(
�̂�𝑉𝑅1,𝑇+1

)
as (𝑁,𝑇) →∞ and

𝑁

𝑇
→ 0.

Similar result can be obtained when 𝑁→∞ only, because 𝑇
𝑁
→ 0 when 𝑇 is finite.□

Proof for Lemma 9.3

Proof The equivalence between Approach 1 and Approach 2 is straightforward, as it
extends directly from one-period to multi-period ahead predictions. The main task
is to show the equivalence between Approach 2 and Approach 3. The predictor by
Approach 3, as shown in (9.36), can be written as

�̂�
𝐻𝑅,2
1,𝑇+ℎ = y′𝑇+ℎY𝑇+ℎ−1

(
Y𝑇+ℎ−1′Y𝑇+ℎ−1

)−1
ŷ𝑇+ℎ−1

1

= �̂�′1y1 + �̂�′2ŷℎ−1
1

where (�̂�′1 �̂�
′
2) = ỹ′

𝑇+ℎ [Y0 Y1,𝑇+ℎ−1]
(
[Y0 Y1,𝑇+ℎ−1]′ [Y0 Y1,𝑇+ℎ−1]

)−1 and ŷℎ−1′
1 =

( �̂�1,𝑇+1, ..., �̂�1,𝑇+ℎ−1). By the block matrix inversion formula, we have

(
[Y0 Y1,𝑇+ℎ−1]′ [Y0 Y1,𝑇+ℎ−1]

)−1
=


𝐵11 𝐵12

𝐵21 𝐵22

 (9.58)

where 𝐵11 = (Y′0Y0)−1 + (Y′0Y0)−1Y′0Y1,𝑇+ℎ−1𝐵22Y′1,𝑇+ℎ−1Y0 (Y′0Y0)−1,
𝐵22 = (Y′1,𝑇+ℎ−1Y1,𝑇+ℎ−1 − Y′1,𝑇+ℎ−1Y0 (Y′0Y0)−1Y′0Y1,𝑇+ℎ−1)−1,
𝐵12 = −(Y′0Y0)−1Y′0Y1,𝑇+ℎ−1𝐵22, 𝐵21 = −𝐵22Y′1,𝑇+ℎ−1Y0 (Y′0Y0)−1. It follows that

�̂�′1 = ỹ′𝑇+ℎY0𝐵11 + ỹ′𝑇+ℎY1,𝑇+ℎ−1𝐵21

= ỹ′𝑇+ℎY0 (Y′0Y0)−1− ỹ′𝑇+ℎ𝑀Y0𝐶,

where 𝐶 = Y1𝐵22Y′1,𝑇+ℎ−1Y0 (Y′0Y0)−1, 𝑀Y0 = I𝑇 −Y0 (Y′0Y0)−1Y′0, and

�̂�′2 = ỹ′𝑇+ℎY0𝐵12 + ỹ′𝑇+ℎY1,𝑇+ℎ−1𝐵22

= ỹ′𝑇+ℎ𝑀Y0 Y1,𝑇+ℎ−1𝐵22.
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Recall that predicted values for 𝑦1,𝑇+1, ..., 𝑦1,𝑇+ℎ−1 are
ŷℎ−1

1 = Y′1,𝑇+ℎ−1
(
Y0Y′0

)−Y0y1, and note
(
Y0Y′0

)−Y0 =
(
Y′0

)− by part (xxvi) of
Proposition 6.16 in Bernstein (2009), then we have

ŷℎ−1
1 = Y′1,𝑇+ℎ−1 (Y

′
0)
−y1 =

(
y′1 (Y0)−Y1,𝑇+ℎ−1

) ′
= (y′1 (Y

′
0Y0)−1Y′0Y1,𝑇+ℎ−1)′,

(9.59)
and

�̂�′1y1 + �̂�′2ŷℎ−1
1 = y′1�̂�1 + ŷℎ−1′

1 �̂�2

= y′1
(
Y′0Y0

)−1 Y′0ỹ𝑇+ℎ −y′1𝐶
′𝑀Y0 ỹ𝑇+ℎ +y′1𝐶

′𝑀Y0 ỹ𝑇+ℎ
= y′1

(
Y′0Y0

)−1 Y′0ỹ𝑇+ℎ .

This is identical to the predictor by Approach 2, as shown in (9.33). □

Proof for Lemma 9.4

Proof We first note that under Assumption 1-2, for �̂� (ℎ) , following the derivation of
Lemma 9.2, we have

�̂� (ℎ) =

(
1
𝑁

𝑁∑︁
𝑖=2

y𝑖y′𝑖

)−1
1
𝑁

𝑁∑︁
𝑖=2

y𝑖𝑦𝑖,𝑇+ℎ

→ 𝑝𝛼
(ℎ) = (FΣ𝜆F′ +Ω∗)−1 (

FΣ𝜆f𝑇+1 + c∗ℎ
)
, (9.60)

where c∗
ℎ
= 𝐸

(
u𝑖𝑢𝑖,𝑇+ℎ

)
. Moreover, noting 𝜂𝑇+ℎ = 𝑦1,𝑇+ℎ −𝛼 (ℎ)′y1 by (9.31) and the

data generating processes of 𝑦𝑖,𝑇+ℎ as well as y𝑖 , we can generate the variance of
𝜂𝑇+ℎ as follows,

𝜎2
𝜂 (ℎ) = plim𝑁→∞

1
𝑁

𝑁∑︁
𝑖=2

(
𝑦𝑖,𝑇+ℎ −𝛼 (ℎ)′y𝑖

)2

= plim𝑁→∞
1
𝑁

𝑁∑︁
𝑖=2

(
𝜆′𝑖f𝑇+ℎ +𝑢𝑖,𝑇+ℎ −𝛼 (ℎ)′F𝜆𝑖 −𝛼 (ℎ)′u𝑖

)2

= 𝜎2
1 + f′𝑇+ℎΣ𝜆f𝑇+ℎ − (f′𝑇+ℎΣ𝜆F′ + c∗′ℎ ) (FΣ𝜆F′ +Ω∗)−1 (

FΣ𝜆f𝑇+ℎ + c∗ℎ
)
.(9.61)

Similarly, noting 𝜂∗
𝑇+ℎ = 𝑦1,𝑇+ℎ − 𝛽′ỹ𝑇+ℎ by (9.23) where 𝛽 is defined in (9.24), then

the variance of 𝜂∗
𝑇+ℎ can be shown as

𝜎∗2
𝜂 (ℎ) = 𝜎

2
1 +𝜆

′
1Σ 𝑓 𝜆1− (𝜆′1Σ 𝑓 Λ̃

′ + c′ℎ) (Λ̃Σ 𝑓 Λ̃
′ +Ω)−1 (Λ̃Σ 𝑓 𝜆1 + cℎ), (9.62)

where cℎ = 𝐸 (ũ𝑡+ℎ𝑢1,𝑡+ℎ). When 𝑢𝑖𝑡 is i.i.d over 𝑖 and 𝑡, following the proof of
Lemma 9.2, we have
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𝑀𝑆𝑃𝐸

(
�̂�
𝐻𝑅,1
1,𝑇+ℎ

)
= 𝜎2

𝜂 (ℎ)

(
1+ 1

𝑁
y′1

(
1
𝑁

Y′0Y0

)−1
y1

)
, (9.63)

and
𝑀𝑆𝑃𝐸

(
�̂�𝑉𝑅1,𝑇+ℎ

)
= 𝜎∗2

𝜂 (ℎ)

(
1+ ỹ′𝑇+ℎ

(
Y0Y′0

)−1 ỹ𝑇+ℎ
)
. (9.64)

For (i), when (𝑁,𝑇) →∞ and 𝑁
𝑇
→ 0, we have

𝑀𝑆𝑃𝐸

(
�̂�𝑉𝑅1,𝑇+ℎ

)
→ 𝜎2

1 , (9.65)

and

𝑀𝑆𝑃𝐸

(
�̂�
𝐻𝑅,1
1,𝑇+ℎ

)
= 𝜎2

𝜂 (ℎ)

(
1+ 1

𝑁
y′1

(
1
𝑁

Y′0Y0

)−1
y1

)
≥ 𝜎2

𝜂 (ℎ) > 𝜎
2
1 . (9.66)

Consequently, we have

𝑀𝑆𝑃𝐸

(
�̂�
𝐻𝑅,1
1,𝑇+ℎ

)
> 𝑀𝑆𝑃𝐸

(
�̂�𝑉𝑅1,𝑇+ℎ

)
as (𝑁,𝑇) →∞ and

𝑁

𝑇
→ 0. (9.67)

Similar result can be obtained when 𝑇 →∞ only since 𝑁
𝑇
→ 0 when 𝑁 is finite.

For (ii), when (𝑁,𝑇) →∞ and 𝑇
𝑁
→ 0, we have

𝑀𝑆𝑃𝐸

(
�̂�
𝐻𝑅,1
1,𝑇+ℎ

)
→ 𝜎2

1 , (9.68)

while

𝑀𝑆𝑃𝐸

(
�̂�𝑉𝑅1,𝑇+ℎ

)
= 𝜎∗2

𝜂 (ℎ)

(
1+ ỹ′𝑇+ℎ

(
Y0Y′0

)−1 ỹ𝑇+ℎ
)
≥ 𝜎∗2

𝜂 (ℎ) > 𝜎
2
1 . (9.69)

Thus, we have

𝑀𝑆𝑃𝐸

(
�̂�𝑉𝑅1,𝑇+1

)
> 𝑀𝑆𝑃𝐸

(
�̂�
𝐻𝑅,1
1,𝑇+ℎ

)
as (𝑁,𝑇) →∞ and

𝑇

𝑁
→ 0. (9.70)

Similar result can be obtained when 𝑁→∞ only, because 𝑇
𝑁
→ 0 when 𝑇 is finite.

For (iii), consider �̂�𝑉𝑅1,𝑇+ℎ and note since 𝑢𝑖𝑡 is i.i.d over 𝑖 and 𝑡, Ω∗ = I𝑇 and c∗
ℎ
= 0,

Σ 𝑓 = I𝑟 , then using (9.61) it follows

𝜎∗2
𝜂 (ℎ) = 𝜎

2
1 +𝜆

′
1𝜆1− (𝜆′1Λ̃

′ + c′) (Λ̃Λ̃′ +Ω)−1 (Λ̃𝜆1 + c)

= 𝜎2
1 +𝜆

′
1
(
I𝑟 + Λ̃′Λ̃

)−1
𝜆1

where the second line holds by Woodbury matrix identity. Invoking 𝜎∗2
𝜂 (ℎ) in (9.64)

then yields
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𝑀𝑆𝑃𝐸

(
�̂�𝑉𝑅1,𝑇+ℎ

)
=

[
𝜎2

1 +𝜆
′
1
(
I𝑟 + Λ̃′Λ̃

)−1
𝜆1

] [
1+ 1

𝑇
ỹ′𝑇+ℎ

(
1
𝑇

Y0Y′0

)−1
ỹ𝑇+ℎ

]
.

(9.71)
Now consider �̂�𝑉𝑅,01,𝑇+ℎ and note by the proof of Lemma 9.2, we have

𝑀𝑆𝑃𝐸

(
�̂�
𝑉𝑅,0
1,𝑇+ℎ

)
=

[
𝜎2

1 +𝜆
′
1
(
I𝑟 + Λ̃′Λ̃

)−1
𝜆1

]
×[

1+ 1
𝑇

ỹ′𝑇+ℎ

(
1
𝑇

Y𝑇+ℎ−1Y𝑇+ℎ−1′
)−1

ỹ𝑇+ℎ

]
. (9.72)

Following the analysis after (9.48) in proof of Lemma 9.2, as 𝑇→∞, we further have

1
𝑇

ỹ′𝑇+ℎ

(
1
𝑇

Y0Y′0

)−1
ỹ𝑇+ℎ = 𝑂 𝑝

(
𝑁

𝑇

)
,

1
𝑇

ỹ′𝑇+ℎ

(
1
𝑇

Y𝑇+ℎ−1Y𝑇+ℎ−1′
)−1

ỹ𝑇+ℎ = 𝑂 𝑝

(
𝑁

𝑇

)
.

By (9.71) and (9.72), it can be shown 𝑀𝑆𝑃𝐸
(
�̂�𝑉𝑅1,𝑇+ℎ

)
= 𝑀𝑆𝑃𝐸

(
�̂�
𝑉𝑅,0
1,𝑇+ℎ

)
as long as

𝑁/𝑇 → 0.
For (iv), consider �̂�𝐻𝑅,11,𝑇+ℎ and note since 𝑢𝑖𝑡 is i.i.d over 𝑖 and 𝑡, Ω∗ = I𝑇 and c∗

ℎ
= 0,

Σ𝜆 = I𝑟 , then using (9.61) it follows

𝜎2
𝜂 (ℎ) = 𝜎

2
1 + f′𝑇+ℎf𝑇+ℎ − (f′𝑇+ℎF′) (FF′ + I𝑇 )−1 (Ff𝑇+ℎ)

= 𝜎2
1 + f′𝑇+ℎ (I𝑟 +F′F)−1 f𝑇+ℎ,

where the second line holds by Woodbury matrix identity. Substituting 𝜎2
𝜂 (ℎ) in

(9.63) then yields

𝑀𝑆𝑃𝐸

(
�̂�
𝐻𝑅,1
1,𝑇+ℎ

)
=

[
𝜎2

1 + f′𝑇+ℎ (I𝑟 +F′F)−1 f𝑇+ℎ
] [

1+ 1
𝑁

y′1

(
1
𝑁

Y′0Y0

)−1
y1

]
.

(9.73)
Now for �̂�𝐻𝑅,01,𝑇+ℎ, using the proof of Lemma 9.2 yields

𝑀𝑆𝑃𝐸

(
�̂�
𝐻𝑅,0
1,𝑇+ℎ

)
=

[
𝜎2

1 + f′𝑇+ℎ
(
I𝑟 +F′𝑇+ℎ−1F𝑇+ℎ−1

)−1 f𝑇+ℎ
]
×[

1+ 1
𝑁

y𝑇+ℎ−1′
1

(
1
𝑁

Y′𝑇+ℎ−1Y𝑇+ℎ−1

)−1
y𝑇+ℎ−1

1

]
, (9.74)

where F𝑇+ℎ−1 = (f1, f2, . . . , f𝑇 , f𝑇+1, . . . , f𝑇+ℎ−1)′ and Y𝑇+ℎ−1 = (Y0,Y1). As 𝑁→∞
and following the analysis after (9.48) in proof of Lemma 9.2, we further have
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1
𝑁

y′1

(
1
𝑁

Y′0Y0

)−1
y1 = 𝑂 𝑝

(
𝑇

𝑁

)
,

1
𝑁

y𝑇+ℎ−1′
1

(
1
𝑁

Y′𝑇+ℎ−1Y𝑇+ℎ−1

)−1
y𝑇+ℎ−1

1 = 𝑂 𝑝

(
𝑇

𝑁

)
.

For the case where 𝑇 is fixed, note

f′𝑇+ℎ (I𝑟 +F′F)−1 f𝑇+ℎ − f′𝑇+ℎ
(
I𝑟 +F′𝑇+ℎ−1F𝑇+ℎ−1

)−1 f𝑇+ℎ

= f′𝑇+ℎ
[
(I𝑟 +F′F)−1−

(
I𝑟 +F′𝑇+ℎ−1F𝑇+ℎ−1

)−1
]

f𝑇+ℎ . (9.75)

Let 𝐴 = I𝑟 +F′F and UU′ =
∑ℎ−1
𝑠=1 f𝑇+𝑠f′𝑇+𝑠 where U = (f𝑇+1, ..., f𝑇+ℎ−1). By Woodbury

matrix identity formula, we have

f′𝑇+ℎ
[
(I𝑟 +F′F)−1−

(
I𝑟 +F′𝑇+ℎ−1F𝑇+ℎ−1

)−1
]

f𝑇+ℎ

= f′𝑇+ℎ
[
𝐴−1− (𝐴+U′U)−1

]
f𝑇+ℎ

=

(
f′𝑇+ℎ𝐴

−1U
) [

Iℎ−1 +U′𝐴−1U
]−1 (

U′𝐴−1f𝑇+ℎ
)
.

For any nonzero vector 𝑧 ∈ Rℎ−1, we can write:

𝑧′
(
Iℎ−1 +U′−1𝐴−1U

)
𝑧 = 𝑧′𝑧+

(
𝑧′U′−1

)
𝐴−1 (U𝑧).

Since 𝐴 is a sum of a positive definite (p.d.) matrix and a positive semidefinite
(p.s.d.) matrix, 𝐴 itself is p.d. Thus,

(
𝑧′U′−1) 𝐴−1 (U𝑧) ≥ 0, which implies that

𝑧′𝑧+
(
𝑧′U′−1) 𝐴−1 (U𝑧) > 0. It shows that Iℎ−1 +U′−1𝐴−1U is p.d and so is its inverse.

Hence, by (9.75) we conclude:

f′𝑇+ℎ (I𝑟 +F′F)−1 f𝑇+ℎ ≥ f′𝑇+ℎ
(
I𝑟 +F′𝑇+ℎ−1F𝑇+ℎ−1

)−1 f𝑇+ℎ > 0,

which in conjunction with (9.73) and (9.74) shows

𝑀𝑆𝑃𝐸

(
�̂�
𝐻𝑅,1
1,𝑇+ℎ

)
≥ 𝑀𝑆𝑃𝐸

(
�̂�
𝐻𝑅,0
1,𝑇+ℎ

)
.

When (𝑁,𝑇) →∞ and 𝑇/𝑁→ 0,

f′𝑇+ℎ (I𝑟 +F′F)−1 f𝑇+ℎ→ 0, f′𝑇+ℎ
(
I𝑟 +F′𝑇+ℎ−1F𝑇+ℎ−1

)−1 f𝑇+ℎ→ 0,

so by (9.73) and (9.74) it follows 𝑀𝑆𝑃𝐸
(
�̂�
𝐻𝑅,1
1,𝑇+ℎ

)
= 𝑀𝑆𝑃𝐸

(
�̂�
𝐻𝑅,0
1,𝑇+ℎ

)
. □
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Chapter 10
Nonparametric Correlated Random-Effects
Models

Daniel J. Henderson, Emma Kate Henry and Alexandra Soberon

Abstract This chapter develops methods for estimation and inference in nonparametric
panel data models with correlated random-effects. Using the Mundlak specification
to control for unobserved heterogeneity, this nonparametric estimation procedure
can identify both the nonparametric function and a finite-dimensional parameter
associated with (potentially) observed time-invariant regressors. We develop the
necessary asymptotic theory for our proposed estimator. To assess the validity of
our method in practice, we propose a consistent specification test for whether the
model controls for the correlation between the unobserved individual effects and
the regressors. Monte Carlo simulations support the asymptotic developments. We
illustrate the practical utility of our approach via an empirical application.

10.1 Introduction

The analysis of panel data has a long history in econometrics/statistics (Nerlove,
2005, Chapter 2). Fixed-effects and random-effects models have served as workhorses
for panel data analysis (Baltagi, 2021). While random-effects models are easy to
employ, fixed-effects models are typically used in economics because the assumption
of uncorrelatedness between unobserved factors and explanatory variables often
proves unrealistic in practice. Correlated random-effects (CRE) models, pioneered by
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Mundlak (1978) and further developed by Chamberlain (1982), offer a middle ground
that combines the simplicity of random-effects with the robustness of fixed-effects
approaches (see Chapter 14).

CRE models maintain many advantages of random-effects estimation while accom-
modating potential correlation between individual-specific effects and explanatory
variables (Wooldridge, 2019). Although the traditional CRE framework has proven
fruitful, it still relies on potentially restrictive parametric assumptions about the
conditional mean function that relate unobserved effects to observed covariates.
This chapter proposes semiparametric methods that relax these assumptions and
can accommodate non-linear relationships and interactions that standard parametric
specifications might miss.

The field of nonparametric and semiparametric analysis in panel data modelling
has expanded considerably. Estimators for the random (Henderson & Ullah, 2005)
and fixed-effects (Henderson, Carroll & Li, 2008) settings exist and comprehensive
reviews are available in the literature.1 However, the incorporation of fixed-effects
in these models presents significant computational challenges. Various estimation
approaches have been proposed, ranging from iterative methodologies to profile least-
squares to marginal integration techniques. These methods necessitate the estimation
of fixed-effects parameters or rely on nontestable assumptions. Our semiparametric
approach preserves the core insights of the CRE models and leads to straightforward
estimation.2 We both develop and demonstrate how researchers can implement these
methods in practice while maintaining the interpretability and efficiency that have
made CRE models valuable in applied work.

A key contribution of this chapter is the development of a specification test. This
test provides researchers with a formal tool to evaluate whether the CRE specification
controls for correlation between the composite error term and the explanatory
variables. Our test compares the performance of our estimator, which is consistent
under the null and alternative hypothesis versus the commonly used local-constant
least-squares estimator, which is only consistent under the null hypothesis.

The remainder of this chapter is organized as follows. Section 10.2 introduces
our semiparametric estimator and establishes its asymptotic properties. Section 10.3
develops the specification test and examines its properties under the null and alternative
hypotheses. In Section 10.4, we conduct Monte Carlo simulations to investigate the
finite sample performance of our estimator and test statistic. Section 10.5 demonstrates
the practical utility of our methods through an empirical application that examines
the relationship between R&D expenditure and industry-level regulations. Finally,
Section 10.6 concludes.

1 See the surveys of Ai and Li (2008), Henderson and Parmeter (2015), Sun, Zhang and Li (2015),
Parmeter and Racine (2019), Rodriguez-Poo and Soberon (2017) and/or Su and Ullah (2011) and
the references within.
2 Bester and Hansen (2009) are able to identify average marginal effects in CRE models using
sufficient statistics and index restrictions.
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10.2 Estimation

Consider the standard nonparametric one-way error component model where the
outcome variable, 𝑦𝑖𝑡 , is related to the regressors, 𝑥𝑖𝑡 , through the following regression

𝑦𝑖𝑡 = 𝑚(𝑥𝑖𝑡 ) + 𝜇𝑖 +𝑢𝑖𝑡 , 𝑖 = 1, . . . , 𝑁, 𝑡 = 1, . . . ,𝑇 (10.1)

where 𝑥𝑖𝑡 ∈ R𝑑 is a vector of explanatory variables, 𝜇𝑖 is the unobserved heterogeneity
that may be correlated with 𝑥𝑖𝑡 , 𝑚(·) is an unknown smooth function to be estimated,
and 𝑢𝑖𝑡 is the idiosyncratic error term with 𝑢𝑖𝑡 ∼ 𝐼 𝐼𝐷 (0,𝜎2

𝑢). The exogeneity condition
𝐸 (𝑢𝑖𝑡 |𝑥𝑖1, . . . , 𝑥𝑖𝑇 , 𝜇𝑖) = 0 for each 𝑖 is assumed throughout the paper.

To relax the strict exogeneity condition and allow for correlation between the
regressors of the model and the unobserved heterogeneity, we follow Mundlak (1978)
and model the correlated random-effects as a linear function of all the explanatory
variables averaged across time or time-invariant regressors as

𝜇𝑖 = 𝑥
⊤
𝑖 𝜓 + 𝑧⊤𝑖 𝛾 + 𝜈𝑖 , (10.2)

where 𝑥𝑖 = 𝑇−1 ∑𝑇
𝑡=1 𝑥𝑖𝑡 is the temporal average of 𝑥𝑖𝑡 , 𝑧𝑖 ∈ 𝑅𝑞 is a vector of time-

invariant regressors outside the model, and 𝜈𝑖 is an error term that is assumed to be
independent of (𝑥𝑖𝑡 , 𝑧𝑖 , 𝑢𝑖𝑡 ) and 𝜈𝑖 ∼ 𝐼 𝐼𝐷 (0,𝜎2

𝜈).
Plugging (10.2) in (10.1) gives the partially linear model:

𝑦𝑖𝑡 = 𝑚(𝑥𝑖𝑡 ) +𝜔⊤𝑖 𝜃 + 𝜀𝑖𝑡 , (10.3)

where 𝜔⊤
𝑖
= (𝑥⊤

𝑖
, 𝑧⊤
𝑖
), 𝜃 = (𝜓⊤, 𝛾⊤)⊤, and 𝜀𝑖𝑡 = 𝑣𝑖 +𝑢𝑖𝑡 .

Let J𝑚 (x) = 𝜕𝑚( ·)
𝜕x be the (𝑑×1) vector of first-order derivatives of 𝑚(·). Using a

first-order Taylor expansion of 𝑚(·), the objective function (with known 𝜃) is

argmin
𝑎,𝑏

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1
[𝑦𝑖𝑡 − 𝑎− (𝑥𝑖𝑡 −x)⊤𝑏−𝜔⊤𝑖 𝜃]2𝐾ℎ (𝑥𝑖𝑡 −x),

where 𝐾ℎ (·) is a kernel function. For multivariate 𝑥𝑖𝑡 , we use a product kernel
𝐾ℎ (𝜈) =

∏𝑑
𝑙=1 𝑘ℎ (𝜈𝑙) with 𝜈 = (𝜈1, . . . , 𝜈𝑑)⊤ and 𝑘ℎ (𝑥𝑖𝑡 − x) = ℎ−1𝑘 ((𝑥𝑖𝑡 − x)/ℎ),

where ℎ is the smoothing (bandwidth) parameter. Let �̂�(x) and �̂�(x) be the resulting
nonparametric estimators of 𝑚(x) and J𝑚 (x), respectively.

In this paper, we propose to use a local-constant approach to obtain the estimator
of the unknown function 𝑚(·). Following Robinson (1988), we take the conditional
expectation over 𝑥𝑖𝑡 on both sides of (10.3) to obtain

𝐸 (𝑦𝑖𝑡 |𝑥𝑖𝑡 ) = 𝑚(𝑥𝑖𝑡 ) +𝐸 (𝜔⊤𝑖 |𝑥𝑖𝑡 )𝜃 +𝐸 (𝜀𝑖𝑡 |𝑥𝑖𝑡 ), (10.4)

and using the fact that 𝐸 (𝜀𝑖𝑡 |𝑥𝑖𝑡 ) = 0 and subtracting (10.4) from (10.3), we obtain

𝑦𝑖𝑡 −𝐸 (𝑦𝑖𝑡 |𝑥𝑖𝑡 ) = {𝜔𝑖 −𝐸 (𝜔𝑖 |𝑥𝑖𝑡 )}⊤𝜃 + 𝜀𝑖𝑡 . (10.5)
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In order to avoid the random denominator problem which is quite common in the
nonparametric kernel estimation (see Powell, Stock & Stoker, 1989), we premultiply
both sides of (10.5) by the density function of 𝑥𝑖𝑡 , i.e., 𝑓 (𝑥𝑖𝑡 ), to obtain

�̃�𝑖𝑡 = 𝜔𝑖𝑡𝜃 + �̃�𝑖𝑡 (10.6)

where �̃�𝑖𝑡 = {𝑦𝑖𝑡 −𝐸 (𝑦𝑖𝑡 |𝑥𝑖𝑡 )} 𝑓 (𝑥𝑖𝑡 ), 𝜔𝑖𝑡 = {𝜔𝑖 −𝐸 (𝜔𝑖 |𝑥𝑖𝑡 )} 𝑓 (𝑥𝑖𝑡 ), and �̃�𝑖𝑡 = {𝜀𝑖𝑡 −
𝐸 (𝜀𝑖𝑡 |𝑥𝑖𝑡 )} 𝑓 (𝑥𝑖𝑡 ).

Unfortunately, the resulting least-squares estimator from (10.6) is infeasible as
𝐸 (𝑦𝑖𝑡 |𝑥𝑖𝑡 ) 𝑓 (𝑥𝑖𝑡 ), 𝐸 (𝜔𝑖 |𝑥𝑖𝑡 ) 𝑓 (𝑥𝑖𝑡 ), and 𝑓 (𝑥𝑖𝑡 ) are unknown functions, but they can
be consistently estimated using nonparametric techniques. We propose to estimate
these via 𝐸 (𝑦𝑖𝑡 |𝑥𝑖𝑡 ) �̂� (𝑥𝑖𝑡 ) = (𝑁𝑇)−1 ∑𝑁

𝑗=1
∑𝑇
𝑠=1 𝑦 𝑗𝑠𝐾ℎ (𝑥𝑖𝑡 , 𝑥 𝑗𝑠), 𝐸 (𝜔𝑖 |𝑥𝑖𝑡 ) �̂� (𝑥𝑖𝑡 ) =

(𝑁𝑇)−1 ∑𝑁
𝑗=1

∑𝑇
𝑠=1𝜔𝑖𝐾ℎ (𝑥𝑖𝑡 , 𝑥 𝑗𝑠), and �̂� (𝑥𝑖𝑡 ) = (𝑁𝑇)−1 ∑𝑁

𝑗=1
∑𝑇
𝑠=1𝐾ℎ (𝑥𝑖𝑡 , 𝑥 𝑗𝑠), re-

spectively, where 𝐾ℎ (𝑥𝑖𝑡 , 𝑥 𝑗𝑠) = ℎ−𝑑𝐾 ((𝑥𝑖𝑡 − 𝑥 𝑗𝑠)/ℎ).
This leads to the feasible estimator of 𝜃 in (10.5) as

�̂� =

(
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1
𝜔𝑖𝑡𝜔

⊤
𝑖𝑡

)−1 𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1
𝜔𝑖𝑡 �̃�𝑖𝑡 . (10.7)

To obtain 𝑚(·) in (10.1), we plug (10.7) into (10.1) to obtain

¥𝑦𝑖𝑡 = 𝑚(𝑥𝑖𝑡 ) + 𝑒𝑖𝑡 , (10.8)

where ¥𝑦𝑖𝑡 = 𝑦𝑖𝑡 −𝜔⊤𝑖 �̂� is the new left-hand-side variable and 𝑒𝑖𝑡 = 𝜀𝑖𝑡 −𝜔⊤𝑖 (�̂� − 𝜃) is
the new error term.

Using a local-constant approach to estimate𝑚(·) in (10.8), we propose to minimize
the following objective function

argmin
𝑎0

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1
( ¥𝑦𝑖𝑡 − 𝑎0)2𝐾ℎ (𝑥𝑖𝑡 −x),

and the resulting nonparametric estimator of 𝑚(·) is

𝑚(x;ℎ) =
∑𝑁
𝑖=1

∑𝑇
𝑡=1 ¥𝑦𝑖𝑡𝐾ℎ (𝑥𝑖𝑡 ,x)∑𝑁

𝑖=1
∑𝑇
𝑡=1𝐾ℎ (𝑥𝑖𝑡 ,x)

. (10.9)

To derive the large sample properties of the proposed estimators in (10.7) and
(10.9), we first provide a definition and state some assumptions by extending what is
assumed in Li and Stengos (1996) and Soberon, Rodriguez-Poo and Robinson (2021).
We shall use G𝑟𝜐 to denote the class of smooth functions such that if 𝑔 ∈ G𝑟𝜐 , then 𝑔 is
bounded and 𝜐 times differentiable; 𝑔 and its partial derivative functions (up to order
𝜐) all satisfy some Lipschitz-type conditions such as |𝑔(x) −𝑔(x′) | ≤ H𝑔 (x)∥x′−x∥,
whereH𝑔 (x) is a continuous function having 𝑟th moment, and where ∥ · ∥ denotes
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the Euclidean norm, i.e., ∥x∥ =
√︃∑𝑑

𝑙=1 x2
𝑗

(see Definition 2 of Robinson, 1988, pp.
939). In addition, 𝑟 controls the moment properties of the remainder term.

Assumption A1: For 𝑡 = 1, . . . ,𝑇 , (𝑥𝑖𝑡 , 𝑧𝑖 , 𝑣𝑖 , 𝑢𝑖𝑡 ) are 𝑖.𝑖.𝑑. in the subscript 𝑖 and strict
stationarity in 𝑡 for fixed 𝑖. 𝑥𝑖𝑡 admits a probability density function 𝑓 ∈ G∞

𝜐−1 (i.e.,
𝑓 is bounded), 𝑚(·) ∈ G4

𝜐 , 𝐸 (𝑧𝑖 |𝑥𝑖𝑡 ) ∈ G4
𝜐 , and 𝐸 (𝑥𝑖𝐴 |𝑥𝑖𝑡 ) ∈ G4

𝜐 , where 𝜐 ≥ 2 is an
integer. □

Assumption A2: 𝐸 (𝑢𝑖𝑡 |𝑥𝑖𝑡 ) = 0, 𝐸 (𝑣𝑖 |𝑥𝑖𝑡 ) = 0. For 𝜀𝑖𝑡 = 𝑣𝑖 + 𝑢𝑖𝑡 , 𝐸 (𝜀2
𝑖𝑡
|x) = 𝜎2

𝜀 ≡
𝜎2
𝑣 +𝜎2

𝑢 . (𝑥𝑖𝑡 , 𝑧𝑖 , 𝑣𝑖 , 𝑢𝑖𝑡 ) have finite fourth moments. □

Assumption A3: 𝐾 (·) is a product kernel, the univariate kernel 𝑘 (·) is a bounded
𝜐th order kernel, and 𝑘 (𝜈) =𝑂 (1/(1+ |𝜈 |)𝜐+1). □

Assumption A4: As 𝑁→∞ for 𝑇 fixed, ℎ→ 0, 𝑁ℎ2𝑑→∞ and 𝑁ℎ4𝜐→ 0. □

Assumption A5: 𝐸 [(𝜔𝑖 −𝐸 (𝜔𝑖𝑡 |𝑥𝑖𝑡 )) (𝜔𝑖 −𝐸 (𝜔𝑖𝑡 |𝑥𝑖𝑡 ))⊤ 𝑓 2 (𝑥𝑖𝑡 )] is a (𝑑 +𝑞) × (𝑑 +
1) non-singular matrix function. □

Assumption A6: For some 𝛿 > 0, 𝐸 [|𝑣𝑖 | (4+𝛿 ) |𝑥𝑖𝑡 ] <∞ and 𝐸 [|𝑢𝑖𝑡 | (4+𝛿 ) |𝑥𝑖𝑡 ] <∞.□

These assumptions are fairly standard in the semiparametric literature, but some
remarks are required. Assumption (A1) is stronger than what it is in Li and Stengos
(1996). The density function is assumed to be bounded and at least first-order partially
differentiable with a Lipschitz-continuous remainder as this is required for estimating
the nonlinear portion. This stronger condition is not necessary for the asymptotic
properties of �̂�, only for 𝑚(·). The strict stationarity condition is imposed for the
simplicity of the mathematical proofs, but can be relaxed. Assumption (A4) implies
that (2𝜐 > 𝑑) or (2𝜐 ≥ 𝑑 +1) (because 𝜐 is an integer), which in turn is equivalent to
(𝜐 ≥ (𝑑 +1)/2) as in Robinson (1988) or Li and Stengos (1996). This assumption is
stronger than what is assumed in Li (1996), but it implies that a standard second-order
kernel (𝜐 = 2) can be used if (𝑑 ≤ 3) and the proofs of the asymptotic properties of
the proposed estimators are considerably simpler. Assumption (A6) is required to
obtain the asymptotic distribution of the nonparametric estimator, 𝑚(x;ℎ).

We are now ready to proceed with the asymptotic results for our parametric and
nonparametric components, respectively:

Theorem 10.1 Under assumptions (A1)-(A5), as 𝑁→∞ and T is fixed

√
𝑁𝑇 (�̂� − 𝜃) 𝑑→ 𝑁

(
0,Φ−1ΨΦ−1

)
where 𝜂𝑖𝑡 = 𝜔𝑖 − 𝐸 (𝜔𝑖 |𝑥𝑖𝑡 ), Φ = 𝐸 [𝜂𝑖𝑡𝜂⊤𝑖𝑡 𝑓 2 (𝑥𝑖𝑡 )] is positive definite, and
Ψ = 𝜎2

𝜀𝐸 [𝜂𝑖𝑡𝜂⊤𝑖𝑡 𝑓 4 (𝑥𝑖𝑡 )]. Moreover, Φ̂ = (𝑁𝑇)−1 ∑𝑁
𝑖=1

∑𝑇
𝑡=1 𝜂𝑖𝑡𝜂

⊤
𝑖𝑡
�̂� 2 (𝑥𝑖𝑡 ) and

Ψ̂ = (1/𝑁𝑇2)∑𝑁
𝑖=1

∑𝑇
𝑡=1

∑𝑇
𝑠=1 𝜂𝑖𝑡𝜂

⊤
𝑖𝑠
�̂�𝑖𝑡 �̂�𝑖𝑠 �̂� (𝑥𝑖𝑡 ) �̂� (𝑥𝑖𝑠) are the consistent estimators

of Ψ and Φ−1, respectively, where 𝜂𝑖𝑡 = 𝜔𝑖 −𝐸 (𝜔𝑖 |𝑥𝑖𝑡 ).
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The proof of Theorem 10.1 is a straightforward extension of Theorem 1 in Li and
Stengos (1996). The detailed proof is available upon request.

We now turn to the asymptotic properties of the nonparametric estimator proposed
for 𝑚(·) in (10.9). Denote 𝜇2 =

∫
𝜈2𝐾 (𝜈)𝑑𝜈 and R =

∫
𝑘2 (𝜈)𝑑𝜈, where 𝜇2 and R are

scalars different from zero.

Theorem 10.2 Under Assumptions (A1)-(A6), as 𝑁→∞ and T is fixed√︁
𝑁𝑇ℎ𝑑

{
𝑚(x;ℎ) −𝑚(x) +

ℎ2𝜇𝑑2
2

𝑡𝑟{H𝑚 (x)} + 𝑜𝑝 (ℎ2)
}

𝑑→ 𝑁

(
0,
𝜎2
𝜀R𝑑
𝑓 (x)

)
,

whereH𝑚 (x) = 𝜕𝑚(x)/𝜕x𝜕x⊤ is the Hessian matrix of 𝑚(·).

The proof of Theorem 10.2 is obtained via a similar scheme as in Fan and Gijbels
(1995) or Soberon et al. (2021), among others. The detailed proof is available upon
request.

10.3 Inference

In this section, we discuss how to test for whether the estimation procedure proposed
in this chapter accounts for correlation between the individual effects 𝑣𝑖 and the
regressor vector 𝑥𝑖𝑡 . The null and alternative hypothesis can be written as

𝐻0 : 𝑃𝑟 [𝐸 (𝑣𝑖 |𝑥𝑖𝑡 ) = 0] = 1 for all 𝑖
𝐻1 : 𝑃𝑟 [𝐸 (𝑣𝑖 |𝑥𝑖𝑡 ) ≠ 0] > 0 for some 𝑖.

The commonly used local-constant estimator (i.e., Nadaraya-Watson estimator) is con-
sistent when 𝐸 (𝑣𝑖 |𝑥𝑖𝑡 ) = 0, but is inconsistent when 𝐸 (𝑣𝑖 |𝑥𝑖𝑡 ) ≠ 0. Our nonparametric
correlated random-effects estimator is consistent in both cases.

Motivated by Sun, Carroll and Li (2009) in a different context, we propose a test
statistic based on

𝐼 =

∫
[𝑚(x;ℎ) −𝑚(x;ℎ)]2 𝑑x, (10.10)

where 𝑚(x) is our nonparametric correlated random-effects local-constant estimator
and 𝑚(x) is the Nadaraya-Watson estimator of the form

𝑚(x;ℎ) =
∑𝑁
𝑖=1

∑𝑇
𝑡=1 𝑦𝑖𝑡𝐾ℎ (𝑥𝑖𝑡 ,x)∑𝑁

𝑖=1
∑𝑇
𝑡=1𝐾ℎ (𝑥𝑖𝑡 ,x)

.

Using
∑𝑁
𝑖=1

∑𝑇
𝑡=1𝐾ℎ (𝑥𝑖𝑡 ,x) to remove the random denominators and by defining

�̂�𝑖𝑡 = 𝑦𝑖𝑡 −𝜔⊤𝑖 �̂� −𝑚(x;ℎ), the test statistic becomes
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𝐼𝑛 =
1

𝑁2𝑇2ℎ𝑑

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑇∑︁
𝑡=1

𝑇∑︁
𝑠=1

∫
�̂�𝑖𝑡 �̂� 𝑗𝑠𝐾ℎ (𝑥𝑖𝑡 ,x)𝐾ℎ (𝑥 𝑗𝑠 ,x)𝑑x, (10.11)

because by rearranging terms, we can write

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1
𝐾ℎ (𝑥𝑖𝑡 ,x) [𝑚(x;ℎ) −𝑚(x;ℎ)] =

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1
𝐾ℎ (𝑥𝑖𝑡 ,x)�̂�𝑖𝑡 .

To simplify the integration in (10.11), we use the fact that the typical element of
the integration term can be written as a twofold convolution kernel that acts as a
weighting function to select the observations such that only those (𝑥𝑖𝑡 , 𝑥 𝑗𝑠) close to
each other are used. Finally, to avoid the asymptotic bias term of this type of double
summation test, we remove the 𝑖 = 𝑗 terms of the kernel matrix of 𝐼𝑛, and obtain the
following test statistic

�̂�𝑛 =
1

𝑁2𝑇2ℎ𝑑

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗≠𝑖

𝑇∑︁
𝑡=1

𝑇∑︁
𝑠=1

�̂�𝑖𝑡 �̂� 𝑗𝑠𝐾ℎ (𝑥𝑖𝑡 , 𝑥 𝑗𝑠). (10.12)

To derive the asymptotic properties of the test statistic proposed in (10.12), the
following assumptions are required:

Assumption A7: For all 𝑡 ≠ 𝑠, (𝑥𝑖𝑡 , 𝑥𝑖𝑠) has a joint probability density function,
𝑓𝑡𝑠 (x1,x2), that is continuously differentiable and sup𝑡≠𝑠

∫
𝑓𝑡𝑠 (x,x)𝑑x < 𝑀 < ∞.

𝐸 (𝑥𝜐
𝑙,𝑖𝑡
|𝑥𝑖𝑠), 𝑓 (x), 𝑓𝑡𝑠 (x1,x2), and their first-order partial derivatives are all uniformly

bounded for 𝑙 = 1, . . . , 𝑑, 𝜐 = 1, . . . ,4, and for all 𝑖 and 𝑡 ≠ 𝑠. □

Assumption A8: As 𝑁→∞ for 𝑇 fixed, ℎ→ 0, and 𝑁ℎ𝑑→∞. □

The asymptotic distribution under the null and the power of our test are given by
the following theorems. They are obtained following similar reasoning as to that in
Zheng (1996) and/or Henderson and Soberon (2024), among others. The detailed
proofs are available upon request.

Theorem 10.3 Under Assumptions (A1)-(A8) and assuming 𝑓 (𝑥) > 0 for each 𝑥 in
the support of 𝑥𝑖𝑡 , under 𝐻0, as 𝑁→∞ and 𝑇 is fixed,

𝐽𝑛 = 𝑁𝑇ℎ
𝑑/2 �̂�𝑛√︁

Σ̂

𝑑−→ 𝑁 (0,1)

where Σ̂ = 1
𝑁2𝑇2ℎ𝑑

∑𝑁
𝑖=1

∑𝑁
𝑗≠𝑖

∑𝑇
𝑡=1

∑𝑇
𝑠=1 �̂�

2
𝑖𝑡
�̂�2
𝑗𝑠
𝐾2
ℎ
(𝑥𝑖𝑡 , 𝑥 𝑗𝑠) is a consistent estimator of

the asymptotic variance of 𝑁𝑇ℎ𝑑/2 �̂�𝑁𝑇 where

Σ =
2𝜎2

𝜀R𝑑 (𝐾)
𝑇2 𝐸 [ 𝑓 (𝑥𝑖𝑡 )] .
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Theorem 10.4 Under Assumptions (A1)-(A8) and assuming 𝑓 (𝑥) > 0 for each 𝑥 in
the support of 𝑥𝑖𝑡 , under 𝐻1, we have 𝑃𝑟 (𝐽𝑛 ≥ 𝑐) → 1 as 𝑁→∞, where (𝑐) is any
positive constant.

In practice, the asymptotic distribution of the test statistic is not useful for finite
samples. As is standard in nonparametric kernel based tests, we resort to a bootstrap
procedure. The steps for the wild bootstrap are as follows:

1. Compute the test statistic 𝐽𝑛 for the original sample of data { 𝑦𝑖𝑡 , 𝑥𝑖𝑡 ,𝜔𝑖} .
2. For each observation 𝑖, for each time period 𝑡, draw a wild residual bootstrap 𝑣∗

𝑖𝑡

and construct the bootstrapped left-hand-side variable as 𝑦∗
𝑖𝑡
= 𝑚(𝑥𝑖𝑡 ) +𝜔⊤𝑖 �̂� + 𝑣∗𝑖𝑡

and call { 𝑦∗
𝑖𝑡
, 𝑥𝑖𝑡 ,𝜔𝑖} the bootstrap sample.3

3. Calculate 𝑇∗𝑛 where 𝑇∗𝑛 is calculated the same way as 𝑇𝑛 except that 𝑦𝑖𝑡 is replaced
by 𝑦∗

𝑖𝑡
.

4. Repeat steps 2 and 3 a large number (𝐵) of times and then construct the sampling
distribution of the bootstrapped test statistics. Reject the null if the estimated
statistic 𝑇𝑛 is greater than the upper 𝛼−percentile of the bootstrapped test statistics.

10.4 Simulations

We investigate the finite sample performance of our proposed estimators and test via
Monte Carlo simulations. We begin with Equation (10.1) and consider various forms
for 𝑚(·) and 𝜇𝑖 . Our study considers two distinct functional forms for 𝑚(·):

𝑚(𝑥𝑖𝑡 ) = 𝑥⊤𝑖𝑡 𝛽
𝑚(𝑥𝑖𝑡 ) = sin(𝑥𝑖𝑡 ),

where 𝑥𝑖𝑡 is generated as a standard random normal variable. We examine three
specifications for the unobserved heterogeneity, 𝜇𝑖:

𝜇𝑖 = 𝑥
⊤
𝑖 𝜓 + 𝑣𝑖

𝜇𝑖 = 𝑧
⊤
𝑖 𝛾 + 𝑣𝑖

𝜇𝑖 = 𝑧
⊤
𝑖 𝛾 + 𝑥⊤𝑖 𝜓 + 𝑣𝑖 ,

and when we study the size of our test, we set 𝜇𝑖 = 𝑣𝑖 .
Both error terms (𝑣𝑖 and 𝜀𝑖𝑡 ) are generated as i.i.d. random variables, normally

distributed with zero mean and variance 1/2. Our simulation design varies both the
cross-sectional dimension 𝑁 ∈ {100,200,400} and the time dimension𝑇 ∈ {3,5}. For
each configuration, we conduct 999 simulations, and use Gaussian kernel functions
with bandwidths selected according to Silverman (1986). For our testing procedure,
we use 399 bootstrap replications for each simulation.

3 𝑣∗
𝑖𝑡
= 𝜖𝑖𝑡 ∗𝜑𝑏𝑖 , where 𝜑𝑏

𝑖

𝑖.𝑖.𝑑.∼ 𝑁 (0, 1) . It is easy to see that𝐸 [ 𝜖𝑖𝑡 𝜑𝑏𝑖 ] = 0,𝐶𝑜𝑣 [ 𝜖𝑖𝑡 𝜑𝑏𝑖 , 𝜖 𝑗𝑠𝜑𝑏𝑗 ] =
𝐶𝑜𝑣 [ 𝜖𝑖𝑡 , 𝜖 𝑗𝑠 ], for all 𝑖, 𝑗 = 1, . . . , 𝑁 , 𝑡 , 𝑠 = 1, . . . , 𝑇 .
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10.4.1 Estimation

To assess estimation accuracy, we compute the average mean squared error (AMSE)
for the nonparametric function 𝑚(·)

𝐴𝑀𝑆𝐸 [𝑚(·)] = 1
999

999∑︁
𝑗=1

[
1
𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1
(𝑚 𝑗 (𝑥𝑖𝑡 ) −𝑚(𝑥𝑖𝑡 ))2

]
,

and for specifications involving 𝛾, we also analyze its behavior via 𝑀𝑆𝐸 (�̂�) =
1

999
∑999
𝑗=1 (�̂� 𝑗 −𝛾)2.

The results of the simulations are summarized in Figures 10.1 and 10.2.4 The results
reveal several key patterns. For the linear specification 𝑚(·) = 𝑥⊤

𝑖𝑡
𝛽, as expected, the

least-squares estimator consistently outperforms the nonparametric approach across
all specifications, exhibiting lower AMSE values and reduced variance. This advantage
is particularly pronounced for smaller sample sizes. However, the performance gap
narrows as the sample size increases, with 𝑁 = 400 showing markedly improved
precision for both methods.

The nonparametric estimation of the nonlinear function 𝑚(·) = sin(𝑥𝑖𝑡 ) demon-
strates consistent patterns across all three 𝜇𝑖 specifications. The AMSE values
decrease with larger sample sizes, and estimation precision improves when 𝑇 = 5
compared to 𝑇 = 3. The consistency properties shown in the theorems appear to be
validated here.

The estimation results appear relatively robust across the different specifications of
unobserved heterogeneity, though the more complex specification 𝜇𝑖 = 𝑧⊤𝑖 𝛾+𝑥⊤𝑖 𝜓+𝑣𝑖
shows slightly higher MSE values, particularly in smaller samples. This suggests that
the additional complexity of controlling for both time-invariant regressors and time
averages of 𝑥𝑖𝑡 introduces modest efficiency costs in finite samples.

The results for the estimation of the parameter 𝛾 can be found in Figures 10.3
and 10.4. The estimates here come from the same simulations runs in panels (c-f) in
Figure 10.1. What is obvious from the comparison between the two figures is that in
Figure 10.3, we can see that the parametric components from the semiparametric
procedure are estimated as precisely as those from the least-squares estimator. As
expected, the results for Figure 10.4 for the semiparametric estimator look nearly
identical to those from the previous figure. Again, the least-squares estimates are not
given in Figure 10.4 as the estimates of 𝑚(·) are inconsistent.

4 We show the results for both the least-squares and semiparametric estimates for the linear
specification, but only the semiparametric results for the nonlinear specification as our least-squares
estimators are inconsistent in this setting.
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Fig. 10.1: AMSE for the linear specification of 𝑚(𝑥) = 𝑥𝑖𝑡 𝛽 for least-squares and
semiparametric estimators: 𝑁 ∈ {100,200,400} and 𝑇 ∈ {3,5}
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Fig. 10.2: AMSE for the nonlinear specification of 𝑚(𝑥) = sin (𝑥𝑖𝑡 ) for the semipara-
metric estimator: 𝑁 ∈ {100,200,400} and 𝑇 ∈ {3,5}
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Fig. 10.3: Estimates of �̂� for the linear specification of 𝑚(𝑥) = 𝑥⊤
𝑖𝑡
𝛽 for least-squares

and semiparametric estimators: 𝑁 ∈ {100,200,400} and 𝑇 ∈ {3,5}
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10.4.2 Inference

To study the performance of our testing procedure, we first study its finite sample
size properties. The results are similar for the linear and nonlinear functions of 𝑚(·)
and so we only consider the linear function. Everything remains the same as in the
previous subsection except to study size, we set 𝜇𝑖 = 𝑣𝑖 . 399 bootstrap replications
for each of our 999 simulations.

The results for size can be found in Figure 10.5. We plot the actual level versus
the nominal level. Each of the actual levels for the tests appear to be near the nominal
levels, but note that the performance improves with 𝑁 , as expected. These simulations
appear to support the theory developed in Section 10.3.

The results for the power of our test can be found in Figure 10.6. We plot the actual
level versus the nominal level. The power of the test improves with 𝑁 , as expected,
for each specification of 𝜇𝑖 . That being said, we see that the probability of correctly
rejecting the null is higher when controlling for 𝑥𝑖 as compared to 𝑧𝑖 , and is even
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Fig. 10.4: Estimates of �̂� for the nonlinear specification of 𝑚(𝑥) = sin (𝑥𝑖𝑡 ) for the
semiparametric estimator: 𝑁 ∈ {100,200,400} and 𝑇 ∈ {3,5}
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higher when controlling for both. These simulations appear to support the theory
developed in Section 10.3.

10.5 Empirical Illustration

To demonstrate the empirical relevance of our methodological innovations, we analyze
the relationship between firms’ research and development expenditures, current assets,
and regulatory restrictions across different industries. Our data combines firm-level
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Fig. 10.5: Nominal size (vs actual size) of our specification test: 999 simulations
each with 399 bootstrap replications: 𝑁 ∈ {100,200,400} and 𝑇 ∈ {3,5}
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financial information from Compustat (Wharton Research Data Services, 2024) with
industry-level regulatory data from RegData U.S. 4.1 (QuantGov, 2024).

RegData U.S. 4.1, released in March 2022, provides comprehensive measurements
of federal regulations and their industry-specific impacts. The dataset quantifies
regulatory restrictions through algorithmic identification of prohibited or required
activities in the Code of Federal Regulations, offering a systematic measure of
regulatory burden at the industry level.

Instead of a traditional panel data model (firms measured over time), in our
application, we consider a repeated measure problem. Our unit of observation will
be the industry and the repeated measure will be observing different firms in each
industry. We will repeat this analysis over three different time periods: 2019, 2020
and 2021.

More formally, we examine the relationship between research and development
expenditures (XRD) as our left-hand-side variable, current assets (ACT) as our
firm-varying explanatory variable, and industry-specific regulatory restrictions (RE-
STRICTIONS) as our firm-invariant variable. Our specification follows the form:

𝑦𝑖 𝑗 = 𝑥
⊤
𝑖 𝑗 𝛽+ 𝑥⊤𝑖 𝜓 + 𝑧⊤𝑖 𝛾 + 𝜀𝑖 𝑗 , 𝑖 = 1, . . . , 𝑁, 𝑗 = 1, . . . , 𝐽, (10.13)

where 𝑦𝑖 𝑗 represents (the log of) research and development expenditures of firm
𝑗 in industry 𝑖, 𝑥𝑖 𝑗 denotes current (the log of) assets of firm 𝑗 in industry 𝑖, 𝑥𝑖 is
the average value of 𝑥𝑖 𝑗 over the firms ( 𝑗) in industry 𝑖, and 𝑧𝑖 captures regulatory
restrictions in industry 𝑖. To ensure sufficient within-industry variation, we select the
top five firms (𝐽 = 5) from each industry and exclude industries with fewer than five
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Fig. 10.6: Power of our specification test: 999 simulations each with 399 bootstrap
replications: 𝑁 ∈ {100,200,400} and 𝑇 ∈ {3,5}
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firms. This filtering process yields 𝑁 = 47 industries in 2019, 48 industries in 2020,
and 50 industries in 2021.

The results for both the parametric and semiparametric estimation of Equation 10.13
can be found in Figures 10.7 and 10.8. The former (Figure 10.7) displays scatterplots
of ¥𝑦𝑖 𝑗 = 𝑦𝑖 𝑗 −𝜔⊤𝑖 �̂� versus 𝑥𝑖 𝑗 and lays the parametric (𝑥⊤

𝑖 𝑗
𝛽) and nonparametric fits

(𝑚(𝑥𝑖 𝑗 )) on top of the scatterplots for each year (rows) in the first and second columns,
respectively. The parametric and nonparametric fits are difficult to distinguish from
one another. Any functional form test for these sample sizes would likely lead to
a failure to reject the parametric model. That being said, the semiparametric fit
appears to go through the center of the points whereas the parametric fit appears
to be impacted by a few large (outlier) values for ¥𝑦𝑖 𝑗 for smaller values of 𝑥𝑖 𝑗 . The
semiparametric (local-estimator) is less impacted by these values. The slightly better
fit is summarized via the relative values of pseudo-𝑅2 (squared correlation between
𝑦 and the fitted value of 𝑦).5 Figure 10.8 gives the point estimates of 𝛾, for each
method, for each year, for each estimation method (𝜓 is a nuisance parameter and
is not reported). We can see that the point estimates for 𝛾 are negative for each
method in each year.6 If we are to take these estimates literally, it suggests that
increased regulation leads to less expenditure on research and development. That
being said, these models are very simple and the estimates of �̂� are insignificant (for
each estimator) in each time period.

10.6 Conclusion

In this chapter, we proposed a semiparametric procedure for estimating CRE models.
Our estimators result in closed-form solutions and achieve the optimal rates of
convergence for the nonparametric and parametric components of our models. We
further develop a test to check if the CRE specification captures the correlation
between the unobserved effects and the regressors. Our finite sample simulations
support our asymptotic theory. Finally, we provided an empirical illustration to show
how the methods work with real data.
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5 Pseudo-𝑅2 values; 2019: least-squares = 0.7450, semiparametric = 0.7880; 2020: least-squares =
0.7342, semiparametric = 0.7893; and 2021: least-squares = 0.7195, semiparametric = 0.7847.
6 The small values for 𝛾 should not be surprising as a one-unit increase in regulation should lead to
only small changes in the log of research and development expenditure.
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Fig. 10.7: Application: 𝑥⊤
𝑖 𝑗
𝛽 and 𝑚(𝑥𝑖 𝑗 ) versus 𝑥𝑖 𝑗 for the least-squares and semipara-

metric estimators
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Fig. 10.8: Application: point estimates of 𝛾 and 90% confidence bounds for the years
2019, 2020, and 2021 for both the least-squares and semiparametric estimators
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Chapter 11
The Correlated Random Effects GMM-Level
Estimation: Monte Carlo Evidence and Empirical
Applications

Maria Elena Bontempi and Jan Ditzen

Abstract We introduce CRE-GMM, a new estimator that exploits correlated random
effects (CRE) within the generalised method of moments on level equations (GMM-
lev) in a dynamic (but also static) model on panel data. Unlike GMM-dif, it allows
the estimation of the effects of measurable time-invariant covariates and, compared
to GMM-sys, makes efficient use of all available information. CRE-GMM considers
explanatory variables that may be affected by double endogeneity (correlation with
individual heterogeneity and idiosyncratic shocks), models initial conditions and
improves inference. Monte Carlo simulations validate CRE-GMM across panel types
and endogeneity scenarios. Empirical applications to R&D, production, and wage
functions illustrate the advantages of CRE-GMM.

11.1 Introduction

Many economic relationships involve dynamic adjustment processes due to, e.g.,
habits, adjustment costs, gestation lags, and the wait and see role of uncertainty. The
generalised method of moments (GMM) is widely used in applied economic research
to estimate linear dynamic panel data models, mainly as GMM-dif in which the model
in first differences is instrumented by lagged levels (Arellano & Bond, 1991; Alvarez
& Arellano, 2003) and GMM-sys which adds to the model in first differences the
model in levels only for one period, instrumented by lagged first differences (Arellano
& Bover, 1995; Blundell & Bond, 1998). In the words of Kiviet (2007), the issue
is whether it is possible to remove unobservable individual heterogeneity from the
regressors (GMM-dif case), or from any variable that may be used as an instrument
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(GMM-sys case in the not redundant moment condition in levels), or from the model,
which is our proposal.

Indeed, we investigate the effect of maintaining the model in levels (GMM-lev)
combined with the Correlated Random Effects (CRE) specification into a unique stage
framework, the CRE-GMM estimator. Our approach explicitly extends the equation to
be estimated so to capture the initial endowment of each unit, as measured by the pre-
sample realisations of the variables of the model. Hence, it can handle a mix of units
whose differences are not simply captured by the initial observation of the dependent
variable, but by a set of observations of all variables concurring to the dynamic
process. In our extended level regressions, we treat individual heterogeneity as
random, to be consistent with Haavelmo’s view (Haavelmo, 1944) that the population
of interest consists of an infinity of decisions made by individuals who are different
from each other and who may change their behavior over time (Nerlove, Sevestre &
Balestra, 2008). We consider the random effects similar in spirit to latent variables
driving the distribution of the correlated explanatory variables.

We show that our proposed methodology is effective in addressing the double
endogeneity of the explanatory variables, which originates from two sources. The
first source of endogeneity, termed endogeneity due to heterogeneity, arises from the
correlation between covariates and unobservable, unit-specific characteristics, that
may vary over time, thereby invalidating the GMM-dif and, partially, the GMM-sys.
The second source of endogeneity, termed standard endogeneity, is contingent on
the correlation of covariates with idiosyncratic shocks that vary with units and over
time. It is managed by GMM-lev where the instruments are defined as lagged first
differences or levels depending on the presence or absence of correlation between
the explanatory variables and individual heterogeneity; the selection of lags hinges
on the classification of the explanatory variables as exogenous, predetermined and
endogenous in terms of their correlation with the idiosyncratic shock. We implement
Monte Carlo simulations under alternative settings, with the driving schedule being
macro panels (small N and long T, e.g., N=25 and T=40), multilevel panels (the
number of groups is large relative to the number of observations per group, for
example N=100 and T=20), and longitudinal panels (N much larger than T, e.g.,
N=1000 and T=10).

The primary objective of our CRE-GMM method is to maintain the levels of
the equation of interest, thereby enabling the efficient estimation of the effects
of measurable and time-invariant explanatory variables, while controlling for un-
measurable individual heterogeneity. In macro panels, our method controls for the
effects of measurable institutional traits that drive time-invariant heterogeneity along
with unobserved country-specific characteristics, avoiding bias in the estimation of,
for example, the ‘resource curse’ (Haber & Menaldo, 2011). By also considering
cross-sectional variation, CRE-GMM avoids using only within variation and the
critique given by Kropko and Kubinec (2020) of Acemoğlu, Johnson, Robinson
and Yared’s (Acemoğlu et al., 2008) counter-intuitive finding that GDP exhibits no
relationship with democratisation. In longitudinal panels, CRE-GMM can estim-
ate innovative investments (Gormley & Matsa, 2014) as a function of measurable
individual characteristics that are of great interest to researchers (like industries
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and technological opportunities, location, and market power) while controlling for
unobservable factors (like managerial quality, ownership motivation and cost of
capital). In fields such as education, psychology, sociology, and political science,
based on multilevel or multidimensional panels, GMM-CRE can estimate the effects
of higher-level, time-constant variables (e.g., educational system, family background,
and social norms) while controlling for endogeneity due to the heterogeneity of
lower-level predictors (Mátyás, 2017; Yang & Schmidt, 2021; Hill & In Song, 2020;
Imai, Davis, Roos & French, 2019).

Another aim of CRE-GMM is to tackle a common challenge in applied empirical
studies. When implementing the GMM-lev estimator on dynamic panel data models,
a high estimated autoregressive parameter is observed, akin to the upward-biased
pooled OLS estimation that disregards individual heterogeneity. We love to quote
Nerlove and Balestra (1966): “The presence of lagged endogenous variables may
make it difficult, if not impossible, to separate the individual [...] effects from the
effect induced by the lagged variable”. This suggests that neglecting or not capturing
individual heterogeneity can result in a combination of ‘spurious’ persistence, due to
unobserved unit-specific permanent characteristics, and ‘true’ persistence, defined
as the causal effect of past realizations on the current realization of the dependent
variable (Heckman, 1991). The innovation literature frequently points out the difficulty
of estimating the causal effect of past R&D activities on current R&D investment
due to the path-dependent nature of technical changes (Atkinson & Stiglitz, 1969),
if individual heterogeneity that generates spurious persistence is not controlled for
(Peters, 2009).

Our approach can be related to that of Riju and Wooldridge (2019), who consider
CRE with instrumental variables on a static panel, a situation to which our CRE-GMM
approach can also be applied. Our aim of identifying the effects of time-invariant
variables in the presence of unobserved heterogeneity is similar to that of the
sequential approaches suggested by Hausman and Taylor (1981) and Pesaran and
Zhou (2018) for static models, and by Kripfganz and Schwarz (2019) for dynamic
models. However, in the latter the explanatory variables are assumed to be strictly
exogenous with respect to the idiosyncratic error term, an assumption we relax. Our
CRE-GMM approach avoids the use of a two-stage standard error correction and the
bias due to time-invariant variables omitted in the first stage (if relevant and related
with unit- and time-varying covariates). The use of GMM-lev is taken from Arellano
and Bover (1995) and, especially, Bun and Kiviet (2006), who compare various GMM
implementations under the assumption that the model includes a predetermined
unit- and time-varying explanatory variable, possibly correlated with individual
heterogeneity. For GMM-lev, the leading term of the bias is strongly influenced by
the magnitude of the individual effects and any correlation between regressors and
the effects, which is something we address with our CRE-GMM estimator.

Compared to maximum likelihood, GMM is less restrictive in its assumptions and
more useful in modeling complex economic relationships in a world with limited
information (Bera & Bilias, 2002). GMM can also be considered as encompassing
almost all common estimation methods (Imbens, 2002).
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Studies exploiting maximum likelihood dynamic models (Bhargava & Sargan,
1983; Phillips, 2010, 2015; Hsiao & Zhou, 2018; Hsiao, 2020; Alvarez & Arellano,
2022) assume a simple autoregressive specification or, in more general dynamic
models, that the explanatory variable other than the lagged dependent variable is
uncorrelated with idiosyncratic shocks. GMM allows this assumption to be relaxed, an
advantage for most applications where many or all explanatory variables are affected
by both endogeneity due to heterogeneity, and standard endogeneity. Accordingly,
our research extends the literature focused on the comparative analysis of GMM
estimation on dynamic panel data models, Brown and Newey (2002); Hayakawa
(2007, 2009, 2015); Hayakawa and Nagata (2016); Bun and Kiviet (2006); Bun and
Windmeijer (2010); Kiviet (2007); Kiviet, Pleus and Poldermans (2017); Kiviet
(2020); Alvarez and Arellano (2003); Jin, Lee and J. (2021).

The chapter is organized as follows. Section 11.2 introduces the model and
Section 11.3 presents the CRE-GMM and its motivations for the applied researcher.
Section 11.4 presents results of our Monte Carlo experiments. Section 11.5 reports
an empirical example. Section 11.6 concludes. Monte Carlo setup and further results
are in the Online Appendix (Bontempi & Ditzen, 2025).

11.2 The Model

We consider a dynamic panel model in the form of an ARDL(1,0), or partial adjustment
model (PAM):

𝑦𝑖𝑡 = 𝛼+ 𝜷′x𝑖𝑡 + 𝜽 ′w𝑖 + 𝜌𝑦𝑖𝑡−1 + 𝜈𝑖𝑡
𝜈𝑖𝑡 = 𝜇𝑖 +𝜐𝑖𝑡 , (11.1)

where |𝜌 | < 1, x𝑖𝑡 is a 1×𝐾 vector of measurable explanatory variables changing with
𝑖 = 1, . . . , 𝑁 and 𝑡 = 1, . . . ,𝑇𝑖 ,1 and w𝑖 is a 1×𝐷 vector of measurable time-invariant
explanatory variables changing only with 𝑖. The composite error term is 𝜈𝑖𝑡 = 𝜇𝑖 +𝜐𝑖𝑡 ,
where 𝜇𝑖 ∼ 𝑖.𝑖.𝑑.(0,𝜎2

𝜇) represents randomly drawn individual-specific unobserved
effects, possibly correlated with x𝑖𝑡 and w𝑖 and by definition correlated with 𝑦𝑖𝑡−1.
The component 𝜐𝑖𝑡 ∼ 𝑖.𝑖.𝑑.(0,𝜎2

𝜐) represents the idiosyncratic errors. The individual
heterogeneity is uncorrelated with the random noise, i.e. 𝐶𝑜𝑣(𝜇𝑖 , 𝜐𝑖𝑡 ) = 0 as this is
needed for the validity of moment conditions in GMM-dif and GMM-sys (Chudik &
Pesaran, 2022).

The assumptions regarding the idiosyncratic shocks are:

(i) E(𝜐𝑖𝑡𝜐 𝑗𝑡 ) = 0 ∀ 𝑗 and 𝑖 = 1, ..., 𝑁 , 𝑡 = 1, ...,𝑇 with 𝑖 ≠ 𝑗 , the errors are uncorrelated
across units;

(ii) E(𝜐𝑖𝑡𝜐𝑖𝑙) = 0 ∀𝑖 = 1, ..., 𝑁, 𝑙 and 𝑡 = 1, ...,𝑇 with 𝑡 ≠ 𝑙, the errors are serially
uncorrelated over time.

1 We explicitly allow for unbalanced panels. In balanced panel 𝑇𝑖 = 𝑇, ∀𝑖 = 1, ..., 𝑁 .
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The easiest way to ensure validity of (i) is to assume 𝜐𝑖𝑡 = 𝜏𝑡 +𝜀𝑖𝑡 and E(𝜀𝑖𝑡𝜀 𝑗𝑡 ) =
0 ∀ 𝑗 , 𝑖 = 1, ..., 𝑁 , 𝑡 = 1, ...,𝑇 with 𝑖 ≠ 𝑗 . Time dummies 𝜏𝑡 aim to explicitly capture
CCE, common correlated effects or period-specific factors of ‘aggregate influence’
on micro units, such as business cycle, neighbourhood effects, herd behaviour and
social norms. If not accounted for, these unobservable common factors may generate
weak cross-sectional dependence (Chudik, Pesaran & Tosetti, 2011). Another simple
way to account for common correlated effects is to use cross-sectional demeaned data
as in Moral-Benito (2013); Alvarez and Arellano (2022).2

To guarantee assumption (ii), which underlies the appropriate setting of the
moment conditions exploited by CRE-GMM, the dynamics of Equation (11.1) can
be extended, e.g., to an ARDL(1,1) and the corresponding equilibrium correction
model (ECM):

𝑦𝑖𝑡 = 𝛼+ 𝜷′1x𝑖𝑡 + 𝜷′2x𝑖𝑡−1 + 𝜽 ′w𝑖 + 𝜌𝑦𝑖𝑡−1 + 𝜈𝑖𝑡 . (11.2)

In the case of 𝜌 = 0 and 𝜷2 = 0, we have a static model, for which our CRE-GMM
approach is interesting as it provides ‘internal’ instruments (information within the
model), thus avoiding the difficulties of finding good ‘external’ instruments.

The error components 𝜇𝑖 and 𝜐𝑖𝑡 are sometimes referred to as ‘permanent’ and
‘transitory’ components.3 They imply that the moment conditions exploited to estimate
Equation (11.1) in levels must tackle the possible double endogeneity of the explatory
variables. Specifically:

1. Endogeneity due to heterogeneity:

E(𝑦𝑖𝑡−𝑝𝜇𝑖) ≠ 0 𝑝 ≥ 1,∀𝑡 = 1, . . . ,𝑇𝑖;
E(x𝑖𝑡−𝑞𝜇𝑖) ≠ 0 𝑞 ≥ 0,∀𝑡 = 1, . . . ,𝑇𝑖 .

2. Standard endogeneity

E(x𝑖𝑡−𝑞𝜐𝑖𝑡 ) ≠ 0 𝑞 ≥ 0,∀𝑡 = 1, . . . ,𝑇𝑖 .

The lagged dependent variable is predetermined (uncorrelated with
{𝜐𝑖𝑡 , 𝜐𝑖𝑡+1, . . . , 𝜐𝑖𝑇𝑖 }), but, including by definition 𝜇𝑖 , it is endogenous due to
individual heterogeneity. The x𝑖𝑡 variables could be correlated with both the
individual heterogeneity 𝜇𝑖 (endogeneity due to heterogeneity) and the shock 𝜐𝑖𝑡
(standard endogeneity). Indeed, a variable in x𝑖𝑡 could be predetermined rather than
strictly exogenous; for example, in Vella and Verbeek (1998)’s model explaining
workers’ wages, a reduction in 𝑡 of the dependent variable wages could lead to union

2 Strong cross-sectional dependence is beyond our setting. It is captured by the interactive fixed
effects models, 𝜐𝑖𝑡 = 𝜑𝑖𝜆𝑡 + 𝜀𝑖𝑡 , where 𝜆𝑡 indicates factors and 𝜑𝑖 individual-specific loadings,
meaning that the regression is augmented with cross-sectional averages Pesaran (2006), or principal
components Bai (2009).
3 In the words of Crowder and Hand (1990), the term 𝛼 is the “immutable constant of the universe”,
𝜇𝑖 represents the “lasting characteristics of individuals” and thus captures the unobserved, and
omitted, time-constant variables representing individual specificities, while the idiosyncratic shocks,
𝜐𝑖𝑡 , are the “fleeting aberration of the moment”.
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membership in 𝑡 +1. Often the dynamic model in Equation (11.1) could be affected
by omitted regressors correlated with x𝑖𝑡 , by measurement errors in x𝑖𝑡 , by
simultaneity, thus producing endogeneity of the variables x𝑖𝑡 .

11.3 The CRE-GMM Estimation

One of the goals of our Correlated Random Effects GMM-lev (CRE-GMM) method
is to keep Equation (11.1) in levels, which allow us to estimate the effects of the
measurable time-invariant explanatory variables, w𝑖 , while also considering the role of
unmeasurable individual heterogeneity and controlling for both types of endogeneity.
If 𝜇𝑖 were omitted or not appropriately captured, it would generate an upward bias of
the autoregressive parameter and bias of all other parameters through the smearing
effect. The individual effects 𝜇𝑖 capture an additive and linear combination of all
time-invariant unit-specific unobservable variables, e.g., the differences of each
individual with respect to the benchmark 𝛼. GMM-dif could solve the upward bias
due to endogeneity because of heterogeneity, but it does not allow estimating the
parameters associated with w𝑖 . This problem also affects GMM-sys, at least in terms
of efficiency, as most of the equations are first-differenced while the level equation is
only retained for non-redundant moment conditions, actually for only one more period
per panel unit, the 𝑇𝑖 period (Kiviet et al., 2017). Thus, the GMM-sys estimation of 𝜽
does not exploit all available information.

Indeed, GMM-dif and GMM-sys are uniquely (GMM-dif) or mostly (GMM-sys)
based on first differences of Equation (11.1):

Δ𝑦𝑖𝑡 = 𝜷′1Δx𝑖𝑡 + 𝜌Δ𝑦𝑖𝑡−1 +Δ𝜐𝑖𝑡 . (11.3)

First differencing removes 𝜇𝑖 , one source of endogeneity, under the condition that
individual characteristics are constant over time, an assumption that is not tested;
another drawback is that the estimation of 𝜽 is not possible (GMM-dif) or not fully
informed (GMM-sys).

One more reason why GMM-lev is an attractive alternative to the GMM-dif
estimator is that its performance does not deteriorate when 𝜌 is high (Binder, Hsiao
& Pesaran, 2005). Interestingly, Bun and Windmeijer (2010) interpret the GMM-sys
as a weighted average of GMM-dif and GMM-lev where the weight on the moment
conditions in levels increases with increasing persistence of the series. The higher
the autoregressive parameter, the weaker the relationship between lagged levels
and the first-differenced variables. In contrast, in GMM-lev, a large autoregressive
parameter implies a strong link between lagged first differences and level variables
(Bewley, 1979) and an even stronger link between lagged levels and level variables.
We therefore believe that GMM-lev provides more informative and relevant estimates
than GMM-dif and GMM-sys. Our GMM-CRE estimator can also be combined with
the first differences and extended to GMM-sys, as tested in Section 11.4.
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The intuition of our CRE-GMM estimator comes from iterating Equation (11.1)
backwards for an arbitrary 𝑡:

𝑦𝑖𝑡 = 𝜌
𝑡 𝑦𝑖0 +

𝑡−1∑︁
𝜏=0

𝜌𝜏𝛼𝑖 +
𝑡−1∑︁
𝜏=0

𝜌𝜏𝜽 ′w𝑖 +
𝑡−1∑︁
𝜏=0

𝜌𝜏𝜷′x𝑖𝑡−𝜏 +
𝑡−1∑︁
𝜏=0

𝜌𝜏𝜐𝑖𝑡−𝜏

= 𝜌𝑡 𝑦𝑖0 +
1− 𝜌𝑡−1

1− 𝜌 𝛼𝑖 +
1− 𝜌𝑡−1

1− 𝜌 𝜽 ′w𝑖 +
𝑡−1∑︁
𝜏=0

𝜌𝜏𝜷′x𝑖𝑡−𝜏 +
𝑡−1∑︁
𝜏=0

𝜌𝜏𝜐𝑖𝑡−𝜏 , (11.4)

where 𝛼𝑖 = 𝛼+ 𝜇𝑖 and 𝑡 captures the sample splitting, as will be discussed later. The
dependent variable can be separated into four components. The first component, 𝜌𝑡 𝑦𝑖0,
is the term that depends on the initial observations, 𝑦𝑖0, and influences the behaviour
of any estimators as long as 𝑇𝑖 is finite; its effect does not vanish and is reflected in
each subsequent period when the time dimension is short, particularly for some units
in unbalanced panels. Instead, its relevance decreases when 𝑇𝑖 is large, under the
weak stationarity condition |𝜌 | < 1. The effect of the initial conditions does not vanish
with 𝑇𝑖 when 𝜌 is close to unity. The starting values may be seen as representing the
initial individual endowments. Particularly in longitudinal panels where 𝑇𝑖 is rather
small and asymptotic concerns 𝑁→∞, the effects of the initial conditions are not
asymptotically diminishing, and hence the assumptions on initial observations play an
important role in determining the properties of the level equations used by GMM-sys
and GMM-lev. Hahn (1999) argues that in estimating an AR(1) model on panel data
it is fairly common to disregard the potentially informative role of the distribution
of initial conditions 𝑦𝑖0 for the estimation of the autoregressive parameter 𝜌. This
practice is understandable because misspecification of the distribution of 𝑦𝑖0 would
result in the inconsistency of the resultant estimator. Perhaps because of this concern,
efficiency in the dynamic panel literature has been discussed in the framework where
𝑦𝑖0 was assumed to be ancillary for the parameter of interest. Hahn (1999) shows that
the marginal information contained in the initial condition is substantially even when
𝑇𝑖 is relatively large, and the efficiency gain tends to be larger for 𝜌 close to one, as
the coefficient 𝜌𝑡 of 𝑦𝑖0 indicates that the importance of initial condition in 𝑦𝑖𝑡 is an
increasing function of |𝜌 |.

The second term,
[
(1− 𝜌𝑡−1)/(1− 𝜌)

]
𝛼𝑖 +

[
(1− 𝜌𝑡−1)/(1− 𝜌)

]
𝜽 ′w𝑖 , is the equi-

librium that depends on the unmeasurable, 𝜇𝑖 , and potentially measurable individual
characteristics, w𝑖; they interact with the autocorrelation coefficient, to determine the
unit-specific limiting distribution of the series 𝑦𝑖𝑡 . The third term,

∑𝑡−1
𝜏=0 𝜌

𝜏𝜷′x𝑖𝑡−𝜏 ,
is a component that depends on the current and past values of x𝑖𝑡 , and is related to
the dynamics of the model; it condenses the forces producing path dependence (Page,
2006), such as increasing returns, intertemporal spillovers, and externalities. Finally,
the last term is a moving average of the disturbances 𝜐𝑖𝑡 (considered by the weighting
matrix of GMM).

Let us split the temporal observations 𝑡 as:
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pre-sample estimation sample
𝑠 = 1,2,3, . . . , 𝑆𝑖 𝑡 = 𝑆𝑖+1, . . . ,𝑇𝑖

𝑠 = . . . ,−2,−1,0 𝑡 = 1,2,3, . . . ,𝑇𝑖
𝜏 = 𝑞 +1, . . . ,∞ 𝜏 = 0,1, . . . . . . , 𝑞,

and assume that the process for 𝑦𝑖𝑡 has been going on for some time, i.e. that 𝑡→∞.
Then, Equation (11.4) can be re-formulated as:

𝑦𝑖𝑡 =

∞∑︁
𝜏=0

𝜌𝜏𝛼𝑖 +
∞∑︁
𝜏=0

𝜌𝜏𝜽 ′w𝑖 +
∞∑︁
𝜏=0

𝜌𝜏𝜷′x𝑖𝑡−𝜏 +
∞∑︁
𝜏=0

𝜌𝜏𝜐𝑖𝑡−𝜏 =

=
1

1− 𝜌𝛼𝑖 +
1

1− 𝜌 𝜽
′w𝑖 +

∞∑︁
𝜏=0

𝜌𝜏𝜷′x𝑖𝑡−𝜏 +
∞∑︁
𝜏=0

𝜌𝜏𝜐𝑖𝑡−𝜏 =

=
1

1− 𝜌𝛼𝑖 +
1

1− 𝜌 𝜽
′w𝑖 +

𝑆𝑖−1∑︁
𝜏=0

𝜌𝜏𝜷′x𝑖𝑡−𝜏 +
∞∑︁
𝜏=𝑆𝑖

𝜌𝜏𝜷′x𝑖𝑡−𝜏+

+
𝑆𝑖−1∑︁
𝜏=0

𝜌𝜏𝜐𝑖𝑡−𝜏 +
∞∑︁
𝜏=𝑆𝑖

𝜌𝜏𝜐𝑖𝑡−𝜏 . (11.5)

The available sample with finite 𝑇𝑖 does not allow for the estimation of ARDL(∞,
∞) models. Instead, the dynamics are usually truncated to some lag (𝑝, 𝑞) lags
implying, for example, that Equation (11.1) omits

∑∞
𝜏=𝑞+1 𝜌

𝜏𝜷′𝜏x𝑖𝑡−𝜏 .4
We thus estimate:

𝑦𝑖𝑡 =
1

1− 𝜌

(
𝝅′𝑥 x̆𝑖. + 𝜋𝑦 �̆�1

𝑖.

)
+ 1

1− 𝜌 𝜽
′w𝑖 +

𝑆𝑖−1∑︁
𝜏=0

𝜌𝜏𝜷′x𝑖𝑡−𝜏 +
𝑆𝑖−1∑︁
𝜏=0

𝜌𝜏𝜐𝑖𝑡−𝜏 +𝜂𝑖𝑡 ,

(11.6)

where the term
∑𝑆𝑖−1
𝜏=0 𝜌𝜏𝜷′x𝑖𝑡−𝜏 includes the observations of the estimation sample

{x𝑖𝑡 , 𝑦𝑖𝑡−1} for 𝑡 = 𝑆𝑖 +1, . . . ,𝑇𝑖 .
The term

∑∞
𝜏=𝑆𝑖

𝜌𝜏𝜷′x𝑖𝑡−𝜏 of Equation (11.5) is proxied by a CRE approach
based on pre-sample observations {x𝑖𝑠 , 𝑦𝑖𝑠−1} for 𝑠 = 1,2,3, . . . , 𝑆𝑖 and the auxiliary
Equation𝛼𝑖 =𝛼+𝜇𝑖 = 𝝅′𝑥 x̆𝑖.+𝜋𝑦 �̆�1

𝑖.
+𝑒𝑖 , where x̆𝑖. = 𝑆−1

𝑖

∑𝑆𝑖
𝑠=1 x𝑖𝑠 , �̆�1

𝑖.
= 𝑆−1

𝑖

∑𝑆𝑖
𝑠=1 𝑦𝑖𝑠−1

and 𝑆𝑖 < 𝑇𝑖 is the pre-sample period; 𝜂𝑖𝑡 ≈ 𝑒𝑖 +
∑∞
𝜏=𝑆𝑖

𝜌𝜏𝜐𝑖𝑡−𝜏 .
In words, we compute the averages of the explanatory variables for the periods

𝑠 = 1, . . . , 𝑆𝑖 to capture the initial conditions and estimate the dynamic model over
the periods 𝑡 = 𝑆𝑖 + 1, . . . ,𝑇𝑖 . The individual effects are considered as random and
functions of past histories of the stochastic variables concurring to the path dependence
process but omitted due to lag truncation, where x̆𝑖. and �̆�1

𝑖.
represent the systematic

4 The lag length of the ARDL(p,q) must be chosen to imply uncorrelated errors and accordingly to
the frequency of the data.
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component capturing the permanent differences between units, and the unsystematic
component is treated as an additional random term, 𝑒𝑖 .5

For example, using the average innovative activity carried out by firms in the
period prior to the estimation allows us to capture the unobservable differences in
accumulated knowledge that determine the initial conditions of R&D activity. Indeed,
as technological knowledge is an economic good characterised by cumulability and
non-exhaustibility, companies can rely on it to generate additional new knowledge
at a lower cost (the ‘learning to learn’ and ‘learning to do’ effects). Once research
has started, the opportunity cost of interrupting it is rather high due to high start-up
costs for research facilities and staff training, and long-term investment commitments
(‘sunk-costs’ effect generating barriers and negative externalities). Firms may also
have accumulated cash flow to finance new research projects (‘success-breads-success’
effect). We will return to this in the empirical example in Section 11.5.

Our idea to capture initial conditions is sufficiently general and encompasses several
other specifications of the initial values considered in the literature as special cases.
Using values dated before the estimation sample to compute proxies for unobserved
heterogeneity avoids correlation with any later shock in the equation of interest. This
has the distinct advantage of producing weakly exogenous (predetermined) regressors,
as the measurement of individual effects is based solely on pre-sample information.

For stationary stochastic processes, such as ARs, the pre-sample mean is a more
informed estimate of the steady state solution than the first sample observation.
Averages condense past informations and therefore are better suited to represent the
initial conditions in comparison to first observations in a sample. A further advantage
is that they mitigate possible large variations in the time series and measurement
errors (being divided by 𝑆𝑖 , the statistical averaging effect is achieved). In contrast,
the single initial observation can be strongly influenced by the short-term cyclical
position of the variables and/or the occurrence of random shocks. Apparently the
use of the 𝑖𝑡ℎ individual’s time series mean (Mundlak, 1978’s approach) is more
restrictive than using each observed variable at all the different time periods for
each unit 𝑖, �̃� = (𝑦𝑖1, . . . , 𝑦𝑖𝑆𝑖 ) and x̃ = (x𝑖1, . . . ,x𝑖𝑆𝑖 ), as in the Chamberlain (1980)’s
approach. However, the simulation results in Hsiao and Zhou (2018) suggest that
the averages tend to perform better when the temporal dimension is large (possibly
larger than 𝑁); also for smaller than 𝑁 temporal dimensions, the Mundlak (1978)’s
approach yields asymptotically unbiased inference with smaller RMSE.

5 Take the example in Nerlove et al. (2008) in which x𝑖𝑡 = 𝛾′𝑖x𝑖𝑡−1 +𝜔𝑖𝑡 with 𝜔𝑖𝑡 ∼ 𝑖.𝑖.𝑑.(0, 𝜎2
𝜔𝑖
) ,

cross-sectionally and serially unrelated. For 𝑡 , 𝑗 ∈ {0, . . . ,𝑄} (the set of indices for which
x𝑖𝑡 is observed, with 𝑞 used to specify the dynamics chosen much less than 𝑄), the j-order
autocorrelation is E(x𝑖𝑡x𝑖𝑡− 𝑗 ) = [𝛾 𝑗𝑖 /(1 − 𝛾2

𝑖
) ]𝜎2

𝜔𝑖
. It follows that x𝑖𝑡 and 𝛼𝑖 are correlated,

E(x𝑖 𝑗𝛼𝑖 ) =
∑∞
𝜏=𝑞+1 𝜷

′
𝜏E(x𝑖 𝑗x𝑖𝑡−𝜏 ) = [𝜎2

𝜔𝑖
/(1 − 𝛾2

𝑖
) ]∑∞𝜏=𝑞+1 𝜷𝜏𝛾 | 𝑗−𝜏 |𝑖

, with a correlation de-
pending on how close to the beginning of the sample period the observation on x𝑖𝑡 is taken. This
introduces additional ‘𝜷𝜏’ parameters in Equation (11.1) capturing the relationship between the
individual effects and the observed past values of the explanatory variables x𝑖𝑡 ; the greater 𝜎2

𝜔𝑖
the

greater is the signal to noise ratio on one side, but the greater the dependence between x𝑖𝑡 and 𝛼𝑖 on
the other side (especially for 𝑗 near the beginning of the observation period). A beautiful discussion
is in Nerlove (1999).
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The selection of 𝑆𝑖 is research specific; indeed, Bhargava (1987) suggests using a
length necessary to ensure that the systematic part of the initial observations is well
approximated; Kuchibhotla, Kolassa and Kuffner (2022) suggest sample splitting to
assess uncertainty in model selection and state that there is no clear guidance. In
Monte Carlo of Section 11.4 we set 𝑆𝑖 at 10% of 𝑇 ; in the empirical example of
Section 11.5 we used 41% of the theoretical 𝑇 to smooth the effect of a temporary
fiscal incentive. Thus, applied economists should evaluate the choice of 𝑆𝑖 based on
the research question, the events that occurred during the sample, and the pattern of
the variables: as 𝑇𝑖 and/or 𝜌 and within-cluster variability increase, the length of 𝑆𝑖
must be increased (Grilli & Rampichini, 2011).

Since panels are often unbalanced and each unit has its own pre-sample 𝑆𝑖 , our
approach requires a sufficient number of pre-sample observations for each unit 𝑖.
If we set 𝑆𝑖 at a fixed date, initial conditions for units entering the sample after 𝑆𝑖
could be estimated by computing averages of units available in the pre-sample and
characterised by ‘similar’ features (same size, same industry, same geographical area,
etc.). Our approach is valid under the assumption that (11.6) is not misspecified; it
is suitable if the 𝜋𝑥 and 𝜋𝑦 parameters of Equation (11.6) do not vary between 𝑖,
otherwise the incidental parameters problem occurs. However, the CRE approach
does not lead to incidental-parameters bias when 𝑇 and 𝑁 are of comparable size
(Bai, 2009).

11.3.1 The CRE-GMM Estimation – Advantages

Our CRE-GMM approach augments the dynamic panel data regression with the
systematic part of the individual effects considered as random and yields a model
representation that includes the random and fixed effect specifications as special
cases:

𝑦𝑖𝑡 = 𝜷′x𝑖𝑡 + 𝜽 ′w𝑖 + 𝜌𝑦𝑖𝑡−1 +𝝅′𝑥 x̆𝑖. + 𝜋𝑦 �̆�1
𝑖. +𝜐𝑖𝑡 + 𝑒𝑖 . (11.7)

In our random effects framework, the initial conditions give rise to the ‘between’
Equation 𝛼𝑖 = 𝛼+ 𝜇𝑖 = 𝝅′𝑥 x̆𝑖. + 𝜋𝑦 �̆�1

𝑖.
+ 𝑒𝑖 which captures the sample variation across

units together with the parameters 𝜽 of time-invariant regressors w𝑖 , while the
estimated 𝜌 and 𝜷 of Equation (11.7) are ‘within’ parameters which capture the
sample variation within each unit over time.6 The CRE-GMM approach based on
Equation (11.7) has a number of advantages. The first is that it avoids the omission
of, or the inability to capture, individual heterogeneity and the mixture of ‘spurious’
persistence, due to the serial correlation generated by the unobservable permanent
component 𝜇𝑖 , and ‘true’ (path/behavioural) persistence measured by 𝜌 which is the
causal effect of past values of the dependent variable on its current realization.

The second advantage is that the inclusion of individual averages avoids omitted
variables bias and endogeneity bias due to heterogeneity, while standard endogeneity

6 A similar idea in the maximum likelihood framework is in Lee and Yu (2020). The RE estimator
under the hypothesis of exogenous x𝑖𝑡 is investigated also by Hsiao and Zhou (2018); Hsiao (2020).
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is treated by using ‘internal’ instruments (even external ones, if they exist). In general,
it is rather difficult to exclude a statistical dependence between individual-specific
effects and explanatory variables. GMM-lev estimation applied to the Equation
(11.7) extended with CRE treats endogeneity due to heterogeneity as a substantive
phenomenon without necessarily requiring instrumental variables estimation to
address this endogeneity.

The third advantage is to avoid exploiting only within variability (as in GMM-dif)
or a weighted average of within and between variability (as in GMM-lev). Instead,
CRE-GMM estimates the within and between effects of the covariates separately and
assesses whether the between effect is relevant and possibly opposite to the within
effect. It then simultaneously estimates the within effect of unit-specific temporary
deviations from the individual averages of the covariates and the between effect of
permanent differences among individuals in the covariates. For example, firm-specific
technical efficiency and economies of scale are between effects, while technological
changes over time are within effects. Permanent unemployment is a between measure,
while temporary unemployment is a within measure. When studying the birth weight
of newborns (Abrevaya, 2006), weight may be more related to maternal smoking
behaviour than smoking cessation. In psychological research, the ecological fallacy
arises from confounding within- and between-group differences (Robinson, 1950).

The fourth advantage is that obtaining the within estimate of each covariate
while controlling for systematic differences in the levels of the covariates between 𝑖
leads to a more convincing analysis. CRE-GMM has greater variability and exploits
more informative data transformations due to the combination of variation among
cross-sectional units (between) and variation over time (within). As a result, it allows
more efficient estimations and mitigates multicollinearity problems, particularly in
the weighting matrix used by the GMM to handle moment conditions. Our approach
permits estimating the 𝜽 coefficients of time-constant variables and at the same time
obtaining ‘fixed-effects’ estimates of the 𝜌 and 𝜷 parameters of the time-varying
variables (Wooldridge, 2019, 2021).

Finally, the CRE-GMM approach can estimate the additional effects of measurable
time-constant covariates. If w𝑖 is correlated with individual heterogeneity, its effect
can be identified in the spirit of Hausman and Taylor (1981) who use, as instruments
in a static model, both the within and between transformations of the components
of x uncorrelated with individual heterogeneity. Our CRE-GMM approach, instead,
directly adds the individual averages of 𝑦𝑖𝑡−1 and x𝑖𝑡 to the model, along with any
measurable time-invariant variables useful for capturing individual heterogeneity.
Indeed, Equation (11.7) allows for a robust version, based on variable addition, of
the Hausman (1978) test on 𝐻0 : 𝝅𝑥 = 0 for individual effects uncorrelated with x𝑖𝑡
covariates, Arellano (1993). This version of the test can also be implemented for
subsets of x𝑖𝑡 , avoids computational problems and can be robust, preventing the
severe size distortion on inference related to the non-robust Hausman (1978) pretest
(Guggenberger, 2010).
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11.3.2 The CRE-GMM Estimation – Moment Conditions

We propose six versions of the CRE-GMM that are based on the moment conditions
presented comparatively to those exploited by the GMM-dif and GMM-sys in Table
11.1. When the model is first-differenced, as in the GMM-dif, the moment conditions
are based on the 𝑦𝑖𝑡−𝑚 and x𝑖𝑡−𝑛 levels; the idea is that first differencing the equation
is sufficient to consider individual heterogeneity; the opposite is the case in the
GMM-sys level component. In the CRE-GMM approach we leave the equations in
levels and, differently from GMM-sys based on the moment conditions that are not
redundant, we exploit all the available moment conditions.7 We comparatively explore
alternative identification strategies. In the six CRE-GMM-CRE-GMM5 methods
𝑦𝑖𝑡−1 is, by definition, correlated with the individual heterogeneity, 𝜇𝑖 , so we use
GMM-sys-style moment conditions based on first differences Δ𝑦𝑖𝑡−𝑚8 In the three
CRE-GMM-CRE-GMM2 estimations, we assume that x𝑖𝑡 is correlated with the
individual heterogeneity, 𝜇𝑖 , so we use GMM-sys-style moment conditions based
on first differences Δx𝑖𝑡−𝑛. In the three CRE-GMM3-CRE-GMM5 estimations we
exploit GMM-dif-style lags of the levels x𝑖𝑡−𝑛 which should increase the efficiency of
CRE-GMM as they are more correlated with endogenous variables. The inclusion of
unit-specific averages in Equation (11.7) allows for the comparison of the two sets of
estimations, CRE-GMM-CRE-GMM2 and CRE-GMM3-CRE-GMM5, as it explicitly
models 𝜇𝑖 which is thus removed from the error term, making the instruments in levels
valid for level equations. This can be an advantage, as level instruments improve the
performance of the estimator as the autocorrelation coefficient 𝜌 increases (promising
Monte Carlo results). Furthermore, this inclusion is useful when there is no guarantee
that the first-differenced instruments for the untransformed equations are uncorrelated
with the unit-specific error component. For example, Macher, Miller and Osborne
(2021) examine the adoption of fuel-efficient precalciner kilns in the cement industry
and have a region-specific term that affects all cement plants in the same geographic
region. The first differences are only valid instruments if the region-specific effect is
constant over time, a process that could only occur in practice if regional differences
were due to factors at state level, e.g., in trade union policies or tax rates.

Regarding the assumptions on individual averages, we compare three alternative
cases: the individual pre-sample averages x̆𝑖. and �̆�1

𝑖.
are exogenous ( CRE-GMM and

CRE-GMM3 cases); only the individual pre-sample averages of x𝑖𝑡 are exogenous (
CRE-GMM1 and CRE-GMM4 cases); the individual pre-sample averages of 𝑦𝑖𝑡−1
and 𝑥𝑖𝑡 are endogenous CRE-GMM2 and CRE-GMM5 cases).9 The individual

7 In GMM-sys the moment conditions available for 𝑡 = 2, . . . , 𝑇𝑖 − 1 are redundant because they
can be expressed as a linear combination of the moment conditions used in GMM-dif, Kiviet et al.
(2017).
8 Robustness checks on the use of lagged levels 𝑦𝑖𝑡−𝑚 as instruments show no improvement in the
results, which means that the inclusion of individual pre-sample averages is useful for capturing a
possibly non-constant correlation with individual heterogeneity over time.
9 The idea behind these comparisons is to understand what happens when using suspect moment
conditions. DiTraglia (2016) suggests that, in finite samples, the addition of a slightly endogenous
but highly relevant instruments can reduce estimator variance much more than it increases the bias.
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averages assumed to be endogenous are instrumented as the explanatory variables of
the model, 𝑦𝑖𝑡−1 and x𝑖𝑡 . Instrumenting the averages obtained from the pre-sample
with lags belonging to the estimation sample resembles the forward orthogonal
deviations suggested by Arellano and Bover (1995).10

An interesting aspect that emerges from comparing the CRE-GMM-CRE-GMM1
and CRE-GMM3-CRE-GMM4 estimations with the CRE-GMM2 and CRE-GMM5
estimations is whether individual characteristics have evolved over time. If agents
maintain their personal characteristics unchanged over time, it clearly follows that
E[ �̆�1

𝑖.
𝜇𝑖] ≠ 0 and E[x̆𝑖.𝜇𝑖] ≠ 0 and the moment conditions under CRE-GMM-CRE-

GMM1 and CRE-GMM3-CRE-GMM4 are invalid. If, instead, the behaviour of
the agents evolves over time or, even better, if there is a structural and status
change in the individual characteristics such that 𝛼𝑖 = 𝝅′𝑥 x̆𝑖. + 𝜋𝑦 �̆�1

𝑖.
+ 𝑒𝑖 , where

x̆𝑖. = 𝑆−1
𝑖

∑𝑆𝑖
𝑠=1 x𝑖𝑠 and �̆�1

𝑖.
= 𝑆−1

𝑖

∑𝑆𝑖
𝑠=1 𝑦𝑖𝑠−1 for 𝑆𝑖 < 𝑇𝑖 , but 𝛼𝑖 ≠ 𝝅′𝑥 x̃𝑖. + 𝜋𝑦 �̃�1

𝑖.
+ 𝑒𝑖 ,

where x̃𝑖. = 𝑇−1
𝑖

∑𝑇𝑖
𝑡=𝑆−𝑖+1 x𝑖𝑡 and �̃�1

𝑖.
= 𝑇−1

𝑖

∑𝑇𝑖
𝑡=𝑆𝑖+1 𝑦𝑖𝑡−1 for 𝑡 = 𝑆𝑖 +1, . . . ,𝑇𝑖 , hence

the moment conditions used in CRE-GMM-CRE-GMM1 and CRE-GMM3-CRE-
GMM4 are valid.11 Initial conditions are important when 𝑇𝑖 small/𝜌 high (Hahn,
1999) and we exploit a general formulation able to capture the heterogeneous starting
points of the units, without the need to assume that the correlation between 𝑦𝑖𝑡−1,
𝑥𝑖𝑡 and 𝜇𝑖 is constant over time or that individuals must be close to their steady
state (a function of 𝜇𝑖) because deviations from long-term values are assumed to be
systematically uncorrelated with 𝜇𝑖 (effect stationarity, Kiviet, 2007; Bun & Sarafidis,
2015; Alvarez & Arellano, 2022). Indeed, by conditioning on initial observations,
CRE-GMM can handle a mix of units in which, for example, younger firms, still far
from their steady state compared to mature firms, grow faster at the beginning of the
sample period (skewed distributions of firms, (Blundell & Smith, 1991; Barbosa &
Moreira, 2021)). Another example concerns educational experience, which has an
effect on the earning structure that is not loosely captured by years of schooling (a
between effect), but also depends on on-the-job training (a within effect). During
the early stages of their careers, high-skilled workers may accept lower earnings
because they expect that, as they accumulate more experience, they will develop
the necessary skills to compensate them with higher future earnings: adding the
individual average of work experience and wages (our CRE-GMM approach) helps
to capture the relationship over time between unobservable skills, experience and
wages.

In the Monte Carlo simulations in the next Section, we include parameters
measuring the possible correlation between individual heterogeneity, 𝜇𝑖 , and �̆�1

𝑖.
, x̆𝑖.

and 𝑤𝑖 .

10 In Alvarez and Arellano (2003) for fixed 𝑇 the IV estimators in orthogonal deviations and in first
differences are both consistent, whereas as 𝑇 increases the former remains consistent but the latter is
inconsistent. The use of past observations has its antecedent in the long lags of Chamberlain (1982).
11 We have that E[ �̆�1

𝑖.
𝜐𝑖𝑡 ] = 0 and E[x̆𝑖.𝜐𝑖𝑡 ] = 0 by definition, as the individual averages are

computed by exploiting the pre-estimation period 𝑠 = 1, . . . , 𝑆𝑖 .
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Table 11.1: Moment conditions - comparison with GMM-dif & GMM-sys

Classification Method

GMM-dif Additional in GMM-sys CRE-GMM-CRE-GMM5

Correlat. E[𝑦𝑖𝑡−𝑝𝜇𝑖 ] ≠ 0, 𝑝 > 0

Predet. E[𝑦𝑖𝑡−𝑝𝜐𝑖𝑡 ] = 0, 𝑝 ≥ 1 E[𝑦𝑖𝑡−𝑚Δ𝜐𝑖𝑡 ] = 0 E[Δ𝑦𝑖𝑡−𝑚 (𝜇𝑖 + 𝜐𝑖𝑡 ) ] = 0 E[Δ𝑦𝑖𝑡−𝑚 (𝜇𝑖 + 𝜐𝑖𝑡 ) ] = 0

𝑚 ≥ 2; 𝑡 = 3, . . . , 𝑇𝑖 𝑚 = 1, 2, 3; 𝑡 = 𝑇𝑖 𝑚 = 1, 2, 3; 𝑡 = 𝑆𝑖 +2, . . . , 𝑇𝑖

CRE-GMM-CRE-GMM2

Correlat. E[x𝑖𝑡−𝑞𝜇𝑖 ] ≠ 0, 𝑞 ≥ 0

Predet. E[x𝑖𝑡−𝑞𝜐𝑖𝑡 ] = 0, 𝑞 ≥ 1 E[𝑥𝑖𝑡−𝑛Δ𝜐𝑖𝑡 ] = 0

𝑛 ≥ 1 𝑡 = 3, . . . , 𝑇𝑖 E[Δ𝑥𝑖𝑡−𝑛 (𝜇𝑖 + 𝜐𝑖𝑡 ) ] = 0 E[Δ𝑥𝑖𝑡−𝑛 (𝜇𝑖 + 𝜐𝑖𝑡 ) ] = 0

Endog. E[x𝑖𝑡−𝑞𝜐𝑖𝑡 ] ≠ 0, 𝑞 = 0 E[𝑥𝑖𝑡−𝑛Δ𝜐𝑖𝑡 ] = 0 𝑛 = 1, 2, 3 𝑡 = 𝑇𝑖 𝑛 = 1, 2, 3 𝑡 = 𝑆𝑖 +2, . . . , 𝑇𝑖
𝑚 ≥ 2 𝑡 = 3, . . . , 𝑇𝑖

CRE-GMM3-CRE-GMM5

Uncorrelat. E[x𝑖𝑡−𝑞𝜇𝑖 ] = 0, 𝑞 ≥ 0

Predet. E[x𝑖𝑡−𝑞𝜐𝑖𝑡 ] = 0, 𝑞 ≥ 1 E[𝑥𝑖𝑡−𝑛Δ𝜐𝑖𝑡 ] = 0

𝑛 ≥ 1 𝑡 = 3, . . . , 𝑇𝑖 E[Δ𝑥𝑖𝑡−𝑛 (𝜇𝑖 + 𝜐𝑖𝑡 ) ] = 0 E[𝑥𝑖𝑡−𝑛 (𝜇𝑖 + 𝜐𝑖𝑡 ) ] = 0

Endog. E[x𝑖𝑡−𝑞𝜐𝑖𝑡 ] ≠ 0, 𝑞 = 0 E[𝑥𝑖𝑡−𝑛Δ𝜐𝑖𝑡 ] = 0 𝑛 = 1, 2, 3 𝑡 = 𝑇𝑖 𝑛 = 1, 2, 3 𝑡 = 𝑆𝑖 +2, . . . , 𝑇𝑖
𝑚 ≥ 2 𝑡 = 3, . . . , 𝑇𝑖

CRE-GMM and CRE-GMM3 potential MCs

E[ �̆�1
𝑖.
𝜇𝑖 ] = 0, E[x̆1

𝑖.
𝜇𝑖 ] = 0, E[w𝑖𝜇𝑖 ] = 0

CRE-GMM1 and CRE-GMM4 potential MCs

E[x̆1
𝑖.
𝜇𝑖 ] = 0, E[w𝑖𝜇𝑖 ] = 0

CRE-GMM2 and CRE-GMM5 potential MCs

E[w𝑖𝜇𝑖 ] = 0

Note: Panels often have moderate 𝑁 and long 𝑇 , and applied econometricians tend in practice to
use fewer GMM-style instruments than available if their total number (a quadratic function of 𝑇
for each variable to be instrumented) is not deemed sufficiently small relative to 𝑁 . To combine
this practice with a more structured lag selection, we follow Ziliak (1997); Bun and Kiviet (2006)
and restrict the moment conditions to lags 𝑡 − 1 to 𝑡 − 3. The selected lags are valid for dealing
with predetermined and endogenous explanatory variables in the equation in levels. Under the strict
exogeneity assumption of x𝑖𝑡 variables, we can exploit 𝑛 = 0, 1, 2, 3 moment conditions.

11.4 Monte Carlo Simulations

To asses the performance of CRE-GMM, we employ a Monte Carlo simulation with
the DGP based on an ARDL(1,1) model:

𝑦𝑖𝑡 = 𝛽0 + 𝜌𝑦𝑖𝑡−1 + 𝛽1𝑥𝑖𝑡 + 𝛽2𝑥𝑖𝑡−1 + 𝛽3𝑤𝑖 +𝑢𝑖𝑡 , (11.8)
𝑥𝑖𝑡 = 𝛾1𝜇𝑖 +𝜗𝑥𝑖𝑡−1 +𝛾2𝜖𝑖𝑡 +𝛾5𝑤𝑖 + 𝜉𝑖𝑡 ,
𝑢𝑖𝑡 = 𝜇𝑖 + 𝑒𝑖𝑡 ,
𝑒𝑖𝑡 = 𝛾3𝜇𝑖 +𝛾4𝑤𝑖 + 𝜖𝑖𝑡 .
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The error term 𝑢𝑖𝑡 is composed into individual effects 𝜇𝑖 and idiosyncratic shocks
𝜖𝑖𝑡 . The parameters 𝛾1 and 𝛾2 control the degree of endogeneity by specifying the
correlation of x𝑖𝑡 with the individual effects 𝜇𝑖 and the random noise 𝜖𝑖𝑡 , respectively;
hence 𝛾1 is important to assess the validity of the potential moment condition
E[x̆1

𝑖.
𝜇𝑖] = 0 of Table 11.1. The parameter 𝛾3 sets the variance of the individual

effects 𝜇𝑖 equal or higher than the variance of the shocks 𝜖𝑖𝑡 ; it also influences the
validity of the potential moment condition E[ �̆�1

𝑖.
𝜇𝑖] = 0 of Table 11.1 and allows

assessing how the performance of GMM-dif/-sys is adversely affected when variability
of 𝜇𝑖 is larger than variability of 𝑒𝑖𝑡 (Bun & Kiviet, 2006; Hayakawa, 2007; Kiviet,
2007). The parameter 𝛾4, in combination with 𝛾3, defines the relative importance
of measurable and non-measurable individual heterogeneity (hence the validity of
potential moment condition E[w𝑖𝜇𝑖] = 0 of Table 11.1), and 𝛾5 sets the correlation
between x𝑖𝑡 and 𝑤𝑖 (hence possible collinearity issues).

We explore 𝑁 = [25,100,1000], 𝑇 = [10,20,40], 𝛾1 = [0,0.25,0.8],
𝛾2 = [0,0.25,0.8], 𝛾3 = [0,0.25,0.8], 𝛾4 = [0,0.3], 𝛾5 = [0,0.3] yielding 756
combinations that, with 𝜌 = [0.5,0.8], 𝛽3 = [0,0.3] and different setups of the
variances (see the Online Appendix, Bontempi & Ditzen, 2025), produce 12,096
experiments for the PAM-ARDL(1,0) model, 𝛽2 = 0 in Equation (11.8), and as many
for the ECM-ARDL(1,1) model. We perform many Monte Carlo simulations because
the robustness of our CRE-GMM estimator is an important advantage, as in practice,
on real data, it is not known whether and which restrictions are satisfied (Chudik &
Pesaran, 2022). We summarize here the results for PAM with 𝜌 = 0.5, 𝜗 = 0.5,
𝛽1 = 1, 𝛽2 = 0, 𝛽3 = 0.1 and the variances are in the Online Appendix (Bontempi &
Ditzen, 2025). We use the nested loop plots in Figures 11.1, 11.2 and 11.3, which
allow a direct comparison of the percentage bias of the estimators across
parametrisations (on the horizontal axis).12

Under the assumption that 𝑥𝑖𝑡 is uncorrelated with the idiosyncratic shock (𝛾2 = 0),
the Random Effects (RE) and Fixed Effects (FE) estimators serve as benchmarks
for the consistent estimation of the parameter 𝜌. The upper bound is provided by
the RE which assumes no correlation between the regressor 𝑥𝑖𝑡 and the individual
effects 𝜇𝑖 (𝛾1 = 0).13 The lower bound is represented by the FE which removes the
influence of any time-invariant variable from the model by exploiting only the within-
transformation of the data, producing a consistent estimate of the autoregressive
parameter for 𝑇 →∞. In the two correlated random effects models, we add only the
individual pre-sample average of the lagged dependent variable ( CRE1, addition of
�̆�1
𝑖.

) and also the individual pre-sample average of 𝑥𝑖𝑡 ( CRE2, addition of �̆�1
𝑖.

and
𝑥𝑖.). Especially CRE2, which has the advantage over the FE and RE estimators to
exploit the within and between effects separately, gives indications of the bias due to
endogeneity because of the individual heterogeneity of the RE estimator and thus
performs well for 𝛽1 and, especially, 𝛽3.

The presence of standard endogeneity, 𝛾2 > 0, produces a bias in the estimates
increasing with the 𝛾2 parameter capturing the correlation between 𝑥𝑖𝑡 and 𝜖𝑖𝑡 .
12 See Rücker and Schwarzer (2014); the plots were produced using the siman suite in Stata
(Marley-Zagar, White & Morris, 2022).
13 By definition, 𝑦𝑖𝑡−1 is correlated with the individual effects.
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The bias is greatly reduced by IVs in the GMM framework. The standard GMM-
lev (GL), CRE-GMM2 (IVs in first differences and individual averages, �̆�1

𝑖.
and

𝑥𝑖., instrumented), CRE-GMM5 (IVs in levels and individual averages, �̆�1
𝑖.

and
𝑥𝑖., instrumented), standard GMM-sys (GS, only not redundant moment conditions
exploited for the level equation), our CRE applied to GMM-sys (IVs in first differences
for the level equation and individual averages, �̆�1

𝑖.
and 𝑥𝑖., added and instrumented) and

Kripfganz and Schwarz (2019) combining GMM-dif at the first step and GMM-lev at
the second step (KS2) are the most appropriate.14

Monte Carlo results can be summarised as follows.

• In instances involving longitudinal panels and the estimation of the 𝜌 and 𝛽1
parameters, the GMM-sys often demonstrates superior performance. However,
the inclusion of individual pre-sample averages proves advantageous in capturing
individual heterogeneity. As GSC exhibits a performance comparable to that of
GMM-sys, our approach can be useful in longitudinal panels when 𝛾1 is high.
It is also noteworthy that both CRE-GMM2 (use IVs in first differences) and
CRE-GMM5 (use IVs in levels) maintain adequate performance, with a negligible
preference of CRE-GMM5 for the 𝜌 parameter and CRE-GMM2 for the 𝛽1
parameter under case 𝛾1 > 0.

• When we switch to panels with large 𝑁 and𝑇 (multilevel panels) and𝑇 > 𝑁 (macro
panels), the CRE-GMM2 and CRE-GMM5 estimators are generally the least
biased and more efficient for the 𝜌 and 𝛽1 parameters compared to GL/GS/KS2.
The preference for CRE-GMM5 over CRE-GMM2 tends to hold regardless of
the prevalence of correlation with individual heterogeneity or correlation with
idiosyncratic shocks (cases 0 < 𝛾2 < 𝛾1 or 0 < 𝛾1 < 𝛾2). A longer 𝑇 improves
the possibility to better approximate the initial conditions and the CRE-GMM
approach is less affected by spurious persistence (note that for long 𝑇 the FE tends
to the true 𝜌 parameter for 𝛾2 = 0).

• The advantage of CRE-GMM5 over GL/GS/KS2 is even more evident when
𝛾3 > 0, passing from the case 𝜎2

𝜇/𝜎2
𝑒 = 1, where 𝜎2

𝜇 is the variance of individual
heterogeneity, 𝜇𝑖 , and 𝜎2

𝑒 is the variance of shocks 𝑒𝑖𝑡 , to the case 𝜎2
𝜇/𝜎2

𝑒 > 1.
• It is noteworthy that CRE-GMM5 has the best performance in the estimation of

the 𝛽3 parameter.
• Considering different panel types, and 𝛾1, 𝛾2 and 𝛾3 combinations, the bias for

the parameter 𝜌 is 0.12 (GL), -0.06 (KS2), 0.06 (GS), 0.04 (CRE-GMM2), 0.03
(CRE-GMM5), 0.00 (GSC); for the parameter 𝛽1 the bias is -0.08 (GL), 0.08
(KS2), -0.01 (GS), 0.00 (CRE-GMM2 and CRE-GMM5), 0.04 (GSC); for the

14 The Figures show the cases with individual averages instrumented, CRE-GMM2 with instruments
in first differences and CRE-GMM5 with instruments in level for the variable 𝑥𝑖𝑡 , as having better
performance in terms of bias and standard errors even in longitudinal panels. Details of the six
versions of CRE-GMM are given in the Online Appendix (Bontempi & Ditzen, 2025). In addition,
the figures present the GSC estimator that implements the CRE-GMM2 approach in the GMM-sys,
i.e. the equation in levels of the system is instrumented by the first differences. Although it performs
worse than the CRE-GMM5 approach applied to GMM-sys, it is still interesting from the comparative
point of view as it is more similar to the GMM-sys estimator.
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parameter 𝛽3 the bias is 0.18 (GL), 0.36 (KS2), 0.23 (GS), 0.02(CRE-GMM2),
0.00 (CRE-GMM5), 0.02 (GSC).

• Thus, looking for a compromise capable of capturing different possible situations
that a researcher may face, CRE-GMM5 appears to be the best choice for all
parameters and is characterised by good coverage, size and power.

• Some preliminary results, which need further investigation, show that CRE-GMM5
performs well in the case of persistence (𝜌 = 0.8): the bias is reduced thanks to the
additional moment conditions based on the pre-sample averages of 𝑦𝑖𝑡−1 and 𝑥𝑖𝑡
in the case of correlation with individual heterogeneity and only 𝑥𝑖𝑡 in the case of
no such correlation.

Fig. 11.1: Nested loop Plot for 𝜌, PAM
Bias for 𝜌 = 0.5 across different specifications. Parameters shown on horizontal axis.

11.5 Empirical Application - Persistence of R&D and Market
Power

We estimate R&D investment on an unbalanced panel of 3,971 Italian companies over
the period 1984-2012.15 Individual averages are computed over the years 1984-1995,

15 Two other examples, estimating a production function and estimating the role of education on
workers’ wages in two balanced panels for the US, are given in the Online Appendix (Bontempi
& Ditzen, 2025). The comparison also add maximum likelihood estimates and the Hausman and
Taylor (1981) estimator.
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Fig. 11.2: Nested loop plot for 𝛽1, PAM
Bias for 𝛽1 = 1 across different specifications. Parameters shown on horizontal axis.

Fig. 11.3: Nested loop plot for 𝛽3, PAM
Bias for 𝛽3 = 0.1 across different specifications. Parameters shown on horizontal axis.

while the years 1996-2012 are used to estimate the constrained 𝐴𝑅𝐷𝐿(1,1) model:

𝑅&𝐷𝑖𝑡 = 𝛼+ 𝜌𝑅&𝐷𝑖𝑡−1 + 𝜷
′
x𝑖𝑡−1 + 𝜽

′
w𝑖 +𝜆𝑡 + 𝜇𝑖 + 𝜖𝑖𝑡 .
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The equation is derived from standard IO methods based on the intensive margin,
where R&D, the input in levels, is measured as the R&D investment over employees.
Bontempi, Lambertini and Parigi (2024) argue that the lagged amount of R&D
investment is not necessarily a meaningful measure of the accumulated knowledge,
because even after a discovery has been made, companies must continue to invest in
R&D, as it can take a long time to convert innovation into economic results. Therefore,
we estimate a second dynamic model in which the lagged R&D investment is replaced
by the lagged R&D stock, 𝑅&𝐷𝑠𝑡𝑜𝑐𝑘 , measured as the logarithm of the innovation
stock and better able to capture inter-temporal externalities and temporal spillovers
between subsequent R&D investments:

𝑅&𝐷𝑖𝑡 = 𝛼+ 𝜌1𝑅&𝐷𝑠𝑡𝑜𝑐𝑘𝑖𝑡−1 + 𝜷
′
x𝑖𝑡−1 + 𝜽

′
w𝑖 +𝜆𝑡 + 𝜇𝑖 + 𝜖𝑖𝑡 .

In both specifications, x𝑖𝑡−1 includes a set of controls supposed to be endogenous and
instrumented in GMM methods: size, financing, planned investments, firm-specific
uncertainty, firm openness and international competition; 𝜆𝑡 is the macroeconomic
uncertainty measured by Baker, Bloom and Davis (2016) which is an alternative to
the demeaning of the variables by means of time dummies. Among the measurable
individual characteristics w𝑖 (like age, type of ownership, geographical localization,
industry), we are particularly interested in the role of market power, as the theoretical
literature is still debated between a Schumpeterian positive effect (monopolistic
firms can appropriate the returns from innovation) and an Arrovian negative effect
(competition positively affects innovation). Market power is measured by the firm-
specific elasticity of demand which is a constant characteristic of companies over the
observed temporal span (see the discussion in Bontempi et al., 2024).

The total variability of the dependent variable is dominated, in Table 11.2, by
the variation over the units, with the exception of the pre-sample period in which
a temporary tax incentive was granted to investments in the years 1994-95.16 The
within variability is mostly firm-specific. From Figure 11.4 it is clearly visible the
effect of the ‘Tremonti Law’ (the vertical bar) which was temporary and can be
smoothed by using the average over 12 years to capture initial conditions of firms
relative to R&D investment and variables included in x𝑖𝑡−1.

This is an example that provocatively highlights the loss of observations in
unbalanced panels where the dependent variable is characterized by many firm-
specific discontinuities (which is why Bontempi et al. (2024) prefer to rely on duration
models). Despite this, the example is fitting for those researchers who prefer to
use standard dynamic models to estimate R&D investment. The estimates for the
lagged dependent variable, 𝑅&𝐷𝑖𝑡−1, reported in Table 11.3, are characterised by
the typical bias in a dynamic panel that is inherent to RE and FE, as well as the
non-use of instruments also in CRE1 and CRE2. In contrast, the 𝜌 estimates are in
a similar range, irrespective of the estimation method employed, GL, CRE-GMM2
or CRE-GMM5. The same applies to the use of the common sample resulting from

16 It was the first ‘Tremonti Law’ with a tax benefit consisting in the exclusion from the formation
of the company’s income of 50% of the increase in investments made in the current tax period
compared to the average of those made in the previous five years.
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Table 11.2: Variance decomposition for the dependent variable R&D investment

Period 1984-2012 1984-95 1996-2012

Between variability 65.54 % 47.49% 72.08%

Within variability 34.46% 52.51% 27.92%

common to all the units (0.48%) (1.92%) (0.15%)

unit-specific (33.99%) (50.60%) (27.77%)

Note: Computations implemented by the author-written procedure xtsum3.

the availability of the pre-sample individual averages or one-step cluster standard
errors or two-step standard errors (the latter are biased in small samples, say 𝑇 ≤ 5
and 𝑁/𝑇 high, Windmeijer, 2005). A completely different situation emerges when
we estimate the effect of the true accumulated knowledge (the stock of past R&D,
𝑅&𝐷𝑠𝑡𝑜𝑐𝑘

𝑖𝑡−1 ); when comparing one-step, two-step and samples, the GL method is not
robust.17 In contrast, the decomposition of the effects into the within and between
components exploited by the CRE-GMM method improves the estimation of the
weighting matrix used in the two-step. The Hausman tests confirm the correlation
between certain explanatory variables (mainly financing and firm-specific uncertainty)
and unobservable individual effects.

The most interesting result concerns the estimation of market power, which is of
course not available in the FE estimation (and thus would not be available in the
GMM-dif estimation either) and is not robust in the GL method, particularly when
the true accumulated knowledge, 𝑅&𝐷𝑠𝑡𝑜𝑐𝑘

𝑖𝑡−1 , is used in the model. In contrast, the
CRE-GMM5 method shows robustness irrespective of the use of one-step or two-step
and the way of measuring accumulated knowledge (𝑅&𝐷𝑖𝑡−1 or 𝑅&𝐷𝑠𝑡𝑜𝑐𝑘

𝑖𝑡−1 ); among
other things, CRE-GMM5 reveals a Schumpeterian effect, confirming results in
Bontempi et al. (2024). The CRE-GMM approach is able to address the difficulties
of the empirical literature on innovation in consistently estimating the role of market
power while considering the causal effect of past R&D activities on current R&D
investment due to the ‘true’ path-dependent nature of technical changes. The CRE-
GMM results are in line with the few other results available in the empirical literature.
It is also interesting to note that GMM-sys tends to produce results in line with
CRE-GMM5, despite not being robust in estimating the effect of market power, while
KS2 is in line with GL.18

17 The GMM-sys produces estimates of 0.546, one-step, and 0.393, two-step, in the full estimation
sample, and 0.308, one-step, and 0.309, two-step, in the common sample, indicating greater
robustness than GL.
18 Results available on request.
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Table 11.3: Estimation of R&D for Italian Firms

RE FE CRE1 CRE2 GL GLt CRE-GMM2 CRE-GMM2t CRE-GMM5 CRE-GMM5t

Panel A: Lagged R&D - full estimation sample

𝑅&𝐷𝑖𝑡−1 0.743*** 0.335*** 0.735*** 0.626*** 0.632***

(0.0510) (0.0675) (0.0647) (0.0616) (0.0029)

Market power 0.201*** - 0.122 0.261*** 0.114**

(0.0686) (0.1993) (0.1006) (0.0495)

Panel A: Lagged R&D - common sample

𝑅&𝐷𝑖𝑡−1 0.739*** 0.473*** 0.735*** 0.735*** 0.673*** 0.674*** 0.649*** 0.650*** 0.696*** 0.696***

(0.0641) (0.0956) (0.0646) (0.0631) (0.0683) (0.0001) (0.0649) (0.0003) (0.0764) (0.0002)

Market power 0.152 - 0.111 0.159 0.200 0.203*** 0.430 0.424*** 0.422* 0.418***

(0.2068) (0.2121) (0.1943) (0.2561) (0.0031) (0.2887) (0.0124) (0.2446) (0.0093)

NT 1596 1596 1596 1596 1596 1596 1596 1596 1596 1596

N 284 284 284 284 284 284 284 284 284 284

�̄� 6 6 6 6 6 6 6 6 6 6

ar1 pval. 0.00 0.00 0.00 0.00 0.00 0.00

ar2 pval. 0.24 0.25 0.23 0.24 0.26 0.27

ar3 pval. 0.33 0.33 0.33 0.33 0.32 0.32

Hansen pval. 0.968 0.971 0.949 0.938 0.947 0.945

Hansen df. 329 329 322 322 322 322

Hausman pval. 0.146 0.210 0.058 0.000 0.355 0.000

Hausman df. 1 7 7 7 7 7

𝑅2 0.63 0.43 0.63 0.63 0.62 0.62 0.61 0.61 0.62 0.62

Panel B: Accumulated knowledge - full estimation sample

𝑅&𝐷𝑠𝑡𝑜𝑐𝑘
𝑖𝑡−1 0.199*** 0.023 0.093*** 0.981*** 0.670***

(0.0291) (0.0254) (0.0221) (0.2044) (0.0371)

Market power 0.750** - -0.144 -0.073 0.016

(0.3390) (0.3542) (0.3805) (0.1992)

Panel B: Accumulated knowledge - common sample

𝑅&𝐷𝑠𝑡𝑜𝑐𝑘
𝑖𝑡−1 0.106*** 0.018 0.093*** 0.094*** 0.269*** 0.270*** 0.309*** 0.309*** 0.255*** 0.255***

(0.0221) (0.0233) (0.0227) (0.0235) (0.0659) (0.0010) (0.0833) (0.0019) (0.0815) (0.0012)

Market power -0.005 - -0.066 0.281 -0.574 -0.580*** 0.243 0.212*** 0.503 0.494***

(0.3737) (0.3780) (0.4175) (0.4644) (0.0125) (0.6095) (0.0315) (0.6875) (0.0233)

NT 1967 1967 1967 1967 1967 1967 1967 1967 1967 1967

N 334 334 334 334 334 334 334 334 334 334

Tavg 6 6 6 6 6 6 6 6 6 6

ar1 pval. 0.07 0.05 0.06 0.04 0.04 0.02

ar2 pval. 0.40 0.40 0.36 0.38 0.49 0.53

ar3 pval. 0.52 0.50 0.43 0.41 0.39 0.40

Hansen pval. 0.874 0.874 0.930 0.951 0.786 0.795

Hansen df. 329 329 322 322 322 322

Hausman pval. 0.038 0.232 0.119 0.000 0.224 0.000

Hausman df. 1 7 7 7 7 7

𝑅2 0.37 0.05 0.37 0.38 0.36 0.36 0.34 0.34 0.37 0.37

Note: We report only estimates of persistence and market power. The full estimation sample is composed
by 8,109 observations, 1,415 firms in Panel A (1,629 observations and 288 firms in CRE1)) and 6,414 observations, 1,136
firms in Panel B (2,068 observations and 349 firms in CRE1). The common sample is derived from CRE2, CRE-GMM2
and CRE-GMM5, consisting of companies with available 1984-1995 pre-sample averages. Cluster standard errors in RE,
FE, CRE1-CRE2; one-step cluster standard errors in GMM, unless the label includes ‘t’ to indicate two-step standard
errors. Estimates are implemented using xtdpdgmm, (Kripfganz, 2019) in Stata; the Arellano and Bond (1991) test for
autocorrelation is ar#; Hausman is Hausman (1978)’s test; Hansen is Hansen (1982)’s test.
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Fig. 11.4: The temporal pattern of the dependent variable R&D investment

11.6 Conclusions

We present a new approach to dynamic panel data models, also suitable for static
models, which merges the GMM applied to level equations with the CRE approach.
The levels allow the estimation of the effect of measurable time-invariant covari-
ates. Individual averages computed in the pre-estimation period capture the initial
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conditions of the units and help manage endogeneity due to heterogeneity that may
not be removed by the use of instruments in first differences. Our method works
well in case of double endogeneity due to correlation with idiosyncratic shocks and
individual heterogeneity, and reduces the bias that characterises the GMM-lev when
𝑇 is large and the variance of individual heterogeneity is greater than the variance of
idiosyncratic shocks. It is more efficient than GMM-sys. The inclusion of individual
averages makes level instruments valid, another positive feature of our approach, as
instruments in level are preferable when series tend to be persistent; level instruments
produce similar results as instruments in first differences when the autoregressive
parameter is small.
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Chapter 12
Estimation of Serially Correlated Error
Components Models Using Whittle’s
Approximate Maximum Likelihood Method

Badi H. Baltagi, Georges Bresson and Jean-Michel Etienne

Abstract This chapter studies the estimation of error components models with serial correlation of
the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) type using Whittle’s (Whittle, 1953) approximate maximum likelihood method.
This is done for the one-way and two-way error components panel data model. Monte Carlo
simulations are performed that investigate the small sample performance of this method.

12.1 Introduction

This chapter is a tribute to Marc Nerlove’s contributions to panel data and spectral analysis in time
series. In addition to his seminal contributions to panel data, most notably Balestra and Nerlove
(1966), Marc Nerlove carried out groundbreaking work in spectral analysis of time series and
seasonal adjustment (see Nerlove, 1964, Grether & Nerlove, 1970 and Nerlove, Grether & Carvalho,
2014). Marc left his imprint as a scholar on many diverse and different areas, see the Econometric
Theory interview of Marc by Eric Ghysels, Ghysels (1993).

In his book titled ‘Essays in Panel Data Econometrics’, Nerlove (2005) reviews serial correlation
in the one-way and two-way error components models, presenting generalized least squares (GLS)
matrix transformations proposed in the literature between the 70s and 90s. For the one-way error
components model, many estimators were proposed that take into account serial correlation on
the remainder disturbances. These include the autoregressive 𝐴𝑅 (𝑝) , moving average 𝑀𝐴(𝑞)
or mixed 𝐴𝑅𝑀𝐴(𝑝, 𝑞) type (see Baltagi, 2021 for a textbook treatment of this subject). These
estimators have been associated with increasingly complicated GLS transformations, of which
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the most advanced is that of Galbraith and Zinde-Walsh (1992, 1995).1 For the two-way error
components model with serial correlation of the 𝐴𝑅 (1) type, few estimators have been proposed.
Some of these estimators include Revankar (1979) and Karlsson and Skoglund (2004). These papers
allow for serial correlation, either on the remainder disturbances or the time effects, but not on both.
Brou, Kouassi and Kymn (2011), De Porres and Krishnakumar (2013) focused on serial correlation
in both the remainder disturbances and the time effects but again with no Monte Carlo simulations
or applications. Baltagi, Bresson and Etienne (2024) proposed a feasible generalized least squares
(FGLS) estimator with serial correlation on both the remainder disturbances and the time effects,
but only in the case of an 𝐴𝑅 (1) process. Monte Carlo simulations show the good performance of
the proposed estimator.

Given the complexity and cumbersome implementation of the usual GLS transformations in
a general serial correlation framework of the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) type, see Galbraith and Zinde-Walsh
(1992, 1995), we propose to use Whittle’s (Whittle, 1953) approximate maximum likelihood method,
which is much more flexible to implement.2 In fact, the approximate likelihood function introduced
by Whittle was used to estimate the spectral density and parameters of a wide range of time
series models. Faced with complicated variance-covariance matrix structures of the disturbances,
estimating the model’s parameters by maximum likelihood poses computational problems and can
be costly in terms of CPU time. An alternative to solving the exact maximum likelihood equations is
to maximize an approximation to the likelihood function. Whittle (1953) proposed a log-likelihood
formulation based on the discrete Fourier transform and its power spectral density to manage such
complicated variance-covariance matrices. While the literature on Whittle likelihood estimation in
time series analysis is huge, only few extensions to panel data have been proposed (e.g., Chen, 2006,
Chen, 2008 and Wei, Zhang, Jiang & Huang, 2022).

This chapter studies the estimation of error components models with serial correlation of the
𝐴𝑅𝑀𝐴(𝑝, 𝑞) type using Whittle’s (Whittle, 1953) approximate maximum likelihood method. This
is done for the one-way and two-way error components panel data model. Section 12.2 focuses on
the one-way error components model. Following Wei et al. (2022), we propose an estimator using
Whittle approximate maximum likelihood with serial correlation on the remainder disturbances
of the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) type. Section 12.3 focuses on the two-way error components model. We
extend the proposed Whittle approximate MLE in Section 12.2 to the case of serial correlation
of the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) type both in the remainder disturbances and in the time effects. In Section
12.4, Monte Carlo simulations for the one-way and two-way error components models with serial
correlation of the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) type are performed. These simulations confirm the suitability
of the Whittle estimator for solving the problems associated with serial correlation. Section 12.5
concludes.

1 Surprisingly, to our knowledge, this transformation has never been empirically tested by simulation
or used in an application.
2 We do not cover the literature on nonparametric random effects models which differ from standard
(parametric) random effects models in that no assumptions are made about the distribution of the
random effects. Actually, this is a form of latent class analysis: the mixing distribution is modelled
by means of a finite mixture structure (see for instance Laird, 1978, Heckman & Singer, 1982, Bester
& Hansen, 2009 and Chapter 10 in this book to mention a few). A whole body of literature has also
focused on arbitrary serial correlation (see Cameron, Gelbach & Miller, 2011, Thompson, 2011,
Davezies, D’Haultfoeuille & Guyonvarch, 2021, Menzel, 2021, Chiang, Hansen & Sasaki, 2024 to
mention a few). This is also an area that we will not tackle, since we are focusing on parametric
serial correlation with known distributions.
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12.2 Serial Correlation in the One-way Error Components of the
𝑨𝑹𝑴𝑨( 𝒑, 𝒒) Type

Consider the following one-way random effects (OW-RE) model:

𝑦𝑖𝑡 = 𝑋
′
𝑖𝑡𝛽 +𝑢𝑖𝑡 , , 𝑖 = 1, · · · , 𝑁 , 𝑡 = 1, · · · , 𝑇, (12.1)

with 𝑢𝑖𝑡 = 𝜇𝑖 + 𝜈𝑖𝑡 ,

with 𝑖 denoting individuals, 𝑡 denoting time and where 𝑋𝑖𝑡 is a (𝐾 × 1) vector of exogenous
covariates, 𝛽 = (𝛽1, · · · , 𝛽𝐾 ) ′ is a (𝐾 × 1) vector of parameters and 𝜇𝑖 ∼ 𝑁 (0, 𝜎2

𝜇 ) . We assume
that the remainder disturbances 𝜈𝑖𝑡 follow an 𝐴𝑅𝑀𝐴(𝑝𝜈 , 𝑞𝜈 ) process:(

1− 𝜙𝜈,1𝐵− · · · − 𝜙𝜈,𝑝𝐵𝑝𝜈
)
𝜈𝑖𝑡 =

(
1− 𝜃𝜈,1𝐵− · · · − 𝜃𝜈,𝑞𝐵𝑞𝜈

)
𝑒𝑖𝑡 , (12.2)

𝜈𝑖𝑡 = 𝜙
−1
𝜈 (𝐵) 𝜃𝜈 (𝐵)𝑒𝑖𝑡 , (12.3)

where 𝑒𝑖𝑡 is 𝑁 (0, 𝜎2
𝑒 ) . 𝜙𝜈 (𝐵) and 𝜃𝜈 (𝐵) are polynomials of the backward-shift operator 𝐵 such

that 𝐵𝑘𝑒𝑖𝑡 = 𝑒𝑖𝑡−𝑘 .
In vector form, (12.1) can be also written as

𝑦 = 𝑋𝛽 +𝑢, (12.4)
with 𝑢 = (𝐼𝑁 ⊗ 𝜄𝑇 ) 𝜇 + 𝜈,

𝑦 =
(
𝑦′1, · · · , 𝑦

′
𝑁

) ′, 𝑦𝑖 = (𝑦𝑖1, · · · , 𝑦𝑖𝑇 ) ′, 𝑋 =
(
𝑋′1, · · · , 𝑋

′
𝑁

) ′, 𝑋𝑖 = (
𝑋′
𝑖1, · · · , 𝑋

′
𝑖𝑇

) ′, 𝜄𝑇 is a (𝑇 ×1)
vector of ones, 𝐼𝑁 is an identity matrix of dimension 𝑁 , ⊗ is the Kronecker product, 𝜇 =

(𝜇1, · · · , 𝜇𝑁 ) ′ and 𝜈 =
(
𝜈′1, · · · , 𝜈

′
𝑁

) ′. By convention, 𝑋𝑖1 (= 𝜄𝑇 , ∀𝑖) and 𝛽1 denotes the intercept.
The general variance-covariance structure of the error components setting is given by

𝑉𝑎𝑟 (𝑢) ≡Ω𝑢 (Ψ𝜈 ) = Ω𝜇 ⊗ 𝐽𝑇 + 𝐼𝑁 ⊗Ω𝜈 (Ψ𝜈 ) , (12.5)

with 𝐽𝑇 = 𝜄𝑇 𝜄
′
𝑇

. Ω𝜇 and Ω𝜈 (Ψ𝜈 ) are respectively the variance-covariance matrices of 𝜇 and 𝜈.
In our specific case: Ω𝜇 = 𝜎2

𝜇 𝐼𝑁 . Ω𝜈 (Ψ𝜈 ) = 𝜎2
𝑒Γ𝜈 (Ψ𝜈 ) where Γ𝜈 (Ψ𝜈 ) is a Toeplitz matrix of

standardized autocovariances depending on the parameters Ψ𝜈 =
(
𝜙𝜈,1, · · · , 𝜙𝜈,𝑝 , 𝜃𝜈,1, · · · , 𝜃𝜈,𝑞

)
.

For the general 𝐴𝑅𝑀𝐴(𝑝, 𝑞) case, using (12.2) to (12.5), the log-likelihood function can be
written as

ln𝐿 (Φ) = − 𝑁𝑇
2

ln2𝜋 − 1
2
ln |Ω𝑢 (Ψ𝜈 ) | −

1
2
(𝑦 − 𝑋𝛽) ′Ω−1

𝑢 (Ψ𝜈 ) (𝑦 − 𝑋𝛽) , (12.6)

= − 𝑁𝑇
2

ln2𝜋 − 𝑁
2
ln |𝑉𝑢 (Ψ𝜈 ) | −

1
2

𝑁∑︁
𝑖=1
(𝑦𝑖 − 𝑋𝑖𝛽) ′𝑉−1

𝑢 (Ψ𝜈 ) (𝑦𝑖 − 𝑋𝑖𝛽) ,

where Ω𝑢 (Ψ𝜈 ) = 𝐼𝑁 ⊗ 𝑉𝑢 (Ψ𝜈 ) where 𝑉𝑢 (Ψ𝜈 ) = 𝜎2
𝜇𝐽𝑇 + 𝜎2

𝑒Γ𝜈 (Ψ𝜈 ) and where Φ is an 𝐿-
dimensional vector of the whole set of parameters of the model. Since Γ𝜈 (Ψ𝜈 ) and 𝑉−1

𝑢 (Ψ𝜈 ) are
complicated functions of parameters, maximizing the log-likelihood (12.6) is no easy task. Under
mild regularity assumptions, this maximization problem can be reformulated in terms of the first
partial derivatives. The MLE Φ̂ is the solution of the system of 𝐿 equations

𝜕

𝜕Φ𝑙
ln𝐿 (Φ) = 0, 𝑙 = 1, · · · , 𝐿, (12.7)

where
𝜕

𝜕Φ𝑙
ln𝐿 (Φ) = − 1

2
𝜕

𝜕Φ𝑙
ln |Ω𝑢 (Ψ𝜈 ) | −

1
2
𝜕

𝜕Φ𝑙

[
(𝑦 − 𝑋𝛽) ′Ω−1

𝑢 (Ψ𝜈 ) (𝑦 − 𝑋𝛽)
]
.

(12.8)
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As underlined by Beran (1994), the problem of estimating Φ by the maximum likelihood poses
computational problems. To obtain the solution of (12.7), (12.8) has to be evaluated for many trial
values of Φ. This can be costly in terms of CPU time, in particular if the dimension of Φ is high.
Also, evaluation of the inverse of the covariance matrix Ω𝑢 (Ψ𝜈 ) may be numerically unstable. An
alternative to solving the exact maximum likelihood equations is to maximize an approximation to
the likelihood function. This is why some authors have suggested using Whittle’s (Whittle, 1953)
approximation. The literature on Whittle likelihood estimation is abundant in time series analysis,
since the seminal works of Whittle (1953) and many others (e.g., Grenander & Szegö, 1958, Hannan,
1970, Priestley, 1981, Dzhaparidze & Yaglom, 1983, Dahlhaus, 1988, Beran, 1994, and more
recently Wang & Xia, 2015, Huang, Xia & Qin, 2016 or Huang, Jiang & Wang, 2019 to mention a
few). Unfortunately, only few extensions to panel data have been proposed. Examples include Chen
(2006), Chen (2008) and Wei et al. (2022).

Let us consider the demeaned model for individual 𝑖

�̃�𝑖 = 𝑦𝑖 − 𝑋𝑖𝛽.

By definition

𝜈∗𝑖 = �̃�𝑖 − 𝜇𝑖 𝜄𝑇 .

is an estimator of 𝜈𝑖 with known 𝛽 and 𝜇𝑖 . For the error process 𝜈𝑖𝑡 = 𝜙−1
𝜈 (𝐵) 𝜃𝜈 (𝐵)𝑒𝑖𝑡 in model

(12.1), a set of Fourier frequencies is needed to derive the original Whittle likelihood estimator
(WLE),

𝜔𝑚 =
2𝜋𝑚
𝑇

, 𝑚 = 0, · · · , 𝑀,

where 𝑀 is the bandwidth number, i.e., an integer smaller than 𝑇 which defines the bandwidth
𝑀/𝑇 . In general, max(𝑀 ) = 𝑇 − 1 and 𝜔𝑚 ∈ Ω𝑇 =

{
0, 2𝜋

𝑇
, · · · , 2𝜋 (𝑇−1)

𝑇

}
. The periodogram of

𝜈∗
𝑖𝑡

for 𝑡 = 1, · · · , 𝑇 at frequency 𝜔𝑚, denoted by 𝐼
(
𝜔𝑚, 𝜈

∗
𝑖

)
, has the following explicit form3 ,4

𝐼
(
𝜔𝑚, 𝜈

∗
𝑖

)
=

1
2𝜋𝑇

��� 𝑇∑︁
𝑡=1
𝜈∗𝑖𝑡𝑒

− 𝑗𝑡𝜔𝑚
���2, 𝑗 =

√
−1, (12.9)

and the spectral density function is given by

𝑓 (𝜔𝑚,Ψ𝜈 ) = 𝜎2
𝑒 𝑓∗ (𝜔𝑚,Ψ𝜈 ) ,

where 𝑓∗ (𝜔𝑚,Ψ𝜈 ) =
1

2𝜋

��1−∑𝑞
𝑘=1 𝜃𝜈,𝑘𝑒

− 𝑗𝑘𝜔𝑚
��2��1−∑𝑝

𝑘=1 𝜙𝜈,𝑘𝑒
− 𝑗𝑘𝜔𝑚

��2 .
𝑓∗ (𝜔𝑚,Ψ𝜈 ) is the standardized spectral density function. Following Huang et al. (2016), Huang et
al. (2019) and Wei et al. (2022), we can estimate 𝜇𝑖 by minimizing the ‘-ln’ WLE (see appendix
12.5), which is equivalent to minimizing

𝑄∗𝑖 =
1
𝑇

∑︁
𝑚∈Ω𝑇

𝐼
(
𝜔𝑚, 𝜈

∗
𝑖

)
𝑓∗ (𝜔𝑚,Ψ𝜈 )

. (12.10)

It is the minimization of the information divergence between 𝑓∗ (𝜔𝑚,Ψ𝜈 ) and 𝐼
(
𝜔𝑚, 𝜈

∗
𝑖

)
(see

Parzen, 1983, Dahlhaus, 1988), i.e., the search for the function 𝑓∗ (𝜔𝑚,Ψ𝜈 ) that best approximates

3 To avoid confusion with the letter (𝑖) associated with individuals (𝑖 = 1, ..., 𝑁 ), we denote the
imaginary number by 𝑗 (=

√
−1) instead of the usual 𝑖.

4 If 𝑧 = 𝑎+ 𝑗𝑏, then |𝑧 |2 = 𝑧�̄� = 𝑎2 +𝑏2 where �̄� (= 𝑎 − 𝑗𝑏) is the corresponding conjugate.
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the nonparametric estimate 𝐼
(
𝜔𝑚, 𝜈

∗
𝑖

)
. Then, conditional on 𝛽, Ψ𝜈 and 𝜎2

𝑒,

𝜇𝑖 = argmin
𝜇𝑖
𝑄∗𝑖 .

According to (12.9), the periodogram in (12.10) can be written as

𝐼
(
𝜔𝑚, 𝜈

∗
𝑖

)
=

1
2𝜋𝑇

𝜈∗
′
𝑖 𝑑𝑇 (𝜔𝑚 )𝑑′𝑇 (𝜔𝑚 )𝜈∗𝑖 , (12.11)

where 𝑑𝑇 (𝜔𝑚 ) =
(
𝑒− 𝑗𝜔𝑚 , · · · , 𝑒− 𝑗𝑇𝜔𝑚

) ′ and 𝑑𝑇 (𝜔𝑚 ) is the corresponding conjugate.5 Let 𝐷𝑇
be a Toeplitz matrix given by

𝐷𝑇 =
1

2𝜋𝑇

∑︁
𝑚∈Ω𝑇

𝑑𝑇 (𝜔𝑚 )𝑑′𝑇 (𝜔𝑚 )
𝑓∗ (𝜔𝑚,Ψ𝜈 )

, (12.12)

=
1

2𝜋𝑇

©«
∑
𝑚∈Ω𝑇

1
𝑓∗ (𝜔𝑚 ,Ψ𝜈 ) · · ·

∑
𝑚∈Ω𝑇

cos( (𝑇−1)𝜔𝑚 )
𝑓∗ (𝜔𝑚 ,Ψ𝜈 )

.

.

.
.
.
.∑

𝑚∈Ω𝑇
cos( (𝑇−1)𝜔𝑚 )
𝑓∗ (𝜔𝑚 ,Ψ𝜈 ) · · ·

∑
𝑚∈Ω𝑇

1
𝑓∗ (𝜔𝑚 ,Ψ𝜈 )

ª®®®®¬
.

Then, 𝜇𝑖 can be written as

𝜇𝑖 =
(
𝜄′𝑇𝐷𝑇 𝜄𝑇

)−1
𝜄′𝑇𝐷𝑇 �̃�𝑖 , (12.13)

and

�̂�2
𝜇 =

1
𝑁 − 1

𝑁∑︁
𝑖=1

(
𝜇𝑖 −

1
𝑁

𝑁∑︁
𝑖=1
𝜇𝑖

)2

. (12.14)

The estimated residuals are given by

�̂�∗𝑖 = 𝑃𝑇 �̃�𝑖 with 𝑃𝑇 = 𝐼𝑇 − 𝜄𝑇
(
𝜄′𝑇𝐷𝑇 𝜄𝑇

)−1
𝜄′𝑇𝐷𝑇 . (12.15)

As 𝛽, Ψ𝜈 and 𝜎2
𝑒 are invariant across all the individuals {𝑖 = 1, · · · , 𝑁 }, we can use an estimation

method through minimizing a weighted sum of all WLE 𝑄𝑖 , {𝑖 = 1, · · · , 𝑁 },

𝑄 =
1
𝑁

𝑁∑︁
𝑖=1

1
𝜎2
𝑒

𝑄∗𝑖 =
1
𝑁𝑇

𝑁∑︁
𝑖=1

∑︁
𝑚∈Ω𝑇

𝐼
(
𝜔𝑚, �̂�

∗
𝑖

)
𝑓 (𝜔𝑚,Ψ𝜈 )

. (12.16)

If we know 𝜎2
𝑒, 𝛽 and Ψ𝜈 can be estimated by minimizing the profile based Whittle likelihood

𝑄∗ =
1
𝑁

𝑁∑︁
𝑖=1
𝑄∗𝑖 =

1
𝑁𝑇

𝑁∑︁
𝑖=1

∑︁
𝑚∈Ω𝑇

𝐼
(
𝜔𝑚, �̂�

∗
𝑖

)
𝑓∗ (𝜔𝑚,Ψ𝜈 )

, (12.17)

=
1
𝑁

𝑁∑︁
𝑖=1

( 1
𝑇
�̂�∗
′
𝑖 𝐷𝑇 �̂�

∗
𝑖

)
=

1
𝑁

𝑁∑︁
𝑖=1

( 1
𝑇
�̃�′𝑖𝐷𝑁𝑇 �̃�𝑖

)
,

=
1
𝑁𝑇

(
𝑦 − 𝑋𝛽

) ′
(𝐼𝑁 ⊗𝐷𝑁𝑇 )

(
𝑦 − 𝑋𝛽

)
,

5 𝑑𝑇 (𝜔𝑚 )𝑑′𝑇 (𝜔𝑚 ) is a (𝑇 ×𝑇 ) Toeplitz matrix with first row given by (1, cos(𝜔𝑚 ) , · · · , cos( (𝑇 −
1)𝜔𝑚 ) ) , see Baltagi, Bresson and Etienne (2025).
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where 𝐷𝑁𝑇 = 𝑃′
𝑇
𝐷𝑇𝑃𝑇 . Then, the estimate of 𝜎2

𝑒 is given by

�̂�2
𝑒 =𝑄

∗ =
1
𝑁𝑇

(
𝑦 − 𝑋𝛽

) ′ (
𝐼𝑁 ⊗ �̂�𝑁𝑇

) (
𝑦 − 𝑋𝛽

)
, (12.18)

Through a nonlinear optimization algorithm, we can get estimates of 𝛽, Ψ𝜈 and 𝜎2
𝑒. From (12.13)

and (12.14), we get an estimate of 𝜇 and 𝜎2
𝜇 . Likewise, from the estimate of the transfer function

Θ𝜈 (𝐵) = 𝜙−1
𝜈 (𝐵) 𝜃𝜈 (𝐵) = (Θ𝜈,0 +Θ𝜈,1𝐵 +Θ𝜈,2𝐵2 + · · · ) and the estimate of 𝜎2

𝑒, we get an
estimate of 𝜎2

𝜈

�̂�2
𝜈 = �̂�

2
𝑒

∞∑︁
𝑘=0

Θ̂2
𝜈,𝑘 ≈ �̂�

2
𝑒

𝑇−1∑︁
𝑘=0

Θ̂2
𝜈,𝑘 ,

where (see Box & Jenkins, 1976 and Karanasos, 1998)

Θ̂𝜈,0 = 1

Θ̂𝜈,1 = 𝜙𝜈,1 − 𝜃𝜈,1
Θ̂𝜈,2 = 𝜙𝜈,1Θ̂𝜈,1 + 𝜙𝜈,2 − 𝜃𝜈,2
.
.
.

.

.

.
.
.
.

Θ̂𝜈,𝜏 =
𝑝𝜈∑
𝑗=1
𝜙𝜈, 𝑗Θ̂𝜈,𝜏− 𝑗 − 𝜃𝜈,𝜏 , 𝜏 ≤ 𝑞𝜈

Θ̂𝜈,𝜏 =
𝑝𝜈∑
𝑗=1
𝜙𝜈, 𝑗Θ̂𝜈,𝜏− 𝑗 , 𝜏 >max (𝑝𝜈 − 1, 𝑞𝜈 )

(12.19)

�̂�2
𝜈 can also be directly obtained using 𝑉𝑎𝑟 ( �̂�∗ ) from (12.15): �̂�2

𝜈 = 𝑉𝑎𝑟 [ (𝐼𝑁 ⊗ 𝑃𝑇 ) �̃� ].
From the estimated weights of the transfer function Θ̂𝜈,𝜏 , we can estimate the covariance generating
function

𝛾𝜈,𝜏 = �̂�
2
𝑒𝛾
∗
𝜈,𝜏 with 𝛾∗𝜈,𝜏 =

∞∑︁
𝑘=0

Θ̂𝜈,𝑘+|𝜏 |Θ̂𝜈,𝑘 ≈
𝑇−𝜏−1∑︁
𝑘=0

Θ̂𝜈,𝑘+|𝜏 |Θ̂𝜈,𝑘 ,

and Γ𝜈 (Ψ̂𝜈 ) is a Toeplitz matrix obtained from 𝛾∗𝜈,𝜏 for 𝜏 = 0, · · · , 𝑇 − 1. Next, we get the estimated
variance-covariance matrix of the residuals 𝑢, Ω𝑢 (Ψ̂𝜈 ) = �̂�2

𝜇 𝐼𝑁𝑇 + �̂�2
𝑒Γ𝜈 (Ψ̂𝜈 ) , and the FGLS

estimates

𝛽 =

(
𝑋′Ω−1

𝑢 (Ψ̂𝜈 )𝑋
)−1

𝑋′Ω−1
𝑢 (Ψ̂𝜈 )𝑦,

and 𝑉𝑎𝑟
(
𝛽

)
=

(
𝑋′Ω−1

𝑢 (Ψ̂𝜈 )𝑋
)−1

.

The Whittle likelihood estimation of the one-way random effects model with serial correlation of
the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) type can therefore be summarized by Algorithm 1.
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Algorithm 1: Whittle likelihood estimation of a one-way random effects
model with serial correlation of the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) type

1. First step.

a. Let �̃�𝑖 = 𝑦𝑖 − 𝑋𝑖𝛽 and �̃� = 𝑦 − 𝑋𝛽 with �̃� = ( �̃�1 , · · · , �̃�𝑁 ) ′ , 𝜈∗𝑖 = �̃�𝑖 − 𝜇𝑖 𝜄𝑇 and 𝜈∗ =
(
𝜈∗1 , · · · , 𝜈

∗
𝑁

) ′
.

b. nonlinear optimization algorithm
i. solve arg min

𝛽,Ψ𝜈 ,𝜇
𝑄∗ = arg min

𝛽,Ψ𝜈 ,𝜇

1
𝑁𝑇

(
𝑦 − 𝑋𝛽

) ′
(𝐼𝑁 ⊗𝐷𝑁𝑇 )

(
𝑦 − 𝑋𝛽

)
where 𝐷𝑁𝑇 = 𝑃′

𝑇
𝐷𝑇𝑃𝑇

with 𝑃𝑇 = 𝐼𝑇 − 𝜄𝑇
(
𝜄′
𝑇
𝐷𝑇 𝜄𝑇

)−1
𝜄′
𝑇
𝐷𝑇 and

𝐷𝑇 =
1

2𝜋𝑇

©«
∑
𝑚∈Ω𝑇

1
𝑓∗ (𝜔𝑚,Ψ𝜈 ) · · ·

∑
𝑚∈Ω𝑇

cos( (𝑇−1)𝜔𝑚 )
𝑓∗ (𝜔𝑚,Ψ𝜈 )

.

.

.

.

.

.∑
𝑚∈Ω𝑇

cos( (𝑇−1)𝜔𝑚 )
𝑓∗ (𝜔𝑚,Ψ𝜈 ) · · ·

∑
𝑚∈Ω𝑇

1
𝑓∗ (𝜔𝑚,Ψ𝜈 )

ª®®®®¬
,

with

𝑓∗ (𝜔𝑚 ,Ψ𝜈 ) =
1

2𝜋

��1−∑𝑞
𝑘=1 𝜃𝜈,𝑘𝑒

− 𝑗𝑘𝜔𝑚
��2��1−∑𝑝

𝑘=1 𝜙𝜈,𝑘𝑒
− 𝑗𝑘𝜔𝑚

��2
𝜔𝑚 ∈ Ω𝑇 =

{
0,

2𝜋
𝑇
, · · · , 2𝜋 (𝑇 − 1)

𝑇

}
.

ii. 𝜇𝑖 =
(
𝜄′
𝑇
𝐷𝑇 𝜄𝑇

)−1
𝜄′
𝑇
𝐷𝑇 �̃�𝑖 , 𝜇 = (𝜇1 , · · · , 𝜇𝑁 ) ′ , �̂�2

𝜇 = 1
𝑁−1

∑𝑁
𝑖=1

(
𝜇𝑖 − 1

𝑁

∑𝑁
𝑖=1 𝜇𝑖

)2
.

iii. �̂�2
𝑒 =

1
𝑁𝑇

(
𝑦 − 𝑋𝛽

) ′ (
𝐼𝑁 ⊗ �̂�𝑁𝑇

) (
𝑦 − 𝑋𝛽

)
.

iv. �̂�2
𝜈 = 𝑉𝑎𝑟 [ (𝐼𝑁 ⊗ 𝑃𝑇 ) �̃� ] or �̂�2

𝜈 = �̂�
2
𝑒

∑𝑇−1
𝑘=0 Θ̂2

𝜈,𝑘
with



Θ̂𝜈,0 = 1
Θ̂𝜈,1 = 𝜙𝜈,1 − 𝜃𝜈,1
Θ̂𝜈,2 = 𝜙𝜈,1Θ̂𝜈,1 + 𝜙𝜈,2 − 𝜃𝜈,2
.
.
.

.

.

.

.

.

.

Θ̂𝜈,𝜏 =
𝑝𝜈∑
𝑗=1
𝜙𝜈, 𝑗 Θ̂𝜈,𝜏− 𝑗 − 𝜃𝜈,𝜏 , 𝜏 ≤ 𝑞𝜈

Θ̂𝜈,𝜏 =
𝑝𝜈∑
𝑗=1
𝜙𝜈, 𝑗 Θ̂𝜈,𝜏− 𝑗 , 𝜏 >max (𝑝𝜈 − 1, 𝑞𝜈 )

2. Second step.

a. Γ𝜈 (Ψ̂𝜈 ) : Toeplitz matrix obtained from 𝛾∗𝜈,𝜏 =
∑𝑇−𝜏−1
𝑘=0 Θ̂𝜈,𝑘+|𝜏 |Θ̂𝜈,𝑘 for 𝜏 = 0, · · · , 𝑇 − 1.

b. Ω𝑢 (Ψ̂𝜈 ) = �̂�2
𝜇 𝐼𝑁𝑇 + �̂�2

𝑒Γ𝜈 (Ψ̂𝜈 )

c. 𝛽 =

(
𝑋′Ω−1

𝑢 (Ψ̂𝜈 )𝑋
)−1

𝑋′Ω−1
𝑢 (Ψ̂𝜈 )𝑦 and 𝑉𝑎𝑟

(
𝛽

)
=

(
𝑋′Ω−1

𝑢 (Ψ̂𝜈 )𝑋
)−1

.

Of course, time series specialists have long shown that Whittle’s approximation works well in
the asymptotic case (𝑇→∞). In the case of small samples in the time dimension, the small sample
behavior may be poor if the spectrum of the process contains peaks or if characteristic roots of
the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) process are close to unity. In fact, the expected value of the periodogram is the
convolution of the standardized spectral density and the Fejér kernel. This convolution smooths out
the peaks in the spectral density function due to the sidelobes in the Fejér kernel. This is the leakage
effect which is greater when the spectral density has a large peak and the sample size is small.
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Since the Whittle approximation of the log-likelihood function can be considered as the information
divergence between the periodogram and the spectral density, we get a parametric leakage effect due
to the fact that the leakage effect is also transferred to the parametric estimation procedure. Some
advocate the use of tapered data and tapered (or modified) periodograms to reduce variance. The
tapered periodogram multiplies the input time series by a taper sequence or window ℎ𝑡

𝐼
(
𝜔𝑚, 𝜈

∗
𝑖

)
=

1
2𝜋

∑𝑇
𝑡=1 ℎ

2
𝑡

��� 𝑇∑︁
𝑡=1
ℎ𝑡𝜈

∗
𝑖𝑡𝑒
− 𝑗𝑡𝜔𝑚

���2, (12.20)

and the number of points that are tapered will impact the bias. The usual periodogram has ℎ𝑡 = 1,
∀𝑡 . Generally, one would prefer a window that leaves the bulk of the data unmodified and just
tapers the ends. Tapering can reduce the leakage effect of the periodogram as an estimate of the
true spectrum (see Tukey, 1967, Jenkins & Watts, 1969, Hatanaka, 1972, Brillinger, 1981, Priestley,
1981, Dahlhaus, 1988, Zhang, 1992, Ginovyan & Sahakyan, 2021).6 In panel data, we deal very
often with small 𝑇 as compared to large 𝑁 (except with monthly or quarterly macroeconomic and
daily financial datasets). The introduction of tapered periodogram may be appropriate to reduce
potential biases due to the use of an unmodified periodogram, although we have no knowledge of the
use of modified periodogram in the case of panel data.7 Moreover, to our knowledge, there are no
Monte Carlo simulation studies or applications for a one-way error components model with 𝐴𝑅𝑀𝐴
errors using Whittle’s approximation with large 𝑁 and small 𝑇 .

The ℎ𝑡 window in (12.20) is both data and frequency independent, i.e., ℎ𝑡 is the same at any
frequency of the spectrum and for any data sequence. For this non-adaptive window, the consequence
of this restriction is twofold: on the one hand, reducing the leakage effect may not be effective and,
on the other, any attempt to reduce the leakage effect leads to a reduction of the resolution and vice
versa. A possible solution is the apodization approach8, defining a data and frequency dependent
temporal window, which mitigates the leakage problem of the periodogram without compromising
its resolution (see DeGraaf, 1994, Stankwitz, Dallaire & Fienup, 1994, Thomas, Flores & Sok-Son,
2000 and Stoica & Moses, 2005).

In the apodization literature, the non-adaptive Hanning window ℎ𝑡 = 1− 𝛿 cos(2𝜋𝑡/𝑇 ) , ( | 𝛿 | ≤ 1)
is replaced by its adaptive version. So, in the panel data case, we have

ℎ𝑖,𝑚,𝑡 = 1− 𝛿𝑖,𝑚 cos( 2𝜋𝑡
𝑇
) ,

with | 𝛿𝑖,𝑚 | ≤ 1 and the apodized-windowed periodogram is given by

6 In time series analysis, there are many attempts to find the optimum tapering method, either by
selecting different taper sequences or windows (Hanning, Tukey, Parzen, polynomial, etc), or by
using other approaches (boxed (modified) periodogram, complete periodogram, etc) and there is
currently no single, optimal method that yields unbiased estimates of the periodogram when 𝑇 is
small, (see Welch, 1967, Hatanaka, 1972, Priestley, 1981, Dahlhaus, 1988, Hurvich & Ray, 1995,
Robinson, 1995, Montanari, Taqqu & Teverovsky, 1999, Velasco, 1999, Velasco & Robinson, 2000,
Das, Subba Rao & Yang, 2021, Ginovyan & Sahakyan, 2021, Subba Rao & Yang, 2021 to mention
a few).
7 Chen (2006) used 𝑁 = 20 and 𝑇 = 50, 100, 200 for a one-way error components model with serial
correlation of the 𝐴𝑅𝑀𝐴(1, 1) type. Chen (2008) used 𝑁 = 20, 30 and 𝑇 ≥ 350 for the same
model to estimate empirical size and power, while Wei et al. (2022) chose 𝑁 = 𝑇 (= 30, 60, 90)
for a linear dynamic model with serial correlation of the 𝑀𝐴(1) type. These authors do not use
a tapered periodogram. In their simulation, Wei et al. (2022) obtain relatively large biases for the
𝑀𝐴(1) parameter, in excess of 30%.
8 Apodization is a term borrowed from optics where it has been used to mean a reduction of the
sidelobes induced by diffraction. This is a method for increasing contrast and at least partially
eliminating diffraction rings produced by an optical instrument, in order to improve the definition of
the elements to be studied.
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𝐼∗
(
𝜔𝑚, 𝜈

∗
𝑖

)
=

1
2𝜋𝑇

���𝐷∗𝑖,𝑚���2 = 1
2𝜋𝑇

���𝐷𝑖,𝑚 − 𝛿𝑖,𝑚2
(
𝐷𝑖,𝑚−1 +𝐷𝑖,𝑚+1

) ���2
=

1
2𝜋𝑇

𝜈∗
′
𝑖 ∇𝑖,𝑚𝜈∗𝑖 , (12.21)

where 𝐷𝑖,𝑚 =
∑𝑇
𝑡=1 𝜈

∗
𝑖𝑡
𝑒− 𝑗𝑡𝜔𝑚 is the discrete Fourier transform (see Baltagi et al. (2025) for

derivations). ∇𝑖,𝑚 is a (𝑇 ×𝑇 ) matrix with (𝑡 , 𝑙) element given by

∇𝑖,𝑚 (𝑡 , 𝑙) = cos ( (𝑡 − 𝑙)𝜔𝑚 ) .


1− 𝛿𝑖,𝑚
[
cos( 2𝜋𝑡

𝑇
) +cos( 2𝜋𝑙

𝑇
)
]

+𝛿2
𝑖,𝑚

[
cos( 2𝜋𝑡

𝑇
) cos( 2𝜋𝑙

𝑇
)
]  ,

for 𝑡 , 𝑙 = 1, · · · , 𝑇 . Of course, for 𝑚 = 0 and 𝑚 = 𝑇 − 1, 𝛿𝑖,𝑚 ≡ 0 and we find the expression for
𝑑𝑇 (𝜔𝑚 )𝑑′𝑇 (𝜔𝑚 ) in (12.11). The filter coefficient 𝛿𝑖,𝑚 is defined as

𝛿𝑖,𝑚 =


0 if 𝛿0,𝑖,𝑚 < 0

𝛿0,𝑖,𝑚 if 0 ≤ 𝛿0,𝑖,𝑚 ≤ 1

1 if 𝛿0,𝑖,𝑚 > 1

,

where

𝛿0,𝑖,𝑚 =
2
(
𝑎𝑖,𝑚𝑐𝑖,𝑚 +𝑏𝑖,𝑚𝑑𝑖,𝑚

)
𝑐2
𝑖,𝑚
+𝑑2

𝑖,𝑚

,

with

𝑎𝑖,𝑚 =

𝑇∑︁
𝑡=1
𝜈∗𝑖𝑡 cos(𝜔𝑚𝑡 ) , 𝑏𝑖,𝑚 =

𝑇∑︁
𝑡=1
𝜈∗𝑖𝑡 sin(𝜔𝑚𝑡 ) ,

𝑐𝑖,𝑚 =

𝑇∑︁
𝑡=1
𝜈∗𝑖𝑡 (cos(𝜔𝑚−1𝑡 ) +cos(𝜔𝑚+1𝑡 ) ) ,

𝑑𝑖,𝑚 =

𝑇∑︁
𝑡=1
𝜈∗𝑖𝑡 (sin(𝜔𝑚−1𝑡 ) + sin(𝜔𝑚+1𝑡 ) ) ,

see Baltagi et al. (2025) for derivations.
The introduction of an apodized-windowed periodogram as in (12.21) requires us to rewrite

relations (12.12) to (12.18) and to modify step 1.b of Algorithm 1.9 Similar changes must also be
made to steps 1.b and 2.b of Algorithm 2 for the two-way Whittle ML estimate in Section 12.3.

12.3 Serial Correlation in the Two-way Error Components of the
𝑨𝑹𝑴𝑨( 𝒑, 𝒒) Type

Consider now the two-way random effects (TW-RE) model with serial correlation of the
𝐴𝑅𝑀𝐴(𝑝, 𝑞) type in both {𝜆𝑡 } and {𝜈𝑖𝑡 }:

𝑦𝑖𝑡 = 𝑋
′
𝑖𝑡𝛽 +𝑢𝑖𝑡 , , 𝑖 = 1, · · · , 𝑁 , 𝑡 = 1, · · · , 𝑇, (12.22)

with 𝑢𝑖𝑡 = 𝜇𝑖 +𝜆𝑡 + 𝜈𝑖𝑡 .

9 To save space, the modified Algorithm is given in Baltagi et al. (2025).
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We assume that the remainder disturbances 𝜈𝑖𝑡 follow an 𝐴𝑅𝑀𝐴(𝑝𝜈 , 𝑞𝜈 ) process:(
1− 𝜙𝜈,1𝐵− · · · − 𝜙𝜈,𝑝𝐵𝑝𝜈

)
𝜈𝑖𝑡 =

(
1− 𝜃𝜈,1𝐵− · · · − 𝜃𝜈,𝑞𝐵𝑞𝜈

)
𝑒𝑖𝑡 ,

𝜈𝑖𝑡 = 𝜙
−1
𝜈 (𝐵) 𝜃𝜈 (𝐵)𝑒𝑖𝑡 ,

where 𝑒𝑖𝑡 is 𝑁 (0, 𝜎2
𝑒 ) . Likewise, the time effects 𝜆𝑡 follow an 𝐴𝑅𝑀𝐴(𝑝𝜆, 𝑞𝜆 ) process:(

1− 𝜙𝜆,1𝐵− · · · − 𝜙𝜆,𝑝𝐵𝑝𝜆
)
𝜆𝑡 =

(
1− 𝜃𝜆,1𝐵− · · · − 𝜃𝜆,𝑞𝐵𝑞𝜆

)
𝜀𝑡 ,

𝜆𝑡 = 𝜙
−1
𝜆 (𝐵) 𝜃𝜆 (𝐵) 𝜀𝑡 ,

where 𝜀𝑡 is 𝑁 (0, 𝜎2
𝜀 ) . In vector form, (12.22) can be also written as

𝑦 = 𝑋𝛽 +𝑢,
with 𝑢 = (𝐼𝑁 ⊗ 𝜄𝑇 ) 𝜇 + ( 𝜄𝑁 ⊗ 𝐼𝑇 ) 𝜆+ 𝜈,

where 𝜆 = (𝜆1, · · · , 𝜆𝑇 ) ′. The general variance-covariance structure of the error components setting
is given by

𝑉𝑎𝑟 (𝑢) ≡Ω𝑢 (Ψ) = 𝜎2
𝜇 (𝐼𝑁 ⊗ 𝐽𝑇 ) + 𝐽𝑁 ⊗Ω𝜆 (Ψ𝜆 ) + 𝐼𝑁 ⊗Ω𝜈 (Ψ𝜈 ) ,

where Ψ =
(
Ψ′
𝜆
,Ψ′𝜈

) ′, with Ψ′
𝜆

=
(
𝜙𝜆,1, · · · , 𝜙𝜆,𝑝𝜆 , 𝜃𝜆,1, · · · , 𝜃𝜆,𝑞𝜆

)
and

Ψ′𝜈 =
(
𝜙𝜈,1, · · · , 𝜙𝜈,𝑝𝜈 , 𝜃𝜈,1, · · · , 𝜃𝜈,𝑞𝜈

)
. Ω𝜆 (Ψ𝜆 ) and Ω𝜈 (Ψ𝜈 ) are respectively the

variance-covariance matrices of 𝜆 and 𝜈 with Ω𝜈 (Ψ𝜈 ) = 𝜎2
𝑒Γ𝜈 (Ψ𝜈 ) and Ω𝜆 (Ψ𝜆 ) = 𝜎2

𝜀Γ𝜆 (Ψ𝜆 ) .
Γ𝜆 (Ψ𝜆 ) and Γ𝜈 (Ψ𝜈 ) are (𝑇 ×𝑇 ) Toeplitz matrices of standardized autocovariances depending on
the parameters Ψ𝜆 and Ψ𝜈 , respectively.

Similar to (12.6), the log-likelihood function is

ln𝐿 (Φ) = − 𝑁𝑇
2
− 1

2
ln |Ω𝑢 (Ψ) | −

1
2
(𝑦 − 𝑋𝛽) ′Ω−1

𝑢 (Ψ) (𝑦 − 𝑋𝛽) .

Here again, the problem of estimating Φ by the maximum likelihood poses computational problems
and an alternative to solving the exact maximum likelihood equations is to use the Whittle’s (Whittle,
1953) approximation. However, to the best of our knowledge, this has never been considered in the
case of a two-way random effects (TW-RE) model with serial correlation of the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) type
in both {𝜆𝑡 } and {𝜈𝑖𝑡 }. As the approach is a little more complex than in Section 12.2, we will break
it down into 3 steps.

1. In the first step, we use the within-time transformation (𝐸𝑁 ⊗ 𝐼𝑇 ) where 𝐸𝑁 = 𝐼𝑁 − 𝐽𝑁 with
𝐽𝑁 = 𝜄𝑁 𝜄

′
𝑁
/𝑁 , leading to the within-time error components10

𝑢• = (𝐸𝑁 ⊗ 𝐼𝑇 ) 𝑢 = (𝐸𝑁 ⊗ 𝜄𝑇 ) 𝜇 + (𝐸𝑁 ⊗ 𝐼𝑇 ) 𝜈 = 𝜇• + 𝜈•.

The within-time transformation wipes out the intercept 𝛽1 and the time effects 𝜆𝑡 and leads to
the within-time equation 𝑦• = 𝑋•𝛽◦ +𝑢• with 𝑋• = (𝐸𝑁 ⊗ 𝐼𝑇 ) 𝑋◦. 𝑋◦ (resp. 𝛽◦) is the set of
covariates (resp. coefficients) excluding 𝑋1 (= 𝜄𝑁𝑇 ) (resp. the intercept 𝛽1). With this model,
we apply the first step of Algorithm 1 where 𝑦 is replaced by 𝑦• and 𝑋 is replaced by 𝑋•. This
gives us estimates for 𝛽◦, Ψ𝜈 , 𝜎2

𝜈 , 𝜎2
𝑒, 𝜎2

𝜇 , 𝜇 and 𝜈•.
2. In a second step, we define

𝛿𝑖𝑡 = 𝑦𝑖𝑡 − 𝑋◦
′
𝑖𝑡 𝛽
◦ − 𝜇𝑖 − �̂�•𝑖𝑡 ↔ 𝛿 = 𝑦 − 𝑋◦𝛽◦ − (𝐼𝑁 ⊗ 𝜄𝑇 ) 𝜇 − �̂�•

and 𝛿★ = (𝐽𝑁 ⊗ 𝐼𝑇 ) 𝛿 with 𝛿 = (𝛿11, · · · , 𝛿1𝑇 , · · · , 𝛿𝑁1, · · · , 𝛿𝑁𝑇 ) ′,

10 (𝐸𝑁 ⊗ 𝐼𝑇 ) = 𝐼𝑁𝑇 −
(
𝐽𝑁 ⊗ 𝐼𝑇

)
has a typical element𝑢𝑖𝑡 − �̄�.𝑡 where

(
𝐽𝑁 ⊗ 𝐼𝑇

)
is the between-time

transformation which averages the data over individuals and has a typical element �̄�.𝑡 =
∑𝑁
𝑖=1𝑢𝑖𝑡/𝑁 .
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where (𝐽𝑁 ⊗ 𝐼𝑇 ) is the between-time transformation. We apply again the first step of Algorithm
1 where 𝑦 is replaced by 𝛿★ and 𝑋 is replaced by a constant 𝜄𝑁𝑇 . This gives us estimates for 𝛽1,
Ψ𝜆, 𝜎2

𝜆
and 𝜎2

𝜀 .
3. In a third step, as in Section 12.2, we use the transfer functions Θ𝜈 (𝐵) = 𝜙−1

𝜈 (𝐵) 𝜃𝜈 (𝐵) =
(Θ𝜈,0 +Θ𝜈,1𝐵+Θ𝜈,2𝐵2 + · · · ) and Θ𝜆 (𝐵) = 𝜙−1

𝜆
(𝐵) 𝜃𝜆 (𝐵) = (Θ𝜆,0 +Θ𝜆,1𝐵+Θ𝜆,2𝐵2 + · · · )

where the weights are estimated as in (12.19). From the estimated weights of the transfer
functions, we can estimate the covariance generating functions

𝛾𝜈,𝜏 = �̂�2
𝑒𝛾
∗
𝜈,𝜏 with 𝛾∗𝜈,𝜏 =

∞∑︁
𝑘=0

Θ̂𝜈,𝑘+|𝜏 |Θ̂𝜈,𝑘 ≈
𝑇−𝜏−1∑︁
𝑘=0

Θ̂𝜈,𝑘+|𝜏 |Θ̂𝜈,𝑘 ,

𝛾𝜆,𝜏 = �̂�2
𝜀𝛾
∗
𝜆,𝜏 with 𝛾∗𝜆,𝜏 =

∞∑︁
𝑘=0

Θ̂𝜆,𝑘+|𝜏 |Θ̂𝜆,𝑘 ≈
𝑇−𝜏−1∑︁
𝑘=0

Θ̂𝜆,𝑘+|𝜏 |Θ̂𝜆,𝑘 .

Γ𝜈 (Ψ̂𝜈 ) and Γ𝜆 (Ψ̂𝜆 ) are Toeplitz matrices obtained from 𝛾∗𝜈,𝜏 and 𝛾∗
𝜆,𝜏

, respectively for
𝜏 = 0, · · · , 𝑇 − 1. As in Section 12.2, �̂�2

𝜈 and �̂�2
𝜆

are estimated using the transfer function
weights (see step 3 in Algorithm 2) and they can also be directly obtained using the estimated
variance of the residuals in steps 1 and 2. The estimated variance-covariance matrix of the
residuals 𝑢 is given by

Ω𝑢 (Ψ̂) = �̂�2
𝜇 (𝐼𝑁 ⊗ 𝐽𝑇 ) + �̂�2

𝜀 (𝐽𝑁 ⊗ Γ𝜆 (Ψ̂𝜆 ) ) + �̂�2
𝑒 (𝐼𝑁 ⊗ Γ𝜈 (Ψ̂𝜈 ) ) ,

and the corresponding FGLS estimates are

𝛽 =

(
𝑋′Ω−1

𝑢 (Ψ̂)𝑋
)−1

𝑋′Ω−1
𝑢 (Ψ̂)𝑦,

and 𝑉𝑎𝑟
(
𝛽

)
=

(
𝑋′Ω−1

𝑢 (Ψ̂)𝑋
)−1

.

In order to speed up the computation of Ω−1
𝑢 (Ψ̂) , especially when 𝑁 and 𝑇 are large, we can

use the Woodbury matrix identity (see Appendix 12.5), i.e.,

Ω−1
𝑢 (Ψ) = 𝐼𝑁 ⊗ 𝐴★

−1 −
(
𝜄𝑁 ⊗ 𝐴★

−1
) [
𝜎−2
𝜀 Γ−1

𝜆 (Ψ𝜆 ) +𝑁𝐴★
−1

]−1 (
𝜄′𝑁 ⊗ 𝐴★

−1
)
,

where 𝐴★−1
=

[
𝜎2
𝜇𝐽𝑇 + 𝜎2

𝑒Γ𝜈 (Ψ𝜈 )
]−1.
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Algorithm 2: Whittle likelihood estimation of a two-way random effects
model with serial correlation of the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) type

1. First step.

a. Let 𝑦•
𝑖𝑡
= 𝑦𝑖𝑡 − �̄�.𝑡 with �̄�.𝑡 =

∑𝑁
𝑖=1 𝑦𝑖𝑡/𝑁 , 𝑋•

𝑖𝑡
= 𝑋◦

𝑖𝑡
− �̄�◦.𝑡 , 𝑦• = (𝐸𝑁 ⊗ 𝐼𝑇 ) 𝑦, 𝑋• = (𝐸𝑁 ⊗ 𝐼𝑇 ) 𝑋◦.

Let �̃�•
𝑖
= 𝑦•

𝑖
− 𝑋•

𝑖
𝛽◦ and �̃�• = 𝑦• − 𝑋•𝛽◦ with �̃�• =

(
�̃�•1 , · · · , �̃�

•
𝑁

) ′
, 𝜈∗•
𝑖

= �̃�•
𝑖
− 𝜇•

𝑖
𝜄𝑇 with 𝜇•

𝑖
= 𝜇𝑖 and

𝜈∗• =
(
𝜈∗•1 , · · · , 𝜈

∗•
𝑁

) ′
where 𝑋◦

𝑖
is the set of covariates excluding the intercept.

b. nonlinear optimization algorithm
i. solve arg min

𝛽◦ ,Ψ𝜈 ,𝜇•
𝑄∗ = arg min

𝛽◦ ,Ψ𝜈 ,𝜇•
1
𝑁𝑇

(
𝑦• − 𝑋•𝛽◦

) ′
(𝐼𝑁 ⊗𝐷𝑁𝑇 )

(
𝑦• − 𝑋•𝛽◦

)
, where

𝐷𝑁𝑇 = 𝑃′
𝑇
𝐷𝑇𝑃𝑇 with 𝑃𝑇 = 𝐼𝑇 − 𝜄𝑇

(
𝜄′
𝑇
𝐷𝑇 𝜄𝑇

)−1
𝜄′
𝑇
𝐷𝑇 and

𝐷𝑇 =
1

2𝜋𝑇

©«
∑
𝑚∈Ω𝑇

1
𝑓∗ (𝜔𝑚,Ψ𝜈 ) · · ·

∑
𝑚∈Ω𝑇

cos( (𝑇−1)𝜔𝑚 )
𝑓∗ (𝜔𝑚,Ψ𝜈 )

.

.

.

.

.

.∑
𝑚∈Ω𝑇

cos( (𝑇−1)𝜔𝑚 )
𝑓∗ (𝜔𝑚,Ψ𝜈 ) · · ·

∑
𝑚∈Ω𝑇

1
𝑓∗ (𝜔𝑚,Ψ𝜈 )

ª®®®®¬
with

𝑓∗ (𝜔𝑚 ,Ψ𝜈 ) =
1

2𝜋

��1−∑𝑞
𝑘=1 𝜃𝜈,𝑘𝑒

− 𝑗𝑘𝜔𝑚
��2��1−∑𝑝

𝑘=1 𝜙𝜈,𝑘𝑒
− 𝑗𝑘𝜔𝑚

��2
𝜔𝑚 ∈ Ω𝑇 =

{
0,

2𝜋
𝑇
, · · · , 2𝜋 (𝑇 − 1)

𝑇

}
.

ii. 𝜇•
𝑖
(≡ 𝜇𝑖 ) =

(
𝜄′
𝑇
𝐷𝑇 𝜄𝑇

)−1
𝜄′
𝑇
𝐷𝑇 �̃�

•
𝑖

, 𝜇 = (𝜇1 , · · · , 𝜇𝑁 ) ′ ,

�̂�2
𝜇 = 1

𝑁−1
∑𝑁
𝑖=1

(
𝜇𝑖 − 1

𝑁

∑𝑁
𝑖=1 𝜇𝑖

)2
.

iii. �̂�2
𝑒 =

1
𝑁𝑇

(
𝑦• − 𝑋•𝛽◦

) ′ (
𝐼𝑁 ⊗ �̂�𝑁𝑇

) (
𝑦• − 𝑋•𝛽◦

)
.

2. Second step.

a. Let 𝛿𝑖𝑡 = 𝑦𝑖𝑡 − 𝑋◦
′
𝑖𝑡
𝛽◦ − 𝜇𝑖 − �̂�∗•𝑖𝑡 ↔ 𝛿 = 𝑦 − 𝑋◦𝛽◦ − (𝐼𝑁 ⊗ 𝜄𝑇 ) 𝜇 − �̂�∗•, and 𝛿★ = (𝐽𝑁 ⊗ 𝐼𝑇 ) 𝛿 with

𝛿 = (𝛿11 , · · · , 𝛿1𝑇 , · · · , 𝛿𝑁1 , · · · , 𝛿𝑁𝑇 ) ′ and 𝑇𝑡 = 𝜄𝑇 .
b. nonlinear optimization algorithm

i. arg min
𝜂,Ψ𝜆

𝑄∗ = arg min
𝜂,Ψ𝜆

1
𝑁𝑇

(
𝛿★ − ( 𝜄𝑁 ⊗𝑇𝑡 )𝜂

) ′
(𝐼𝑁 ⊗𝐷𝑁𝑇 )

(
𝛿★ − ( 𝜄𝑁 ⊗𝑇𝑡 )𝜂

)
, where

𝐷𝑁𝑇 = 𝑃′
𝑇
𝐷𝑇𝑃𝑇 with 𝑃𝑇 = 𝐼𝑇 − 𝜄𝑇

(
𝜄′
𝑇
𝐷𝑇 𝜄𝑇

)−1
𝜄′
𝑇
𝐷𝑇 and

𝐷𝑇 =
1

2𝜋𝑇

©«

∑
𝑚∈Ω𝑇

1
𝑓∗ (𝜔𝑚,Ψ𝜆 ) · · ·

∑
𝑚∈Ω𝑇

cos( (𝑇−1)𝜔𝑚 )
𝑓∗ (𝜔𝑚,Ψ𝜆 )

.

.

.

.

.

.∑
𝑚∈Ω𝑇

cos( (𝑇−1)𝜔𝑚 )
𝑓∗ (𝜔𝑚,Ψ𝜆 ) · · ·

∑
𝑚∈Ω𝑇

1
𝑓∗ (𝜔𝑚,Ψ𝜆 )

ª®®®®®¬
,

with

𝑓∗ (𝜔𝑚 ,Ψ𝜆 ) =
1

2𝜋

��1−∑𝑞
𝑘=1 𝜃𝜆,𝑘𝑒

− 𝑗𝑘𝜔𝑚
��2��1−∑𝑝

𝑘=1 𝜙𝜆,𝑘𝑒
− 𝑗𝑘𝜔𝑚

��2
𝜔𝑚 ∈ Ω𝑇 =

{
0,

2𝜋
𝑇
, · · · , 2𝜋 (𝑇 − 1)

𝑇

}
.

ii. �̂�2
𝜀 =

1
𝑁𝑇

(
𝛿★ − ( 𝜄𝑁 ⊗𝑇𝑡 )𝜂

) ′ (
𝐼𝑁 ⊗ �̂�𝑁𝑇

) (
𝛿★ − ( 𝜄𝑁 ⊗𝑇𝑡 )𝜂

)
.



12 Estimation of Serially Correlated Error Components Models 349

Algorithm 2: Cont’d — Whittle likelihood estimation of a two-way random
effects model with serial correlation of the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) type

3. Third step.

a. �̂�2
𝜈 = �̂�

2
𝑒

∑𝑇−1
𝑘=0 Θ̂2

𝜈,𝑘
and �̂�2

𝜆
= �̂�2

𝜀

∑𝑇−1
𝑘=0 Θ̂2

𝜆,𝑘
with



Θ̂𝜈,0 = 1
Θ̂𝜈,1 = 𝜙𝜈,1 − 𝜃𝜈,1
Θ̂𝜈,2 = 𝜙𝜈,1Θ̂𝜈,1 + 𝜙𝜈,2 − 𝜃𝜈,2
.
.
.

.

.

.

.

.

.

Θ̂𝜈,𝜏 =
𝑝𝜈∑
𝑗=1
𝜙𝜈, 𝑗 Θ̂𝜈,𝜏− 𝑗 − 𝜃𝜈,𝜏 , 𝜏 ≤ 𝑞𝜈

Θ̂𝜈,𝜏 =
𝑝𝜈∑
𝑗=1
𝜙𝜈, 𝑗 Θ̂𝜈,𝜏− 𝑗 , 𝜏 >max (𝑝𝜈 − 1, 𝑞𝜈 )

,



Θ̂𝜆,0 = 1
Θ̂𝜆,1 = 𝜙𝜆,1 − 𝜃𝜆,1
Θ̂𝜆,2 = 𝜙𝜆,1Θ̂𝜆,1 + 𝜙𝜆,2 − 𝜃𝜆,2
.
.
.

.

.

.

.

.

.

Θ̂𝜆,𝜏 =
𝑝𝜆∑
𝑗=1
𝜙𝜆, 𝑗 Θ̂𝜆,𝜏− 𝑗 − 𝜃𝜆,𝜏 ,

𝜏 ≤ 𝑞𝜆

Θ̂𝜆,𝜏 =
𝑝𝜆∑
𝑗=1
𝜙𝜆, 𝑗 Θ̂𝜆,𝜏− 𝑗 ,

𝜏 >max (𝑝𝜆 − 1, 𝑞𝜆 )

b. Γ𝜈 (Ψ̂𝜈 ) : Toeplitz matrix obtained from 𝛾∗𝜈,𝜏 =
∑𝑇−𝜏−1
𝑘=0 Θ̂𝜈,𝑘+|𝜏 |Θ̂𝜈,𝑘 for 𝜏 = 0, · · · , 𝑇 − 1.

c. Γ𝜆 (Ψ̂𝜆 ) : Toeplitz matrix obtained from 𝛾∗
𝜆,𝜏

=
∑𝑇−𝜏−1
𝑘=0 Θ̂𝜆,𝑘+|𝜏 |Θ̂𝜆,𝑘 for 𝜏 = 0, · · · , 𝑇 − 1.

d. Ω𝑢 (Ψ̂) = �̂�2
𝜇 (𝐼𝑁 ⊗ 𝐽𝑇 ) + �̂�2

𝜀 (𝐽𝑁 ⊗ Γ𝜆 (Ψ̂𝜆 ) ) + �̂�2
𝑒 (𝐼𝑁 ⊗ Γ𝜈 (Ψ̂𝜈 ) ) .

e. 𝛽 =

(
𝑋′Ω−1

𝑢 (Ψ̂)𝑋
)−1

𝑋′Ω−1
𝑢 (Ψ̂)𝑦 and 𝑉𝑎𝑟

(
𝛽

)
=

(
𝑋′Ω−1

𝑢 (Ψ̂)𝑋
)−1

.

12.4 Monte Carlo Simulations for the One-way and Two-way
Error Components Models with Serial Correlation of the
𝑨𝑹𝑴𝑨( 𝒑, 𝒒) Type

12.4.1 Monte Carlo Simulations for the One-way Error Components
Models with Serial Correlation of the 𝑨𝑹𝑴𝑨( 𝒑, 𝒒) Type

We consider the following one-way random effects (OW-RE) model with a time-varying exogenous
covariate and remainder disturbances that follow an 𝐴𝑅𝑀𝐴(1, 1):

𝑦𝑖𝑡 = 𝛽1 + 𝛽2𝑋𝑖𝑡 +𝑢𝑖𝑡 , 𝑖 = 1, · · · , 𝑁 , 𝑡 = 1, · · · , 𝑇
with 𝑢𝑖𝑡 = 𝜇𝑖 + 𝜈𝑖𝑡 ,

𝜈𝑖𝑡 = 𝜙𝜈,1𝜈𝑖,𝑡−1 +𝑒𝑖𝑡 − 𝜃𝜈,1𝑒𝑖𝑡−1,

where 𝛽1 = 5, 𝛽2 = 1. Following Nerlove (1971) p. 367, the variable 𝑋𝑖𝑡 is generated by

𝑋𝑖𝑡 = 0.1𝑡 +0.5𝑋𝑖,𝑡−1 +𝑤𝑖𝑡 ,

where 𝑤𝑖𝑡 is uniform on [−0.5, 0.5] and 𝑋𝑖0 = 5 + 10𝑤𝑖0. 𝜇𝑖 ∼ 𝑁 (0, 𝜎2
𝜇 ) , 𝜈𝑖𝑡 ∼ 𝑁 (0, 𝜎2

𝜈 ) ,

𝑒𝑖𝑡 ∼ 𝑁 (0, 𝜎2
𝑒 ) and 𝜎2

𝜈 = 𝜎
2
𝑒

(1+𝜃2
𝜈,1−2𝜙𝜈,1 𝜃𝜈,1 )
(1−𝜙2

𝜈,1 )
. We vary the duration of the panel. We choose three
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(𝑁,𝑇 ) pairs with 𝑁 = 200 and 𝑇 = 200, 100, 50 and the number of replications is 100. All the
variables were generated over 𝑇 +𝑇0 time periods and we drop the first 𝑇0 (= 20) observations to
reduce the dependence on the initial values. In total we have 4 experiments for each (𝑁,𝑇 ) pair:11

Table 12.1: Parameters for the 4 experiments in the one-way error components model

𝜙𝜈,1 𝜃𝜈,1 𝜎
2
𝜇 𝜎

2
𝜈

1 0.8 0.6 10 6

2 0.4 -0.7 10 6

3 0.8 0.6 10 4

4 0.4 -0.7 10 4

The choices of 𝜙𝜈,1 and 𝜃𝜈,1 parameters are guided by different dynamic responses summarized
by the transfer function weights Θ𝜈 (𝐵) = (1+Θ𝜈,1𝐵+Θ𝜈,2𝐵2 + · · · ) in 𝑣𝑖𝑡 = Θ𝜈 (𝐵)𝑒𝑖𝑡 . Indeed,
for experiment 1 (or 3), the Θ𝜈,𝜏 weights are initially small and decrease slightly: Θ𝜈,1 = 0.2,
Θ𝜈,2 = 0.16, Θ𝜈,5 = 0.082, Θ𝜈,10 = 0.027, whereas for experiment 2 (or 4), the weights are initially
large and decrease quickly: Θ𝜈,1 = 1.1, Θ𝜈,2 = 0.44, Θ𝜈,5 = 0.028, Θ𝜈,10 = 0.0003.

We compare the Monte Carlo performance with two estimators that ignore serial correlation:
OLS (labelled OLS) and one-way FGLS (labelled FGLS) and two estimators that correct for serial
correlation: the Whittle estimator (labelled Whittle) and the true one-way GLS (labelled true
GLS)12. Estimates from the true OW-GLS allow us to compute the relative efficiency of any estimator
Ψ̂𝜈,𝑘 by 𝑅𝑀𝑆𝐸 (Ψ̂𝜈,𝑘 )/𝑅𝑀𝑆𝐸 (Ψ𝜈,𝑘,𝑡𝑟𝑢𝑒 ) .13 So, we give Tables of the relative RMSE of the
intercept 𝛽1 and the slope coefficient 𝛽2 with respect to true GLS and Tables of the mean absolute
percentage error (MAPE) of the parameters ( 1

𝑟𝑒𝑝

∑𝑟𝑒𝑝
𝑗=1 |

Ψ̂𝜈,𝑘, 𝑗−Ψ𝜈,𝑘, 𝑗,𝑡𝑟𝑢𝑒
Ψ𝜈,𝑘, 𝑗,𝑡𝑟𝑢𝑒

|). MAPE measures the
average magnitude of error in the estimation of the parameter. A MAPE value of 10% means that the
average absolute percentage difference between the estimated parameter and the true GLS parameter
is 10%. For large 𝑇 (𝑇 = 200), there is no need to use a modified periodogram. On the other hand,
for smaller 𝑇 , (𝑇 = 100, 𝑇 = 50), we use an apodized-windowed periodogram to reduce the leakage
effect (see the supplementary material).14 ,15

Table 12.2 gives the relative RMSE with respect to true GLS for the intercept 𝛽1 and the slope
coefficient 𝛽2 of 3 estimators for three (𝑁,𝑇 ) pairs (𝑁 = 200, 𝑇 = 200, 100 and 50). When 𝑇 = 200,
Whittle provides the best relative RMSE followed by FGLS for both 𝛽1 and 𝛽2 for experiments
1, 3 and 4. Only in experiment 2 does FGLS give slightly better relative RMSE than Whittle, but
the differences are very small. However, as soon as 𝑇 decreases (𝑇 = 100 or 𝑇 = 50), Whittle

11 We fix 𝜎2
𝜇 at 10 greater than that of 𝜎2

𝜈 at 6 and 4 by analogy with the estimated variances on
well-known applications such as those of Grunfeld (1958) for an investment equation, Baltagi and
Griffin (1983) for a gasoline demand equation and Munnell (1990) for the productivity of public
capital in the private sector (see also Baltagi, 2021).
12 𝛽𝑡𝑟𝑢𝑒,𝐺𝐿𝑆 =

(
𝑋′Ω−1

𝑢 (Ψ𝜈 )𝑋
)−1
𝑋′Ω−1

𝑢 (Ψ𝜈 )𝑦 and 𝑉𝑎𝑟
(
𝛽𝑡𝑟𝑢𝑒,𝐺𝐿𝑆

)
=

(
𝑋′Ω−1

𝑢 (Ψ𝜈 )𝑋
)−1.

13 Where 𝑅𝑀𝑆𝐸 (Ψ̂𝜈,𝑘 ) =
√︃
(1/𝑟𝑒𝑝)∑𝑟𝑒𝑝

𝑗=1 (Ψ̂𝜈,𝑘, 𝑗 −Ψ𝜈,𝑘 )2 with 𝑟𝑒𝑝 = 100.
14 The simulation study was conducted with a MacBook Pro featuring a 3.58 GHz Apple M3 Max
chip, a 16-core CPU, 48GB of unified memory and a 1TB SSD.
15 We have used the Matlab fminsearch function based on the Nelder-Mead simplex direct search
algorithm. The code was executed within our R code using the matlabr library, an interface that
allows system call to Matlab. We would like to thank Honglei Wei for providing us with part of his
Matlab code for the application developed in Wei et al. (2022).
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unquestionably delivers better relative RMSEs except for experiment 1 when 𝑇 = 100, where again
the differences are very small. When 𝑇 is small (𝑇 = 50) and for all experiments, Whittle always
gives the best relative RMSE. As the values of the relative RMSEs are very close to unity meaning
that the Whittle MLE does almost as well as the true GLS, even when 𝑇 is small. Moreover, the non
linear optimization Algorithm 1 is not that computationally intensive even for large 𝑇 (see Table
12.2).16

Table 12.3 gives the mean absolute percentage error (MAPE) of all the parameters for the 4
experiments. The same rankings with MAPE in Table 12.3 emerge as in the relative RMSE rankings
in Table 12.2. MAPE of 𝛽1 and 𝛽2 are always lower for Whittle than for FGLS whatever the
sample size 𝑇 . MAPE of 𝜎2

𝜇 for Whittle and FGLS are small and very close to each other for all
experiments and all 𝑇 . On the other hand, the gap in the MAPEs of 𝜎2

𝜈 increases to the detriment
of Whittle (relative to FGLS) as 𝑇 decreases in all experiments. The coefficients 𝜙𝜈,1 and 𝜃𝜈,1
for serial correlation have very small MAPEs for experiments 1 and 3 but increase slightly as 𝑇
decreases. On the other hand, for experiments 2 and 4, MAPEs of the order of 15% are observed for
𝜙𝜈,1, while they are much lower (5%) for 𝜃𝜈,1 whatever the size of 𝑇 . Fortunately, the MAPEs for
the residual variance 𝜎2

𝑒 of the 𝐴𝑅𝑀𝐴(1, 1) process are very small for all experiments and for all 𝑇
and will neutralize the bias observed for 𝜎2

𝜈 since this is 𝜎2
𝑒 and 𝜎2

𝜇 associated with the coefficients
𝜙𝜈,1 and 𝜃𝜈,1 that define the variance-covariance matrix Ω𝑢 (Ψ̂) . Furthermore, there is no change
when the weight of the residual effect variance (𝜎2

𝜈) in the total variance (𝜎2
𝑢) is 37.5%(= 6/16) or

28.5%(= 4/14) . But the main lesson to be learned from this Table 12.3 concerns the MAPEs of the
standard errors 𝑠𝑒𝛽1 , 𝑠𝑒𝛽2 of the coefficients for Whittle. We can see that they are significantly
smaller than those for FGLS (not to mention those for OLS) for all experiments and all sample sizes.
For example, Whittle’s MAPEs of 𝑠𝑒𝛽2 are 2 to 9 times smaller than those of FGLS. This is an
extremely clear indication of the better estimation of the variances of 𝛽1 and 𝛽2 using the Whittle
MLE. This allows better inference for these parameters. The very good results in terms of standard
errors underline the fact that, even if there are biases in the estimation of 𝜎2

𝜈 with Whittle, these
are largely compensated for by taking into account the 𝐴𝑅𝑀𝐴 structure of the variance-covariance
matrix Ω𝑢 (Ψ̂) when calculating the variances of 𝛽1 and 𝛽2. These MAPEs confirm the very good
estimation of the coefficients and their variances for the one-way error components model using
Whittle’s approximate maximum likelihood method in the presence of serial correlation of the
𝐴𝑅𝑀𝐴(𝑝, 𝑞) type. Finally, when 𝑇 is small, the use of an apodized-windowed periodogram, by
reducing the leakage effect, seems to provide quite satisfactory results.

16 In the case of (𝑁 = 200, 𝑇 = 200) with 4 × 104 elements in the (𝑁𝑇, 𝑁𝑇 ) matrices, it takes
around 215 seconds per replication for one experiment. This computing time decreases quickly
as 𝑇 decreases. For 𝑇 = 100 (respectively 𝑇 = 50), with 2 × 104 (respectively 104) elements in
the (𝑁𝑇, 𝑁𝑇 ) matrices, it takes 30 seconds (respectively 18 seconds) per replication for one
experiment, and all this after setting the maximum number of iterations to 108 in the Nelder-Mead
simplex direct search algorithm.



352 Baltagi et al.

Table 12.2: Relative RMSE with respect to true GLS for 𝛽1 and 𝛽2 - 𝑁 = 200,
𝑇 = 200, 𝑇 = 100, 𝑇 = 50, 100 replications. One-way error components model with
serial correlation of the 𝐴𝑅𝑀𝐴(1,1) type.

OLS FGLS Whittle OLS FGLS Whittle OLS FGLS Whittle

experiment 1 : 𝜙𝜈,1 = 0.8, 𝜃𝜈,1 = 0.6, 𝜎2
𝜇 = 10, 𝜎2

𝜈 = 6.

𝑇 = 200 𝑇 = 100 𝑇 = 50

𝛽1 1.0007 1.0050 1.0002 1.0122 1.0012 1.0048 1.0269 1.0446 1.0151

𝛽2 1.0030 1.0028 1.0004 1.0085 1.0025 1.0032 1.0269 1.0447 1.0145

experiment 2 : 𝜙𝜈,1 = 0.4, 𝜃𝜈,1 = −0.7, 𝜎2
𝜇 = 10, 𝜎2

𝜈 = 6.

𝑇 = 200 𝑇 = 100 𝑇 = 50

𝛽1 1.0057 1.0002 1.0030 1.0057 1.0057 1.0031 1.0212 1.0414 1.0103

𝛽2 1.0059 1.0001 1.0028 1.0012 1.0101 1.0008 1.0236 1.0441 1.0113

experiment 3 : 𝜙𝜈,1 = 0.8, 𝜃𝜈,1 = 0.6, 𝜎2
𝜇 = 10, 𝜎2

𝜈 = 4.

𝑇 = 200 𝑇 = 100 𝑇 = 50

𝛽1 1.0007 1.0064 1.0001 1.0107 1.0046 1.0046 1.0209 1.0304 1.0128

𝛽2 1.0026 1.0046 1.0004 1.0076 1.0037 1.0032 1.0209 1.0305 1.0124

experiment 4 : 𝜙𝜈,1 = 0.4, 𝜃𝜈,1 = −0.7, 𝜎2
𝜇 = 10, 𝜎2

𝜈 = 4.

𝑇 = 200 𝑇 = 100 𝑇 = 50

𝛽1 1.0042 1.0032 1.0023 1.0034 1.0024 1.0018 1.0135 1.0273 1.0069

𝛽2 1.0046 1.0028 1.0023 1.0002 1.0159 1.0001 1.0155 1.0295 1.0078

OLS: OLS, FGLS: one-way FGLS, Whittle: Whittle MLE.

Computing time per replication for one experiment:

(𝑁 = 200, 𝑇 = 200): 214.88 sec.

(𝑁 = 200, 𝑇 = 100): 30.04 sec.

(𝑁 = 200, 𝑇 = 50): 17.94 sec.
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Table 12.3: Mean absolute percentage error (MAPE), 𝑁 = 200, 𝑇 = 200, 𝑇 = 100,
𝑇 = 50, 100 replications. One-way error components model with serial correlation of
the 𝐴𝑅𝑀𝐴(1,1) type.

OLS FGLS Whittle OLS FGLS Whittle OLS FGLS Whittle

experiment 1 : 𝜙𝜈,1 = 0.8, 𝜃𝜈,1 = 0.6, 𝜎2
𝜇 = 10, 𝜎2

𝜈 = 6.

𝑇 = 200 𝑇 = 100 𝑇 = 50

𝛽1 0.0004 0.0006 0.0001 0.0008 0.0013 0.0003 0.0017 0.0040 0.0010

𝛽2 0.0001 0.0001 < 10−4 0.0004 0.0006 0.0001 0.0016 0.0040 0.0010

𝜎2
𝜇 0.0144 0.0131 0.0215 0.0253 0.0351 0.0449

𝜙𝜈,1 0.0374 0.0783 0.1804

𝜃𝜈,1 0.0443 0.0935 0.2148

𝜎2
𝜈 0.0129 0.0178 0.0248 0.0569 0.0482 0.1059

𝜎2
𝑒 0.0043 0.0317 0.0628

𝑠𝑒𝛽1 0.3034 2.9268 0.0781 0.2917 1.8113 0.1120 0.2625 1.0225 0.1460

𝑠𝑒𝛽2 0.3005 0.5736 0.0771 0.2853 0.5670 0.1085 0.2451 0.5483 0.1331

experiment 2 : 𝜙𝜈,1 = 0.4, 𝜃𝜈,1 = −0.7, 𝜎2
𝜇 = 10, 𝜎2

𝜈 = 6.

𝑇 = 200 𝑇 = 100 𝑇 = 50

𝛽1 0.0003 0.0004 0.0001 0.0006 0.0013 0.0003 0.0015 0.0042 0.0008

𝛽2 0.0001 0.0001 < 10−4 0.0003 0.0006 0.0002 0.0017 0.0042 0.0009

𝜎2
𝜇 0.0138 0.0123 0.0206 0.0242 0.0342 0.0438

𝜙𝜈,1 0.1646 0.1524 0.1408

𝜃𝜈,1 0.0494 0.0560 0.0627

𝜎2
𝜈 0.0116 0.1130 0.0228 0.1256 0.0466 0.1306

𝜎2
𝑒 0.0185 0.0078 0.0124

𝑠𝑒𝛽1 0.4730 1.9695 0.3325 0.4698 1.1035 0.3308 0.4582 0.4851 0.3204

𝑠𝑒𝛽2 0.4720 0.6779 0.3319 0.4670 0.6768 0.3291 0.4487 0.6698 0.3144

OLS: OLS, FGLS: one-way FGLS, Whittle: Whittle MLE.
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Table 12.3: Cont’d — Mean absolute percentage error (MAPE), 𝑁 = 200, 𝑇 = 200,
𝑇 = 100, 𝑇 = 50, 100 replications. One-way error components model with serial
correlation of the 𝐴𝑅𝑀𝐴(1,1) type.

OLS FGLS Whittle OLS FGLS Whittle OLS FGLS Whittle

experiment 3 : 𝜙𝜈,1 = 0.8, 𝜃𝜈,1 = 0.6, 𝜎2
𝜇 = 10, 𝜎2

𝜈 = 4.

𝑇 = 200 𝑇 = 100 𝑇 = 50

𝛽1 0.0003 0.0004 0.0001 0.0005 0.0012 0.0002 0.0011 0.0038 0.0007

𝛽2 0.0001 0.0001 < 10−4 0.0002 0.0006 0.0001 0.0011 0.0037 0.0006

𝜎2
𝜇 0.0120 0.0100 0.0169 0.0186 0.0257 0.0314

𝜙𝜈,1 0.0374 0.0786 0.1811

𝜃𝜈,1 0.0443 0.0943 0.2163

𝜎2
𝜈 0.0129 0.0178 0.0248 0.0562 0.0482 0.1046

𝜎2
𝑒 0.0043 0.0312 0.0616

𝑠𝑒𝛽1 0.2569 3.4650 0.0676 0.2463 2.1786 0.0960 0.2203 1.2574 0.1238

𝑠𝑒𝛽2 0.2544 0.6031 0.0667 0.2406 0.5984 0.0929 0.2053 0.5848 0.1127

experiment 4 : 𝜙𝜈,1 = 0.4, 𝜃𝜈,1 = −0.7, 𝜎2
𝜇 = 10, 𝜎2

𝜈 = 4.

𝑇 = 200 𝑇 = 100 𝑇 = 50

𝛽1 0.0002 0.0004 0.0001 0.0004 0.0012 0.0002 0.0011 0.0040 0.0006

𝛽2 0.0001 0.0001 < 10−4 0.0002 0.0006 0.0001 0.0012 0.0040 0.0006

𝜎2
𝜇 0.0115 0.0094 0.0163 0.0178 0.0251 0.0307

𝜙𝜈,1 0.1647 0.1517 0.1385

𝜃𝜈,1 0.0493 0.0564 0.0641

𝜎2
𝜈 0.0116 0.1130 0.0228 0.1248 0.0466 0.1284

𝜎2
𝑒 0.0185 0.0080 0.0120

𝑠𝑒𝛽1 0.4212 2.4768 0.3002 0.4181 1.4533 0.2982 0.4075 0.7149 0.2883

𝑠𝑒𝛽2 0.4203 0.6912 0.2996 0.4156 0.6906 0.2966 0.3987 0.6856 0.2826

OLS: OLS, FGLS: one-way FGLS, Whittle: Whittle MLE.

12.4.2 Monte Carlo Simulations for the Two-way Error Components
Models with Serial Correlation of the 𝑨𝑹𝑴𝑨( 𝒑, 𝒒) Type

We extend the DGP of Section 12.4.1 to the case of a two-way random effects (TW-RE) model with
serial correlation of the 𝐴𝑅𝑀𝐴(1, 1) type in both {𝜆𝑡 } and {𝜈𝑖𝑡 }:
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𝑦𝑖𝑡 = 𝛽1 + 𝛽2𝑋𝑖𝑡 +𝑢𝑖𝑡 , 𝑖 = 1, · · · , 𝑁 , 𝑡 = 1, · · · , 𝑇
with 𝑢𝑖𝑡 = 𝜇𝑖 +𝜆𝑡 + 𝜈𝑖𝑡 ,

𝜈𝑖𝑡 = 𝜙𝜈,1𝜈𝑖,𝑡−1 +𝑒𝑖𝑡 − 𝜃𝜈,1𝑒𝑖𝑡−1,

𝜆𝑡 = 𝜙𝜆,1𝜆𝑡−1 + 𝜀𝑡 − 𝜃𝜆,1𝜀𝑡−1,

where 𝜆𝑡 ∼ 𝑁 (0, 𝜎2
𝜆
) , 𝜀𝑖𝑡 ∼ 𝑁 (0, 𝜎2

𝜀 ) and 𝜎2
𝜆
= 𝜎2

𝜀

(1+𝜃2
𝜆,1−2𝜙𝜆,1 𝜃𝜆,1 )
(1−𝜙2

𝜆,1 )
. For each (𝑁,𝑇 ) pair, we

have 4 experiments :

Table 12.4: Parameters for the 4 experiments in the two-way error components model

𝜙𝜈,1 𝜃𝜈,1 𝜙𝜆,1 𝜃𝜆,1 𝜎
2
𝜇 𝜎

2
𝜈 𝜎

2
𝜆

1 0.8 0.6 0.9 0.7 10 6 4

2 0.4 -0.7 0.2 -0.8 10 6 4

3 0.8 0.6 0.9 0.7 10 4 6

4 0.4 -0.7 0.2 -0.8 10 4 6

Here too, the values chosen for 𝜙𝜆,1 and 𝜃𝜆,1 allow us to have different dynamic responses
summarized by the transfer function weights Θ𝜆 (𝐵) = (1+Θ𝜆,1𝐵+Θ𝜆,2𝐵2+ · · · ) in 𝜆𝑡 =Θ𝜆 (𝐵) 𝜀𝑡 .
Indeed, for experiment 1 (or 3), the Θ𝜆,𝜏 weights are initially small and decrease slightly: Θ𝜆,1 = 0.2,
Θ𝜆,2 = 0.18, Θ𝜆,5 = 0.1312, Θ𝜆,10 = 0.0775, whereas for experiment 2 (or 4), the weights are
initially large and decrease quickly: Θ𝜆,1 = 1, Θ𝜆,2 = 0.2, Θ𝜆,5 = 0.0016, Θ𝜆,10 = 5.10−7.

We compare the Monte Carlo performance with two estimators that ignore serial correlation:
OLS (labelled OLS) and two-way FGLS (labelled FGLS) and two estimators that allow for serial
correlation: the Whittle estimator (labelled Whittle) and the true two-way GLS (labelled true
GLS). As in Section 12.4.1, we provide Tables of relative RMSEs of the intercept 𝛽1 and the slope
coefficient 𝛽2 with respect to true GLS and Tables of MAPEs of all the parameters.

Table 12.5 gives the relative RMSE with respect to true two-way GLS for the intercept 𝛽1 and
the slope coefficient 𝛽2 for three estimators and three (𝑁,𝑇 ) pairs (𝑁 = 200, 𝑇 = 200, 100 and 50).
This time, Whittle provides the best RMSEs for 𝛽1 and 𝛽2 for all 𝑇 and all experiments. Whittle’s
ML estimate is clearly superior to the others and almost identical to the true two-way GLS, given
that the relative RMSE values are very close to unity. Table 12.6 gives the mean absolute percentage
error (MAPE) of all the parameters for the 4 experiments. The same rankings with MAPE in Table
12.6 emerge as in the relative RMSE rankings in Table 12.5. MAPE of 𝛽1 and 𝛽2 are always lower
for Whittle than for FGLS whatever the sample size 𝑇 and MAPE of 𝜎2

𝜇 for Whittle and FGLS
are small and very close to each other for all 𝑇 and all experiments.

As in Table 12.3, the MAPE of 𝜎2
𝜈 is slightly greater for Whittle than for FGLS. The coefficients

𝜙𝜈,1 and 𝜃𝜈,1 of the serial correlation have MAPEs less than 20% for all experiments but increase
slightly as 𝑇 decreases. Fortunately, and as in Table 12.3, the MAPEs for the residual variance 𝜎2

𝑒 of
the 𝐴𝑅𝑀𝐴(1, 1) process are very small for all experiments and for all 𝑇 and will neutralize the bias
observed for 𝜎2

𝜈 since this is 𝜎2
𝑒 and 𝜎2

𝜇 associated with the coefficients 𝜙𝜈,1 and 𝜃𝜈,1 that define
part of the variance-covariance matrix Ω𝑢 (Ψ̂) . On the other hand, for the 𝐴𝑅𝑀𝐴(1, 1) coefficients
associated with the serial correlation of time effects, we note higher MAPEs than those associated
with the serial correlation of the remainder error. While they are quite acceptable for 𝑇 = 200 or
𝑇 = 100, they are worse for 𝑇 = 50. However, this depends on the experiment. For experiments 1
and 3, both 𝜙𝜆,1 and 𝜃𝜆,1 MAPEs are large (> 30%), while for experiments 2 and 4, only 𝜃𝜆,1
MAPEs are large. These biases can be explained by the small time dimension and therefore the small
number of observations available in step 2 of Algorithm 2 with the between-time transformation.
Here again, the MAPEs for the residual variance 𝜎2

𝜀 of the 𝐴𝑅𝑀𝐴(1, 1) process are small for all
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experiments and for all 𝑇 (less than 15%). This holds also for 𝜎2
𝜆

and will neutralize the impact of
biases observed for 𝜙𝜆,1 and 𝜃𝜆,1 in the computation of the variance-covariance matrix Ω𝑢 (Ψ̂) . As
in Table 12.3, and as for the one-way error components model, one of the main lessons to be learned
from this Table 12.6 concerns the MAPEs of the standard errors 𝑠𝑒𝛽1 , 𝑠𝑒𝛽2 of the coefficients for
Whittle. We can see that they are significantly smaller than those for FGLS (not to mention those for
OLS) for all experiments and all sample sizes. One more time, this is an extremely clear indication
of the better estimation of the variances of 𝛽1 and 𝛽2 using the Whittle MLE and this allows better
inference for these parameters.
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Table 12.5: Relative RMSE with respect to true GLS for 𝛽1 and 𝛽2 - 𝑁 = 200,
𝑇 = 200, 𝑇 = 100, 𝑇 = 50, 100 replications. Two-way error components model with
serial correlation of the 𝐴𝑅𝑀𝐴(1,1) type.

OLS FGLS Whittle OLS FGLS Whittle OLS FGLS Whittle

exp. 1: 𝜙𝜈,1 = 0.8, 𝜃𝜈,1 = 0.6, 𝜙𝜆,1 = 0.9, 𝜃𝜆,1 = 0.7, 𝜎2
𝜇 = 10, 𝜎2

𝜈 = 6, 𝜎2
𝜆
= 4.

𝑇 = 200 𝑇 = 100 𝑇 = 50

𝛽1 1.3744 1.2174 1.0162 1.8951 1.2820 1.0338 2.4711 1.1393 1.0284

𝛽2 1.4760 1.2875 1.0489 2.5464 1.5285 1.0790 5.0683 1.3608 1.0524

exp. 2: 𝜙𝜈,1 = 0.4, 𝜃𝜈,1 = −0.7, 𝜙𝜆,1 = 0.2, 𝜃𝜆,1 = −0.8, 𝜎2
𝜇 = 10, 𝜎2

𝜈 = 6, 𝜎2
𝜆
= 4.

𝑇 = 200 𝑇 = 100 𝑇 = 50

𝛽1 1.5411 1.3757 1.0097 2.7343 1.8806 1.0502 4.4312 1.5474 1.0293

𝛽2 1.5423 1.3767 1.0100 2.7850 1.8989 1.0537 4.8312 1.6023 1.0456

exp. 3: 𝜙𝜈,1 = 0.8, 𝜃𝜈,1 = 0.6, 𝜙𝜆,1 = 0.9, 𝜃𝜆,1 = 0.7, 𝜎2
𝜇 = 10, 𝜎2

𝜈 = 4, 𝜎2
𝜆
= 6.

𝑇 = 200 𝑇 = 100 𝑇 = 50

𝛽1 1.7483 1.3687 1.0246 2.2910 1.2166 1.0178 2.6708 1.0492 1.0017

𝛽2 1.9362 1.4640 1.0577 3.6434 1.5234 1.0521 7.5791 1.2455 1.0259

exp. 4: 𝜙𝜈,1 = 0.4, 𝜃𝜈,1 = −0.7, 𝜙𝜆,1 = 0.2, 𝜃𝜆,1 = −0.8, 𝜎2
𝜇 = 10, 𝜎2

𝜈 = 4, 𝜎2
𝜆
= 6.

𝑇 = 200 𝑇 = 100 𝑇 = 50

𝛽1 2.0024 1.5888 1.0090 3.8306 2.0512 1.0378 5.9013 1.4400 1.0247

𝛽2 2.0059 1.5911 1.0086 4.0136 2.1174 1.0453 7.1761 1.5863 1.0460

OLS: OLS, FGLS: two-way FGLS, Whittle: Whittle MLE.

Computing time per replication for one experiment:

(𝑁 = 200, 𝑇 = 200): 252.81 sec.

(𝑁 = 200, 𝑇 = 100): 37.55 sec.

(𝑁 = 200, 𝑇 = 50): 22.99 sec.
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Table 12.6: Mean absolute percentage error (MAPE), 𝑁 = 200, 𝑇 = 200, 𝑇 = 100,
𝑇 = 50, 100 replications. Two-way error components model with serial correlation of
the 𝐴𝑅𝑀𝐴(1,1) type.

OLS FGLS Whittle OLS FGLS Whittle OLS FGLS Whittle

exp. 1: 𝜙𝜈,1 = 0.8, 𝜃𝜈,1 = 0.6, 𝜙𝜆,1 = 0.9, 𝜃𝜆,1 = 0.7, 𝜎2
𝜇 = 10, 𝜎2

𝜈 = 6, 𝜎2
𝜆
= 4.

𝑇 = 200 𝑇 = 100 𝑇 = 50

𝛽1 0.0722 0.0538 0.0170 0.1252 0.0615 0.0163 0.1900 0.0361 0.0186

𝛽2 0.0178 0.0133 0.0040 0.0629 0.0300 0.0069 0.1826 0.0297 0.0108

𝜎2
𝜇 0.0156 0.0142 0.0240 0.0259 0.0350 0.0426

𝜙𝜈,1 0.0369 0.0774 0.1806

𝜃𝜈,1 0.0423 0.0917 0.2145

𝜙𝜆,1 0.0724 0.1460 0.3589

𝜃𝜆,1 0.1332 0.2638 0.5170

𝜎2
𝜈 0.0127 0.0226 0.0247 0.0390 0.0472 0.0704

𝜎2
𝜆

0.0421 0.0668 0.0580 0.1115 0.1025 0.0767

𝜎2
𝑒 0.0077 0.0360 0.0660

𝜎2
𝜀 0.0835 0.1068 0.1041

𝑠𝑒𝛽1 0.9284 0.4426 0.1528 0.9045 0.4137 0.1868 0.8771 0.4662 0.2926

𝑠𝑒𝛽2 0.9128 0.4922 0.1214 0.8455 0.2952 0.0654 0.6483 0.1414 0.0764

exp. 2: 𝜙𝜈,1 = 0.4, 𝜃𝜈,1 = −0.7, 𝜙𝜆,1 = 0.2, 𝜃𝜆,1 = −0.8, 𝜎2
𝜇 = 10, 𝜎2

𝜈 = 6, 𝜎2
𝜆
= 4.

𝑇 = 200 𝑇 = 100 𝑇 = 50

𝛽1 0.0442 0.0348 0.0058 0.0739 0.0476 0.0070 0.1116 0.0336 0.0049

𝛽2 0.0110 0.0086 0.0014 0.0363 0.0229 0.0034 0.1102 0.0329 0.0046

𝜎2
𝜇 0.0149 0.0135 0.0230 0.0248 0.0342 0.0418

𝜙𝜈,1 0.1641 0.1568 0.1451

𝜃𝜈,1 0.0493 0.0535 0.0602

𝜙𝜆,1 0.2912 0.5258 0.6573

𝜃𝜆,1 0.0797 0.1344 0.1523

𝜎2
𝜈 0.0114 0.0213 0.0229 0.0372 0.0455 0.0686

𝜎2
𝜆

0.0210 0.0324 0.0322 0.0954 0.0487 0.0541

𝜎2
𝑒 0.0149 0.0075 0.0147

𝜎2
𝜀 0.0869 0.1252 0.1603

𝑠𝑒𝛽1 0.8930 0.1633 0.0275 0.8586 0.1266 0.0568 0.8202 0.2107 0.0706

𝑠𝑒𝛽2 0.8581 0.1662 0.0340 0.7640 0.0853 0.0354 0.5121 0.1925 0.0194
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Table 12.6: Cont’d — Mean absolute percentage error (MAPE), 𝑁 = 200, 𝑇 = 200,
𝑇 = 100, 𝑇 = 50, 100 replications. Two-way error components model with serial
correlation of the 𝐴𝑅𝑀𝐴(1,1) type.

OLS FGLS Whittle OLS FGLS Whittle OLS FGLS Whittle

exp. 3: 𝜙𝜈,1 = 0.8, 𝜃𝜈,1 = 0.6, 𝜙𝜆,1 = 0.9, 𝜃𝜆,1 = 0.7, 𝜎2
𝜇 = 10, 𝜎2

𝜈 = 4, 𝜎2
𝜆
= 6.

𝑇 = 200 𝑇 = 100 𝑇 = 50

𝛽1 0.1090 0.0692 0.0135 0.1659 0.0557 0.0146 0.2391 0.0345 0.0202

𝛽2 0.0269 0.0171 0.0033 0.0833 0.0265 0.0048 0.2290 0.0206 0.0074

𝜎2
𝜇 0.0129 0.0108 0.0190 0.0189 0.0262 0.0300

𝜙𝜈,1 0.0369 0.0775 0.1810

𝜃𝜈,1 0.0423 0.0923 0.2156

𝜙𝜆,1 0.0716 0.1539 0.3567

𝜃𝜆,1 0.1317 0.2661 0.5001

𝜎2
𝜈 0.0127 0.0226 0.0247 0.0389 0.0472 0.0702

𝜎2
𝜆

0.0390 0.0408 0.0564 0.0781 0.0995 0.0574

𝜎2
𝑒 0.0077 0.0354 0.0647

𝜎2
𝜀 0.0793 0.1023 0.0946

𝑠𝑒𝛽1 0.9333 0.4315 0.1386 0.9138 0.4433 0.2053 0.8957 0.5112 0.3179

𝑠𝑒𝛽2 0.9101 0.4083 0.0780 0.8219 0.2069 0.0449 0.5782 0.1151 0.0620

exp. 4: 𝜙𝜈,1 = 0.4, 𝜃𝜈,1 = −0.7, 𝜙𝜆,1 = 0.2, 𝜃𝜆,1 = −0.8, 𝜎2
𝜇 = 10, 𝜎2

𝜈 = 4, 𝜎2
𝜆
= 6.

𝑇 = 200 𝑇 = 100 𝑇 = 50

𝛽1 0.0640 0.0452 0.0063 0.0949 0.0488 0.0063 0.1376 0.0280 0.0045

𝛽2 0.0159 0.0112 0.0016 0.0467 0.0235 0.0028 0.1353 0.0270 0.0036

𝜎2
𝜇 0.0124 0.0103 0.0183 0.0183 0.0257 0.0293

𝜙𝜈,1 0.1640 0.1549 0.1430

𝜃𝜈,1 0.0494 0.0546 0.0615

𝜙𝜆,1 0.2798 0.5672 0.6845

𝜃𝜆,1 0.0769 0.1448 0.1554

𝜎2
𝜈 0.0114 0.0213 0.0229 0.0371 0.0455 0.0685

𝜎2
𝜆

0.0168 0.0198 0.0278 0.0634 0.0425 0.0382

𝜎2
𝑒 0.0149 0.0075 0.0137

𝜎2
𝜀 0.0823 0.1192 0.1553

𝑠𝑒𝛽1 0.8983 0.1309 0.0224 0.8692 0.1525 0.0763 0.8437 0.2590 0.0863

𝑠𝑒𝛽2 0.8523 0.0218 0.0379 0.7263 0.2209 0.0406 0.4113 0.2285 0.0233
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12.5 Conclusion

In this chapter, we proposed the use of the Whittle MLE to account for serial correlation of the
𝐴𝑅𝑀𝐴(𝑝, 𝑞) type in one-way and two-way error components models. This spectral method,
rarely used in panel data econometrics, allows us to take into account the complex structures of the
variance-covariance matrices of the residuals. Whether in the one-way case with 𝐴𝑅𝑀𝐴(𝑝, 𝑞)
correlation on the remainder error or in the two-way case with 𝐴𝑅𝑀𝐴(𝑝, 𝑞) correlation on both the
remainder error and the time effects, the Monte Carlo simulations demonstrate the great adaptability
and the good estimates obtained with this method. Admittedly, this method is known in time series
to work very well in the asymptotic case (𝑇→∞), but poses problems of leakage effect for small
samples. To remedy this problem in the context of panel data where the time dimension is often
small, we used the apodization approach, defining a data and frequency dependent temporal window,
which mitigates the leakage problem of the periodogram without compromising its resolution. Here
again, the results are satisfactory, demonstrating the value of the Whittle MLE for handling serial
correlation of the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) type. To our knowledge, this is the first time that the Whittle
MLE method is used in conjunction with the apodization approach for periodogram in panel data
econometrics. Of course, throughout this chapter, we have imposed a specific structure on serial
correlation for both the one-way and two-way error components models. But we can also imagine a
more general arbitrary serial correlation. In that case, an extension of the Whittle MLE to a penalized
Whittle MLE approach17 in the panel data framework can be envisaged. This will be the subject of
future research.

Appendix

The Whittle Likelihood Estimator (WLE)

For individual 𝑖, 𝜈∗
𝑖

is a (𝑇 × 1) time series which follows an 𝐴𝑅𝑀𝐴(𝑝𝜈 , 𝑞𝜈 ) process with
a (𝑝𝜈 + 𝑞𝜈)-dimensional vector of parameters Ψ𝜈 and a (𝑇 × 𝑇 ) variance-covariance matrix
Ω𝜈 (Ψ𝜈 ) = 𝜎2

𝑒Γ𝜈 (Ψ𝜈 ) . Its log-likelihood is given by

ln𝐿 (Ψ𝜈 ) = −
𝑇

2
ln2𝜋 − 1

2
ln |Ω𝜈 (Ψ𝜈 ) | −

1
2
𝜈∗
′
𝑖 Ω

−1
𝜈 (Ψ𝜈 )𝜈∗𝑖 , (12.23)

We assume that 𝜈∗
𝑖

has a spectral density function 𝑓 (𝜔𝑚,Ψ𝜈 ) = 𝜎2
𝑒 𝑓∗ (𝜔𝑚,Ψ𝜈 ) where

𝑓∗ (𝜔𝑚,Ψ𝜈 ) is the standardized spectral density function with 𝜔𝑚 = 2𝜋𝑚/𝑇 , 𝑚 = 0, · · ·𝑇 − 1.
Ω𝜈 (Ψ𝜈 ) is a symmetric Toeplitz matrix and it has been shown (see Beran, 1994, Hurvich & Ray,
2003, Golub & Van Loan, 2013) that, for large 𝑇 , all (𝑇 ×𝑇 ) symmetric Toeplitz matrices have
complex orthonormal eigenvectors which can be approximated by

𝑉𝑚 =
1
√
𝑇

{
exp(− 𝑗𝜔𝑚𝑡 )

}𝑇
𝑡=1
,

and the corresponding eigenvalues of Ω𝜈 (Ψ𝜈 ) are well approximated by 2𝜋 𝑓 (𝜔𝑚,Ψ𝜈 ) . If
𝑉 = (𝑉0, · · · , 𝑉𝑇−1 ) and Λ is a (𝑇 ×𝑇 ) diagonal matrix with {2𝜋 𝑓 (𝜔𝑚,Ψ𝜈 ) }𝑇−1

𝑚=0 on the main
diagonal and zero elsewhere, then Ω𝜈 (Ψ𝜈 ) ≈ 𝑉Λ�̄� ′ and Ω−1

𝜈 (Ψ𝜈 ) ≈ 𝑉Λ−1�̄� ′ where �̄� ′ is the
conjugate transpose of 𝑉 .18 The log-likelihood (12.23) can be written as

17 See for instance Pawitan and O’Sullivan (1994), Guo, Dai, Ombao and Von Sachs (2003) or
Krafty and Collinge (2013) in the time series litterature.
18 𝑉 is a unitary matrix: 𝑉�̄� ′ = �̄� ′𝑉 = 𝐼𝑇 and |𝑉 | = 1.
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ln𝐿 (Ψ𝜈 ) ≈ −
𝑇

2
ln2𝜋 − 1

2
ln |𝑉Λ�̄� ′ | − 1

2
𝜈∗
′
𝑖 𝑉Λ

−1�̄� ′𝜈∗𝑖 ,

≈ −𝑇
2
ln2𝜋 − 1

2
ln |Λ | − 1

2

(
𝜈∗
′
𝑖 𝑉Λ

−1/2
) (
𝜈∗
′
𝑖
𝑉Λ−1/2) .

The 𝑚-th entry of 𝜈∗′
𝑖
𝑉 is

𝜈∗
′
𝑖 𝑉𝑚 =

1
√
𝑇

𝑇∑︁
𝑡=1
𝜈∗𝑖𝑡𝑒

− 𝑗𝜔𝑚𝑡 =
√
𝑇𝐷𝑖,𝑚,

where 𝐷𝑖,𝑚 is the discrete Fourier transform and the 𝑚-th entry of 𝜈∗′
𝑖
𝑉Λ−1/2 is

𝜈∗
′
𝑖 𝑉𝑚Λ

−1/2
𝑚 =

√
𝑇𝐷𝑖,𝑚√︁

2𝜋 𝑓 (𝜔𝑚,Ψ𝜈 )
.

The log-likelihood is therefore written as

ln𝐿 (Ψ𝜈 ) ≈ −
𝑇

2
ln2𝜋 − 1

2
ln

(
𝑇−1∏
𝑚=0

2𝜋 𝑓 (𝜔𝑚,Ψ𝜈 )
)
− 1

2

𝑇−1∑︁
𝑚=0

𝑇

2𝜋 𝑓 (𝜔𝑚,Ψ𝜈 )
|𝐷𝑖,𝑚 |2,

≈ −𝑇 ln2𝜋 − 1
2

𝑇−1∑︁
𝑚=0

[
ln 𝑓 (𝜔𝑚,Ψ𝜈 ) +

𝐼
(
𝜔𝑚, 𝜈

∗
𝑖

)
𝑓 (𝜔𝑚,Ψ𝜈 )

]
.

with 𝐼
(
𝜔𝑚, 𝜈

∗
𝑖

)
= 1

2𝜋𝑇 |
∑𝑇
𝑡=1 𝜈

∗
𝑖𝑡
𝑒− 𝑗𝜔𝑚𝑡 |2. The value of Ψ𝜈 which minimizes the righthand side of

− ln𝐿 (Ψ𝜈 ) is called the Whittle estimator of Ψ𝜈 .

Inverse of the Variance-covariance Matrix 𝛀𝒖 (𝚿)

Let

𝐴 = 𝜎2
𝜇 (𝐼𝑁 ⊗ 𝐽𝑇 ) + 𝜎2

𝑒 (𝐼𝑁 ⊗ Γ𝜈 (Ψ𝜈 ) ) ,

= 𝐼𝑁 ⊗
[
𝜎2
𝜇𝐽𝑇 + 𝜎2

𝑒Γ𝜈 (Ψ𝜈 )
]
= 𝐼𝑁 ⊗ 𝐴★→ 𝐴−1 = 𝐼𝑁 ⊗ 𝐴★

−1
,

then

Ω𝑢 (Ψ) = 𝜎2
𝜇 (𝐼𝑁 ⊗ 𝐽𝑇 ) + 𝜎2

𝜀 (𝐽𝑁 ⊗ Γ𝜆 (Ψ𝜆 ) ) + 𝜎2
𝑒 (𝐼𝑁 ⊗ Γ𝜈 (Ψ𝜈 ) ) ,

= 𝐴+ 𝜎2
𝜀 ( 𝜄𝑁 ⊗ 𝐼𝑇 ) Γ𝜆 (Ψ𝜆 )

(
𝜄′𝑁 ⊗ 𝐼𝑇

)
.

Using the Woodbury matrix identity,19 we get

Ω−1
𝑢 (Ψ) = 𝐴−1 − 𝐴−1 ( 𝜄𝑁 ⊗ 𝐼𝑇 ) 𝐵−1 (

𝜄′𝑁 ⊗ 𝐼𝑇
)
𝐴−1

with 𝐵−1 =
[ (
𝜄′𝑁 ⊗ 𝐼𝑇

)
𝐴−1 ( 𝜄𝑁 ⊗ 𝐼𝑇 ) + 𝜎−2

𝜀 Γ−1
𝜆 (Ψ𝜆 )

]−1

= 𝐴−1 − 𝐴−1 ( 𝜄𝑁 ⊗ 𝐼𝑇 )
[
𝜎−2
𝜀 Γ−1

𝜆 (Ψ𝜆 ) +𝑁𝐴★
−1

]−1 (
𝜄′𝑁 ⊗ 𝐼𝑇

)
𝐴−1

= 𝐼𝑁 ⊗ 𝐴★
−1 −

(
𝜄𝑁 ⊗ 𝐴★

−1
) [
𝜎−2
𝜀 Γ−1

𝜆 (Ψ𝜆 ) +𝑁𝐴★
−1

]−1 (
𝜄′𝑁 ⊗ 𝐴★

−1
)
.

19 (𝐷 +𝐸𝐹𝐸′ )−1 = 𝐷−1 −𝐷−1𝐸 (𝐸′𝐷−1𝐸 +𝐹−1 )−1𝐸′𝐷−1.
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with 𝐴★−1
=

[
𝜎2
𝜇𝐽𝑇 + 𝜎2

𝑒Γ𝜈 (Ψ𝜈 )
]−1.
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Chapter 13
Dynamic Heterogeneous Linear Models for
Three-level Panel Data with Short Time
Dimension and Stratification

Monika Avila Márquez and Jaya Krishnakumar

Abstract Most national survey data are obtained through a sampling scheme that is stratified at
multiple levels such as regions, socioeconomic groups, gender, etc., to ensure adequate represent-
ativeness of the underlying population. In such a design, the strata as well as the membership of
individuals into a stratum are known. This chapter considers a three-level dynamic panel data model,
the levels being group (stratum), individual (household, firm etc.) and time. It specifies a model
with additive stratum fixed effects and a mixed coefficients structure composed of stratum-specific
fixed effects and random stratum-individual-time specific effects. We examine the identification and
estimation of this dynamic heterogeneous three-level linear panel data model under stratification
when the time dimension is as short as 3. We propose a Mean Stratum-FGLS estimator and a
Mean Stratum-OLS estimator to estimate the mean coefficients. To make the GLS estimation of
the Stratum-specific parameters feasible, we introduce a ridge estimator of the variance-covariance
matrix of the model. We show consistency and asymptotic normality of the Mean Stratum estimators
for short panels, under the assumptions that apply to stratified sampling such as the number of
strata (groups) is fixed, all strata are observed, and the number of individuals per stratum is large
(growing to infinity). We also show the consistency of the variance parameter estimators. We discuss
similarities and differences between our specification and a dynamic two-level panel data model
with random coefficients. Finally, we discuss the setup of long time span.

13.1 Introduction

Model-based inference in panel data is usually developed under a random sampling assumption or
independently of the sampling design. This chapter is concerned with model-based inference for a
stratified random sampling scheme . Stratified sampling designs are commonly used in national
surveys, in which the sample is divided into different strata according to some pre-specified criterion
such as age, gender, region and so on, in order to ensure representativeness of the underlying
population. Our model is suitable for three-level data, for instance regions and individuals within
regions, or industries and firms within industries, with repeated observations on these units over
time. We assume a short time dimension as is typically the case in such surveys. Heterogeneity of
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behaviour is assumed across strata and individuals by means of a mixed coefficients component
structure, consisting of fixed stratum-specific effects and random stratum-individual-time-specific
effects.

This mixed coefficients structure is related, but not equal, to the assumption presented by
Krishnakumar, Avila Márquez and Balazsi (2017) for a static three-level linear panel data model, and
it is equivalent to the assumption presented by Avila Marquez (2022). The assumption presented by
Krishnakumar et al. (2017) states that the coefficient vector is equal to the sum of a mean coefficient
vector plus random specific effects. In contrast, our assumption states that the coefficient vector
equals the sum of varying fixed coefficients at stratum level plus stratum-individual-time random
components. The difference between Krishnakumar et al. (2017) and this paper, is that they consider
random effects that are not nested. This assumption is appropriate for setups with no nesting in
the data, such as multi-way clustering or crossed-random effects models. The assumption in this
paper is suitable for data with nesting due to stratification and for data with nesting due to known
clustering Avila Marquez (2022) .

We propose two Mean Stratum (MS) estimators, which are respectively the means of the FGLS
and OLS estimators of parameters obtained using observations belonging to each stratum 𝑔. In order
to make GLS feasible, we propose a ridge estimation of the variance-covariance components along
with a modification suitable for a large sample size. These estimators are consistent under stratified
sampling when the number of strata is fixed, and the proportion of observed strata is equal to 1.

In order to test the assumption of stratum heterogeneity , we propose two specification tests that are
extensions of the Hausman test (Hausman & Taylor, 1981). First, testing the null hypothesis of stratum
additive and multiplicative heterogeneity versus stratum-individual additive and multiplicative
heterogeneity is not feasible when the time dimension is as short as 3. But, testing the null hypothesis
of complete homogeneity versus stratum additive and multiplicative heterogeneity is possible.
In this case, we propose to compare the Mean Stratum estimator with the simple Pooled OLS
estimator. In addition, testing the null hypothesis of stratum additive and multiplicative effects
versus stratum-individual additive heterogeneity and stratum multiplicative heterogeneity is also
feasible. In this case, we propose to compare the Mean Stratum estimator against the Mean Stratum
first-difference GMM estimator or the Mean Stratum estimator using a Mundlak approach. The
study of the statistical properties of these tests is left for further research.

If stratum-individual fixed effects are present in addition to stratum fixed effects, our estimators
become inconsistent. As a possible solution, we extend our baseline model to allow for stratum-
individual-specific additive effects. In this setting, we are back to the problems of incidental
parameters and dependency on initial conditions. To deal with the incidental parameters, we use
the Mundlak approach and propose a Bayesian hierarchical estimator with a prior for the initial
conditions. The Bayesian estimator requires the correct specification of the prior of the initial
conditions. Thus, the assumption of initial conditions generated from the stationary distribution
is critical for consistency of the proposed Bayesian estimator. While we present an alternative
prior allowing for initial conditions that are not generated from the stationary distribution, it is not
straightforward to decide which is the correct assumption for the initial conditions. As an alternative,
we use the Chamberlain or the Mundlak approach conditioning on the initial values (Wooldridge,
2005b), and we propose to estimate the stratum-specific parameters using a factor analytical method
following Bai (2013). Another issue is the potential cross-sectional dependence within strata. To
address this problem, we extend the baseline model to a setting that includes common factors and
propose Mean Stratum estimation using the time-demeaned variables (Sarafidis & Robertson, 2009).

The rest of the paper is organized as follows: Section 13.2 explains the structure of the
data, Section 13.3 presents the model with its assumptions, Section 13.4 states the identification
strategy of the parameters of interest, Section 13.5 presents the estimation strategy, Section 13.6
exposes the statistical properties of the methods proposed, Section 13.7 discusses consequences
of misspecification of the variance-covariance matrix of the disturbance term of the model, 13.8
compares the Mean Stratum estimator with other available estimators, Section 13.9 discusses
the relationship between our baseline model and a two-level panel data model, highlighting how
the former can be obtained from the later by imposing certain pertinent restrictions. Section
Section 13.10 presents specification tests, Section 13.11 relaxes the assumption of additive stratum
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effects to stratum-individual additive specific effects and presents Bayes estimation and estimation
conditioning on the initial values, Section 13.12 presents an extension of the model with cross
sectional dependence, Section 13.13 discusses the behaviour of the Mean Stratum estimator in a
setting with long time dimension, Section 13.14 describes the Monte Carlo experiments and the
results, Section 13.15 gives the conclusions.

Notation: | | · | |2 is the Euclidean norm. | | · | |𝐹 is the Frobenius norm. Scalar random variables
are collected in column vectors; for instance 𝑦𝑔𝑖𝑡 can be collected in the vector 𝑦 ∈ R𝑀 (𝑦 =

[𝑦111 ... 𝑦𝑚𝑁𝑚𝑇𝑖𝑚 ]′). Matrices are denoted by uppercase letters; for instance the matrix 𝑋 ∈
R𝑛×𝐾 that collects the transpose of the column vector 𝑥𝑔𝑖𝑡 ∈ R𝐾×1 containing 𝐾 regressors
corresponding to individual 𝑖 belonging to stratum 𝑔 at period 𝑡 . 𝐼𝐴 represents the identity matrix
with dimension 𝐴× 𝐴where 𝐴 is a positive integer. 0 represents a vector of zeros with dimensions
𝐾 × 1.

13.2 Data Structure

We define the following subscripts:

• 𝑔 denotes each strata and takes values 𝑔 ∈ {1, 2, ..., 𝑚}.
• 𝑖𝑔 denotes individual 𝑖𝑔 in strata 𝑔 and takes values 𝑖𝑔 ∈ {1, 2, ..., 𝑁𝑔 }.
• 𝑡𝑖𝑔 denotes time observation 𝑡 of individual 𝑖𝑔 in group 𝑔 and takes values 𝑡𝑖𝑔 ∈ {1, 2, ..., 𝑇𝑖𝑔 }.

Data {𝑦𝑔𝑖𝑔𝑡𝑖𝑔 , 𝑥𝑔𝑖𝑔𝑡𝑖𝑔 }
𝑚,𝑁𝑔 ,𝑇𝑖𝑔

𝑔=1,𝑖𝑔=1,𝑡𝑖𝑔=1 are obtained from stratified sampling, from a population
that is stratified into 𝑚 independent known strata that do not overlap. This means that the number of
observed strata 𝑚 is equal to the total number of strata in the population and the dataset can be
partitioned into 𝑚 non-overlapping subsets {𝑦𝑖𝑔𝑡𝑖𝑔 , 𝑥𝑖𝑔𝑡𝑖𝑔 }

𝑁𝑔 ,𝑇𝑖𝑔

𝑖𝑔=1,𝑡𝑖𝑔=1. Individuals are independent
within a stratum (this is relaxed in Section 13.12). For each stratum 𝑔, 𝑁𝑔 individuals are sampled
over 𝑇𝑖𝑔 periods. The total number of individuals across strata is 𝑁 =

∑𝑚
𝑔 𝑁𝑔. The total number of

observations per stratum 𝑔 is 𝑛𝑔 =
∑
𝑖𝑔
𝑇𝑖𝑔 . The total number of observations in the data set is

𝑛 =
∑𝑚
𝑔 𝑛𝑔. This data can be seen as an unbalanced three-level panel.

Remark 13.1 For simplicity, we use 𝑖 and 𝑡 equivalently to 𝑖𝑔 and 𝑡𝑖𝑔 . This does not mean that we
assume that individual 𝑖 is part of stratum 𝑔.

13.3 The Model

We consider the autoregressive distributed lag ARDL(1,0) heterogeneous panel data model for a
random draw 𝑖 from the population of stratum 𝑔:

𝑦𝑔𝑖𝑡 = 𝛼𝑔 +𝜌𝑔𝑦𝑔𝑖𝑡−1 + 𝑥′𝑔𝑖𝑡𝛽𝑔𝑖𝑡 + 𝜀𝑔𝑖𝑡 , 𝑡 = 1, ..., 𝑇𝑖𝑔 , (13.1)
with:

𝛽𝑔𝑖𝑡 = 𝛽𝑔 +𝜆𝑔𝑖𝑡 , (13.2)
where 𝑦𝑔𝑖𝑡 is the observed outcome variable with support Y ⊆ R, 𝑦𝑔𝑖𝑡−1 is the first lag of the
outcome variable, 𝑥𝑔𝑖𝑡 is a 𝐾 × 1 vector of observed explanatory variables for individual 𝑖 in stratum
𝑔 for period 𝑡 with support X ⊆ R𝐾 (variables with finite support are also allowed), and 𝜀𝑔𝑖𝑡 is an
unobserved idiosyncratic stratum-individual error term in period 𝑡 .
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The unobserved parameters of interest are the stratum-specific parameter (𝜌𝑔), and the stratum-
specific slope coefficients (𝛽𝑔). The model also includes stratum additive specific fixed effects (𝛼𝑔)
as well as multiplicative stratum-individual-time specific effects (𝜆𝑔𝑖𝑡 ). There is also interest in the
overall averages of the parameters 𝐸 [𝜌𝑔 ], 𝐸 [𝛽𝑔 ] which can be seen as average partial effects as
explained by Wooldridge (2005a).

We assume that 𝜌𝑔 is fixed and the slope coefficient vector presents a mixed structure (𝛽𝑔𝑖𝑡 =
𝛽𝑔 +𝜆𝑔𝑖𝑡 ) composed of a stratum-specific fixed component (𝛽𝑔) and a random stratum-individual-
time specific effect 𝜆𝑔𝑖𝑡 . In addition, we assume a full variance-covariance matrix for the random
stratum-individual-time specific effect that captures the covariance between marginal effects of the
included regressors in the model. This coefficient structure allows for possible stratified endogenous
heterogeneity while admitting random deviations of individual time-specific marginal effects from
their stratum mean. For instance, one could think that common cultural unobserved characteristics
drive the heterogeneous habit formation of individuals in a certain stratum while possible deviations
are random and noncorrelated to ‘taste-shifters’. 1

The total number of time observations per individual 𝑇𝑖𝑔 is small and considered fixed in the
asymptotic analysis. The number of individuals per stratum is 𝑁𝑔 and the total number of individuals
in the panel 𝑁 are growing to infinity. The number of strata is fixed under stratified sampling. This
setting can be evaluated using an asymptotic sequence framework where we allow 𝑁𝑔 to grow
and the time dimension 𝑇𝑖𝑔 is fixed (Moon, Shum & Weidner, 2018). Model 13.1 is relevant for
different empirical applications because it permits accounting for correlated stratum heterogeneity
and individual and time heterogeneity. For instance, one could be interested in studying dynamic
heterogeneous demand equations, the heterogeneity of habit formation, income persistence, dynamic
heterogeneous treatment effects and so on.

In the following lines, we present the assumptions of the model in more detail.

Assumption 1 : Stratum membership is known and fixed over time. □

The researcher knows the strata based on observed characteristics. For instance, stratification can be
done by counties, sub-regions, economic activity categories at a detailed level, among others. The
membership of individual 𝑖 into stratum 𝑔 is denoted by the indicator variable 𝑠 (𝑔)

𝑖
∈ {0, 1} that

takes value 1 if the individual belongs to stratum 𝑔 and 0 otherwise. Thus, each individual has 𝑚
indicator variables. It is crucial to notice that stratum belonging does not vary with time.
The sum of 𝑠 (𝑔)

𝑖
for all individuals in the panel gives the number of individuals in the stratum 𝑔

(
∑𝑁
𝑖 𝑠
(𝑔)
𝑖

= 𝑁𝑔).

Assumption 2 : Number of individuals within stratum is growing.

𝑁 →∞⇒ 𝑁𝑔→∞, ∀𝑔 ∈ {1, 2, ..., 𝑚}.

The number of individuals within stratum grows to infinity when the number of individuals in the
panel grows to infinity. This could happen for households within sub-region or enterprises in an
economic sector.

Assumption 3 : Non vanishing strata.

𝑙𝑖𝑚
𝑁→∞

𝑁𝑔

𝑁
→ 𝜋𝑔 , ∀𝑔 ∈ {1, 2, ..., 𝑚},

𝜋𝑔 ∈ (0, 1) .

The proportion of stratum population to the overall population converges to a fixed number greater
than 0 but less than 1 as the number of individuals within stratum and the total number of individuals
in the panel grows to infinity. This assumption implies that the number of strata is fixed.

1 Dynan (2000) calls ‘taste-shifter’ as preference related variables.
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Assumption 4 : The proportion of observed strata (𝑞) concerning to the total number of strata in
the population is equal to 1.

This assumption is in line with stratified sampling. If the proportion of observed strata (𝑚) with
respect to the total number of strata in the population is lower than 1 and the number of strata in the
population is small, the sample is not representative of the underlying population. As a result, the
Mean Stratum estimator is unfeasible as there is insufficient information.

Assumption 5 : Fixed stratum additive specific effects 𝛼𝑔. □

Assumption 6 : Fixed stratum specific persistence parameter.

𝜌𝑔 ∈ (−1, 1) .

Assumption 7 : Mixed stratum-individual-time specific coefficients.

𝛽𝑔𝑖𝑡 = 𝛽𝑔 +𝜆𝑔𝑖𝑡 ,

with

𝐸 [𝜆𝑔𝑖𝑡𝜆′𝑔′𝑖′𝑡 ′ |𝑥𝑔𝑖1, 𝑥𝑔𝑖2, ..., 𝑥𝑔𝑖𝑇 ] =
{
Δ𝜆𝑔 if 𝑔 = 𝑔′, 𝑖 = 𝑖′ and 𝑡 = 𝑡 ′,
0 otherwise.

The unobserved coefficient vector is composed of a fixed stratum coefficient vector (𝛽𝑔), and a
heteroskedastic random component (𝜆𝑔𝑖𝑡 ) conditional on covariates that captures the multiplicative
heterogeneity over time for each individual of stratum 𝑔. Specifically, 𝜆𝑔𝑖𝑡 varies across strata
(indicated by the sub-index g).

The mixed coefficients structure can have three possible interpretations: i) the data is sampled
from a density function with heterogeneous parameters, ii) the correlation of the regressors with
unobserved multiplicative individual heterogeneity is equal within stratum, or iii) the regressors are
freely correlated to multiplicative stratum unobserved heterogeneity while preserving noncorrelation
with multiplicative stratum-individual-time specific unobserved heterogeneity. An example of the
second interpretation is that innate ability and the marginal return to education of individuals are
equally correlated to education within a city if we believe that individuals with higher ability do not
only self-select into education levels but also into the city where they will have the highest return to
their education.

Assumption 8: The random stratum-individual-time effects have zero mean conditional on the
covariates.

𝐸 [𝜆𝑔𝑖𝑡 |𝑥𝑔𝑖1, 𝑥𝑔𝑖2, ..., 𝑥𝑔𝑖𝑇 , 𝑦𝑔𝑖𝑡−1 ] = 0.

This implies that 𝐸 [𝛽𝑔𝑖𝑡 |𝑥𝑔𝑖1, 𝑥𝑔𝑖2, ..., 𝑥𝑔𝑖𝑇 , 𝑦𝑔𝑖𝑡−1 ] = 𝛽𝑔. As a consequence of this assumption,
𝐸 [𝜆𝑔𝑖𝑡 ] = 0.

Assumption 9 : Strict exogeneity of the covariates with the disturbance term.

𝐸 [𝜀𝑔𝑖𝑡 |𝑥𝑔𝑖1, 𝑥𝑔𝑖2, ..., 𝑥𝑔𝑖𝑇 , 𝑦𝑔𝑖𝑡−1 ] = 0.

This assumption is in line with Hsiao, Pesaran and Tahmiscioglu (1998) and it rules out possible
feedback of 𝑦𝑔𝑖𝑡 with future values of the covariates. It implies the model presents dynamic
completeness without conditioning on stratum effects because stratum-specific effects are considered
fixed parameters. It is also possible to assume that the stratum effects are random and correlated
with the regressors. With correlated stratum effects, the strict exogeneity of the covariates must
be conditional on the stratum-specific effects. The orthogonality conditions presented in section
13.4 hold under strict exogeneity of the covariates conditional on the stratum-specific effects. As a
consequence of this assumption, 𝐸 [𝜀𝑔𝑖𝑡 ] = 0.
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Remark 13.2 According to Wooldridge (2010), strict exogeneity rules out possible feedback of
the past values of the dependent variable to the covariates. Allowing for this feedback requires
relaxing this assumption to sequential exogeneity. The assumption of sequential exogeneity is
weaker than strict exogeneity since it allows for feedback from 𝑦𝑔𝑖𝑡 to 𝑥𝑔𝑖𝑡+1, ..., 𝑥𝑔𝑖𝑇 . For instance,
consumption in period 𝑡 can have an effect on taste shifters in periods after 𝑡 . In order to allow for
this possible feedback, it is necessary to modify the first stage of the estimation method proposed in
section 13.5 by replacing OLS or GLS with GMM using instrumental variables.

Assumption 10 : The error term 𝜀𝑔𝑖𝑡 is homoskedastic, and uncorrelated within each stratum 𝑔

but heteroskedastic across strata conditional on regressors.

𝐸 [𝜀2
𝑔𝑖𝑡 |𝑥𝑔𝑖1, 𝑥𝑔𝑖2, ..., 𝑥𝑔𝑖𝑇 ] = 𝜎2

𝜀𝑔
<∞.

𝐸 [𝜀𝑔𝑖𝑡 , 𝜀𝑔′𝑖′𝑡 ′ |𝑥𝑔𝑖1, 𝑥𝑔𝑖2, ..., 𝑥𝑔𝑖𝑇 ] = 0, if 𝑔 ≠ 𝑔′, 𝑖 ≠ 𝑖′, 𝑡 ≠ 𝑡 ′.

Assumption 11 :
𝑦𝑔𝑖𝑡 are generated from the stationary distribution of the process with initialization values 𝑦𝑔𝑖,−ℎ𝑖𝑔
sampled ℎ𝑖𝑔 number of periods before the data collection in period 0.

The initial conditions are given by:

𝑦𝑔𝑖0 = 𝜌
ℎ𝑖𝑔
𝑔 𝑦𝑔𝑖,−ℎ𝑖𝑔 + 𝛼𝑔

1− 𝜌ℎ𝑖𝑔𝑔
1− 𝜌𝑔

+
ℎ𝑔𝑖∑︁
𝑙=0
𝜌𝑙𝑔𝑥

′
𝑔𝑖−𝑙𝛽𝑔𝑖−𝑙 +

ℎ𝑖𝑔∑︁
𝑙=0
𝜌𝑙𝑔 𝜀𝑔𝑖−𝑙 . (13.3)

with ℎ𝑖𝑔 unrestricted. It is possible to set ℎ𝑖𝑔 free because the initial conditions (𝑦𝑔𝑖0) dependence
is controlled under the assumption of fixed stratum additive effects (Assumption 13).
Assumption 19 is not necessary in the presence of fixed stratum-additive effects (Assumption
13). The reason is that the dependence of the initial conditions 𝑦𝑔𝑖0 is controlled because the
stratum-additive effects are assumed to be fixed. As a result, the Mean Stratum estimator (Section
13.5) is consistent without Assumption 19 if the Assumption 13 holds.
In contrast, Assumption 19 is essential if there are stratum-individual additive effects instead of
stratum additive effects. The reason is that, under Assumptions 19 and 20, the initial conditions can
be projected into all past, present and future values of the regressors. This means that it is possible
to estimate the model either using a Bayesian approach or conditioning on the initial value 𝑦𝑔𝑖0
(Hsiao, Hashem Pesaran & Kamil Tahmiscioglu, 2002).

In addition, if the model presents stratum-individual additive fixed effects instead of stratum
additive effects and ℎ𝑖𝑔 is small, the individual initialization values 𝑦𝑔𝑖,−ℎ𝑖𝑔 are essential because
there exist initial conditions (𝑦𝑔𝑖0) dependence. In that case, there is a need to add an assumption to
avoid the incidental parameter problem: 𝐸 [𝑦𝑔𝑖,−ℎ𝑖𝑔 ] = 𝑏𝑔. On the other hand, having ℎ𝑖𝑔 →∞
means that the effect of the initialization value dies (similar to Hsiao et al. (2002)).
Assumption 19 can be relaxed in the presence of stratum-individual additive effects. In this case,
the Bayesian estimator requires a prior for the initial conditions not generated from the stationary
distribution. A simpler solution is to condition on the initial conditions as suggested by Wooldridge
(2005b).

Assumption 12 : 𝑥𝑔𝑖𝑡 are generated from:

𝑥𝑔𝑖𝑡 = 𝜇𝑔 +𝜌𝑥 𝑥𝑔𝑖𝑡−𝑙 +𝜔𝑔𝑖𝑡 , |𝜌𝑥 | < 1

𝜇𝑔 are fixed stratum-specific effects, 𝑥𝑔𝑖𝑡 are stationary with 𝜔𝑔𝑖𝑡 i.i.d with variance 𝜎2
𝜔 𝐼𝐾 . This

assumption is similar but not equal to the one presented by Hsiao et al. (2002). Assumption 20 in
combination with Assumption 14 states that the dependent variable and the regressors are both
integrated of order 0.
It is possible to relax Assumption 20 and allow for the presence of stratum-specific trends as follows:
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𝑥𝑔𝑖𝑡 = 𝜇𝑔 +𝑏𝑔𝑡 +𝜌𝑥 𝑥𝑔𝑖𝑡−𝑙 +𝜔𝑔𝑖𝑡 , |𝜌𝑥 | < 1.

The Mean Stratum estimator presented in section 13.5 is consistent with trend stationary regressors
if we include a deterministic trend in model (13.1) as above. Otherwise, it is consistent only if the
data-generating process started a short time ago (small ℎ𝑖𝑔 ). An example could be the wage of young
individuals, which means one could include age or experience as regressors in the model.
When the model presents stratum additive specific effects, if we relax Assumption 20 to allow for
some non-stationary regressors and assuming non-stationary dependent variable, our stratum-specific
estimators remain consistent if the regressors, the dependent variable and its lag are co-integrated
per stratum (Hamilton, 1994). Then the Mean Stratum estimator may also be asymptotically normal
but this is left for further research. If the regressors and the dependent variable are not co-integrated
per stratum, it is not clear if the pooled stratum OLS estimator is consistent even if Phillips and
Moon (1999) show that pooled OLS is a consistent estimator of the long-run average regression
coefficient if the regressors are non-stationary and there is no co-integration. The reason is that they
considered a model that does not present an intercept and the lag of the dependent variable. In order
to test for co-integration, one needs to extend the test proposed by Im, Pesaran and Shin (2003) to
allow for stratum-specific parameters instead of individual-specific parameters. Concluding that
there is co-integration would entail that 𝑢𝑔𝑖𝑡 = 𝑥′𝑔𝑖𝑡𝜆𝑔𝑖𝑡 + 𝜀𝑔𝑖𝑡 is stationary, implying that 𝜆𝑔𝑖𝑡
could be considered as a random co-integrating vector. A study of a co-integration test and the
properties of the Mean-stratum estimator when there is no co-integration is outside the scope of this
paper, and both issues are left for further research.
When the model presents stratum-individual specific effects instead of stratum-specific effects, the
assumption of stationary regressors is important. The reason is that the presence of stratum-individual
specific effects causes the problem of initial conditions dependency. This problem can be solved
by projecting the initial conditions on the past, the present, and the future values of the regressors.
Moreover, the projection of the initial conditions on the regressors is only possible if the regressors
are stationary (Hsiao, 2020). Thus, non-stationary regressors cause the failure of the Bayes estimator
proposed in section 13.11.1. A solution is conditioning on the initial conditions as proposed by
Wooldridge (2005b) because this does not require Assumption 20. In this case, the Mean Stratum
estimator is consistent in the presence of non-stationary regressors with or without co-integration
(Phillips & Moon, 1999). Alternatively, one can include non-stationary regressors in the model after
first differencing them.
Another issue is binary regressors. Under Assumption 20, binary regressors are modeled with a
linear probability model. In this case, a more suitable assumption could be a dynamic latent model.
Another option could be a Markov chain assumption. These extensions are left for further research.

13.4 Identification

For identification, we can rewrite the model 13.1 as:

𝑦𝑔𝑖𝑡 = 𝜌𝑔𝑦𝑔𝑖𝑡−1 + 𝛼𝑔 + 𝑥′𝑔𝑖𝑡𝛽𝑔 +𝑢𝑔𝑖𝑡 = 𝑧′𝑔𝑖𝑡 𝜃𝑔 +𝑢𝑔𝑖𝑡 , (13.4)

where: 𝑧𝑔𝑖𝑡 = [𝑦𝑔𝑖𝑡−1 1 𝑥′
𝑔𝑖𝑡
]′, 𝜃𝑔 = [𝜌𝑔 𝛼𝑔 𝛽′𝑔 ]′, and 𝑢𝑔𝑖𝑡 = 𝑥′𝑔𝑖𝑡𝜆𝑔𝑖𝑡 + 𝜀𝑔𝑖𝑡 is a compos-

ite error term.
Assumptions 16 and 17 imply the following orthogonality conditions:

𝐸 [𝑢𝑔𝑖𝑡 𝑥𝑔𝑖𝑠 ] = 0, 𝑠 = 1, 2, ..., 𝑇𝑖𝑔 , 𝑖 = 1, 2, ..., 𝑁𝑔 , 𝑔 = 1, 2, ..., 𝑚, (13.5)

𝐸 [𝑢𝑔𝑖𝑡 𝑦𝑔𝑖𝑡−1 ] = 0, 𝑡 = 1, 2, ..., 𝑇𝑖𝑔 , 𝑖 = 1, 2, ..., 𝑁𝑔 , 𝑔 = 1, 2, ..., 𝑚. (13.6)
Consequently, the moment conditions used for the estimation of the stratum-specific parameters are:
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𝐸 [𝑢𝑔𝑖𝑡 𝑧𝑔𝑖𝑡 ] = 0, 𝑡 = 1, 2, ..., 𝑇𝑖𝑔 , 𝑖 = 1, 2, ..., 𝑁𝑔 , 𝑔 = 1, 2, ..., 𝑚. (13.7)

Note that we only use contemporaneous exogeneity for estimation of the stratum-specific parameters
using stratum-specific data which is in line with Hsiao, Li, Liang and Xie (2019). According to
Wooldridge (2010) contemporaneous exogeneity can be exploited when the variance-covariance of
the model is diagonal as it is in each stratum.

Additionally, we also assume that the second-order moment matrix of 𝑧𝑔𝑖𝑡 is of full rank which
means that the regressors vary within stratum.

Assumption 13 :

For OLS: The matrix 𝐸 [𝑧𝑔𝑖𝑡 𝑧′𝑔𝑖𝑡 ] is of full rank.
For GLS: 𝐸 [𝑢𝑔𝑢′𝑔 |𝑍𝑔 ] is positive definite and the matrix 𝐸 [𝑍 ′𝑔𝐸 [𝑢𝑔𝑢′𝑔 ]−1𝑍𝑔 ] =𝑄𝑔 is nonsin-
gular. □

13.5 Estimation

If we re-write model (13.1) using backward substitution, we obtain the following expression of the
dependent regressor:

𝑦𝑔𝑖𝑡 = 𝜌
𝑡
𝑔𝑦𝑔𝑖0 +

𝑡∑︁
𝑙=0
𝜌𝑙𝑔 (𝛼𝑔 + 𝑥′𝑔𝑖𝑡−𝑙 (𝛽𝑔 +𝜆𝑔𝑖𝑡−𝑙 ) ) +

𝑡∑︁
𝑙=0
(𝜌𝑙𝑔 ) 𝜀𝑔𝑖𝑡−𝑙 . (13.8)

Using this result, the first lag of the dependent variable can be rewritten as:

𝑦𝑔𝑖𝑡−1 = 𝜌
𝑡−1
𝑔 𝑦𝑔𝑖0 +

𝑡−1∑︁
𝑙=0
𝜌𝑙𝑔 (𝛼𝑔 + 𝑥′𝑔𝑖𝑡−1−𝑙 (𝛽𝑔 +𝜆𝑔𝑖𝑡−1−𝑙 ) ) +

𝑡−1∑︁
𝑙=0
(𝜌𝑙𝑔 ) 𝜀𝑔𝑖𝑡−1−𝑙 . (13.9)

It is easy to see from (13.9) that first-difference GMM estimation (Arellano & Bond, 1991)
ignoring the subpopulation structure of the data leads to inconsistent estimates of the mean parameters.
This is caused by the presence of the first lag and the stratum-specific effects in the right-hand side of
the model causing endogeneity. Moreover, it is not possible to find an instrument that is uncorrelated
with the composite error term and correlated with the regressors. 2

Similarly, one could argue that the researcher could perform Mean Group estimation per individual
within stratum. Mean Group estimation could be used to estimate stratum-specific parameters only
if the time dimension is bigger than the number of covariates and growing to infinity or using small
sample debiasing techniques (available only if 𝑇 > 3). Thus, when the time dimension is fixed and
the number of individuals per stratum is big it would be beneficial to use another estimation strategy.

In order to fill this gap, we propose a methodology that allows for the estimation of the Mean
Stratum and the stratum-specific coefficients using a two-stage procedure. This estimation technique
is an extension of the Mean Group Estimator presented by Pesaran and Smith (1995). The two-stage
procedure is the following:

2 Ignoring stratum effects is equivalent to performing first-difference GMM estimation on the
model: Δ𝑦𝑖𝑡 = 𝜌Δ𝑦𝑖𝑡−1 +Δ𝑥′𝑖𝑡𝛽 +Δ𝑢𝑖𝑡 with: Δ𝑢𝑖𝑡 = Δ𝑦𝑖𝑡−1𝛼2,𝑔 +Δ𝑥′𝑖𝑡𝛼3,𝑔 +Δ𝑥′𝑖𝑡𝜆𝑔𝑖𝑡 +Δ𝜀𝑖𝑡 ,
𝛼2,𝑔 = 𝜌𝑔 − 𝐸 [𝜌𝑔 ] and 𝛼3,𝑔 = 𝛽𝑔 − 𝐸 [𝛽𝑔 ]. Thus, we would not have available instruments.
Another possibility could be first-difference GMM estimation on the model in first differences
using multiplicative stratum dummies when 𝑇 > 2. But one could run into the problem of weak
instrumental variables (Bun & Windmeijer, 2010).
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First stage: In the first stage, one estimates the stratum-specific coefficients by exploiting the
population moment condition for individual 𝑖 within group 𝑔:

𝐸 [𝑢𝑔𝑖𝑡 𝑧𝑔𝑖𝑡 ] = 0, 𝑡 = 1, 2, ..., 𝑇𝑖𝑔 . (13.10)

The sample moment conditions per stratum 𝑔 are given by:

1
𝑁𝑔
𝑢′𝑔𝑍𝑔 = 0, 𝑔 = 1, 2, ..., 𝑚. (13.11)

where 𝑢𝑔 and 𝑍𝑔 stack 𝑢𝑔𝑖𝑡 and 𝑧′
𝑔𝑖𝑡

respectively.

It is easy to see that using the sample moment conditions (13.11) as estimating equations leads to a
simple ordinary least squares estimator :

𝜃𝑔,𝑂𝐿𝑆 = (𝑍 ′𝑔𝑍𝑔 )−1 (𝑍 ′𝑔𝑦𝑔 ) .

This estimator is not the most efficient since the model presents a non-i.i.d composite error term
𝑢𝑔𝑖𝑡 . A straightforward solution is to set a GLS estimator :

𝜃𝑔,𝐺𝐿𝑆 = (𝑍 ′𝑔Ω−1
𝑔 𝑍𝑔 )−1 (𝑍 ′𝑔Ω−1

𝑔 𝑦𝑔 ) ,

where Ω𝑔 = 𝐸 [𝑢𝑔𝑢′𝑔 |𝑍𝑔 ] = 𝑑𝑖𝑎𝑔 (𝑋𝑔 ) (𝐼𝑁𝑔𝑇 ⊗ Δ𝜆𝑔 )𝑑𝑖𝑎𝑔 (𝑋𝑔 ) + 𝜎2
𝜀𝑔
𝐼𝑁𝑔 if 𝑇𝑔 = 𝑇 , and

𝑑𝑖𝑎𝑔 (𝑋𝑔 ) is a block diagonal matrix with blocks equal to 𝑥′
𝑔𝑖𝑡

. If 𝑇𝑔 ≠ 𝑇 , one just needs to set up
the adequate design matrix to allow unbalancedness in the time dimension.
Since Ω𝑔 is unknown, we propose an estimation procedure for Ω𝑔 in Subsection 13.5.1 which leads
to FGLS estimator of 𝜃𝑔.

The assumptions of unobserved additive and multiplicative stratum fixed effects allow us to
estimate the specific parameters by pooling observations within each stratum (Assumptions 13,
14, 15). Additionally, OLS or FGLS estimation is consistent under the assumptions presented
in Section 13.3 because the model is dynamic complete conditional on stratum-specific effects.
But the FGLS estimator is non-robust to violations of the assumptions 15 and 18 because the
variance-covariance matrix is not diagonal if 𝜆𝑔𝑖𝑡 and 𝜖𝑔𝑖𝑡 are heteroskedastic, serially correlated
and/or present cross-sectional correlation. In this case, it is better to use the OLS estimator with a
fully robust variance estimator as explained in Section 13.7.

In the case of endogenous regressors, it is possible to replace the OLS or FGLS first-stage
estimation with GMM estimation using instrumental variables. In this case, identification is
done using the population moment conditions 𝐸 [𝑢𝑔𝑖𝑡 𝑝𝑔𝑖𝑡 ] = 0 with 𝑝𝑔𝑖𝑡 a vector of appropriate
instruments. Moreover, for identification it is also necessary to assume that the number of instrumental
variables is equal or greater than the endogenous regressors.

Second stage: The estimator of 𝐸 [ 𝜃𝑔 ] is equal to the weighted average of the stratum estimated
parameters. This is called the Mean Stratum estimator, and it is given by:

ˆ̄𝜃𝑀𝑆 =

𝑚∑︁
𝑔

�̂�𝑔 𝜃𝑔 ,

where �̂�𝑔 is an appropriate estimator of the importance of the stratum in the population, ˆ̄𝜃𝑀𝑆 =

[ ˆ̄𝜌 ˆ̄𝛼𝑔 ˆ̄𝛽 ]′, 𝜃𝑔 = [�̂�𝑔 �̂�𝑔 𝛽𝑔 ]′.
Under stratified sampling, we propose a weighted average of the stratum-specific coefficients where
the weights represent the importance of each stratum in the population.

The difference between the Mean Stratum (MS) estimators and the Mean Group (MG) estimator
proposed by Pesaran and Smith (1995) is that the MG is obtained by averaging the estimators for
each individual in the panel. In contrast, the MS averages stratum pooled estimators.
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13.5.1 Variance-Covariance Matrix Estimation

In order to make GLS feasible , we propose a ridge regression estimation method of the variance-
covariance components of △𝜆𝑔 and 𝜎2

𝜀𝑔
.

First, we derive the linear decomposition of the variance-covariance matrix for each stratum:

Ω𝑔 =

𝐾∑︁
𝑘=1

𝐾∑︁
𝑘′=1

𝜎𝜆𝑔 ,𝑘𝑘′𝐻𝑔,𝑘𝑘′ ,𝜆𝑔 + 𝜎2
𝜖𝑔
𝐼𝑛𝑔 . (13.12)

with the design matrices equal to:

𝐻𝑔,𝑘𝑘′ ,𝜆𝑔 = �̃�𝑔,𝑘 �̃�
′
𝑔,𝑘′ ,

where �̃�𝑔,𝑘 = 𝑑𝑖𝑎𝑔 (𝑥′𝑔𝑖𝑡,𝑘 ) .
Now, we obtain a first stage estimator of the residuals for each stratum using OLS estimation
𝑟𝑔𝑂𝐿𝑆 = (𝐼𝑛𝑔 − 𝑍𝑔 (𝑍 ′𝑔𝑍𝑔 )−1𝑍 ′𝑔 )𝑦𝑔 =𝑀𝑔𝑤𝑔 where 𝑍𝑔 ∈ R𝑛𝑔×(𝐾+1) is the matrix stacking up all
the observations for 𝑧𝑔𝑖𝑡 = [𝑦𝑔𝑖𝑡−1 1 𝑥′

𝑔𝑖𝑡
]′. Then, it follows that:

𝐸 [𝑟𝑔𝑂𝐿𝑆𝑟 ′𝑔𝑂𝐿𝑆 |𝑍𝑔 ] =𝑀𝑔Ω𝑔𝑀𝑔 . (13.13)

Replacing expression (13.12) into equation (13.13) and applying the vec operator, we obtain:

𝑣𝑒𝑐 (𝐸 [𝑟𝑔𝑂𝐿𝑆𝑟 ′𝑔𝑂𝐿𝑆 |𝑍𝑔 ] ) =
𝐾∑︁
𝑘=1

𝐾∑︁
𝑘′=1

𝜎𝜆𝑔 ,𝑘𝑘′𝑣𝑒𝑐 (𝑀𝑔𝐻𝑔,𝑘𝑘′ ,𝜆𝑔𝑀𝑔 ) + 𝜎2
𝜖𝑔
𝑣𝑒𝑐 (𝑀𝑔 ) . (13.14)

Now, we can rewrite the previous expression in matrix form:

𝑣𝑒𝑐 (𝐸 [𝑟𝑔𝑂𝐿𝑆𝑟 ′𝑔𝑂𝐿𝑆 |𝑍𝑔 ] ) = 𝐵𝜆𝑔 𝑣𝑒𝑐 (△𝜆𝑔 ) + 𝜎
2
𝜖𝑔
𝑣𝑒𝑐 (𝑀𝑔 ) . (13.15)

In order to avoid double estimation of the covariances in the variance-covariance matrix, we use
the identity 𝑣𝑒𝑐 (𝐴) = 𝐷𝑣𝑒𝑐ℎ (𝐴) where 𝐴 is a square symmetric matrix and we re-express the
previous equation as:

𝑣𝑒𝑐 (𝐸 [𝑟𝑔𝑂𝐿𝑆𝑟 ′𝑔𝑂𝐿𝑆 |𝑍𝑔 ] ) = 𝐵𝜆𝑔𝐷𝑣𝑒𝑐ℎ (△𝜆𝑔 ) + 𝜎
2
𝜖𝑔
𝑣𝑒𝑐 (𝑀𝑔 ) . (13.16)

The expectation of the outer product of the residuals is replaced by the point estimator of the OLS
residuals for each stratum and we add the error 𝜈𝑔 that captures the sampling error.

𝑣𝑒𝑐 (𝑟𝑔𝑂𝐿𝑆𝑟 ′𝑔𝑂𝐿𝑆 ) = 𝐵𝜆𝑔𝐷𝑣𝑒𝑐ℎ (△𝜆𝑔 ) + 𝜎
2
𝜖𝑔
𝑣𝑒𝑐 (𝑀𝑔 ) + 𝜈𝑔 . (13.17)

Finally, notice that (13.17) is a simple linear model that can be rewritten as:

𝑅𝑔 =𝐶𝑔𝜂𝑔 + 𝜈𝑔 ,

where:
𝑅𝑔 = 𝑣𝑒𝑐 (𝑟𝑔𝑂𝐿𝑆𝑟 ′𝑔𝑂𝐿𝑆 ) ,

𝐶𝑔 = [ 𝐵𝜆𝑔𝐷 𝑣𝑒𝑐 (𝑀𝑔 ) ],
𝐵𝜆𝑔 = [𝑣𝑒𝑐 (𝑀𝑔𝐻𝑔,11,𝜆𝑔𝑀𝑔 ) 𝑣𝑒𝑐 (𝑀𝑔𝐻𝑔,12,𝜆𝑔𝑀𝑔 ) ... 𝑣𝑒𝑐 (𝑀𝑔𝐻𝑔,𝐾𝐾,𝜆𝑔𝑀𝑔 ) ],

𝜂𝑔 = [𝑣𝑒𝑐ℎ (△𝜆𝑔 ) ′ 𝜎2
𝜖𝑔
]′.

Now, the estimators of the elements of variance-covariance are obtained by minimizing the following
penalized loss function:
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𝐿 (𝜂𝑔 ) = (𝑅𝑔 −𝐶𝑔𝜂𝑔 ) ′ (𝑅𝑔 −𝐶𝑔𝜂𝑔 ) + 𝜏 ∥ 𝜂𝑔 ∥22 ,
where 𝜏 is the penalisation parameter.

Notice, that for identification of 𝜂𝑔 we implicitly assume:

Assumption 14 : 𝐸 [𝜈𝑔𝐶𝑔 ] = 0. □

Assumption 22 states that the error term 𝜈𝑔 is orthogonal to the covariates included in 𝐶𝑔.
The penalization term using the 𝑙2-norm allows us to tackle the problem of high multicollinearity in
the matrix 𝐶′𝑔𝐶𝑔. We follow Hoerl, Kannard and Baldwin (1975), Cule and De Iorio (2012) by
estimating 𝜏 from the data as follows:

�̂� ≥ �̂�2

𝛽′
𝑂𝐿𝑆

𝛽𝑂𝐿𝑆
,

with �̂�2 =
(𝑦−𝑋�̂�𝑂𝐿𝑆 ) ′ (𝑦−𝑋�̂�𝑂𝐿𝑆 )

𝑁𝑇−𝐾−1 .
Following Hoerl and Kennard (1970), we can prove that the MSE of 𝛽𝐹𝐺𝐿𝑆 is monotonically

decreasing on 𝜏. Thus, we can choose a 𝜏 > 0 that minimizes MSE. The choice �̂� is heuristic, and
we acknowledge that it might be possible to derive an optimal estimator of 𝜏 (this is left for further
research).

Remark 13.3 We could provide a Bayesian interpretation to the ridge estimation of the variance-
covariance matrix under the assumption that the error term in the linearized variance-covariance
matrix (13.17) follows a Gaussian distribution, and the parameters in the same equation also follow
a Gaussian distribution. This is different from assuming that the random components in the baseline
model (13.1) follow a normal distribution along with the coefficients. If we would like to use a
Bayesian framework to estimate the variance-covariance matrix using the baseline model (13.1),
we would need to assume an appropriate prior distribution for the variance-covariance matrix of
the random components of the baseline model (13.1). For example, we could assume that the
prior distribution of the inverse of the variance-covariance matrix is an inverse-Whisart. Under this
assumption, one needs to use Markov Chain Monte Carlo simulation methods sample from the joint
posterior distribution.

A Note on Large and Huge Sample Size
When the sample size is big, there are problems due to memory requirements for storing vectorized
matrices. In order to tackle this issue and reduce the computing requirements by half, we modify the
method proposed above using the vech operator instead of the vec operator. It is possible to do this
replacement since we are dealing with square symmetric matrices.

𝑅𝑔 = 𝑣𝑒𝑐ℎ (𝑟𝑔𝑟 ′𝑔 ) ,

𝐶𝑔 = [𝐵𝜆,𝑔 𝑣𝑒𝑐ℎ(𝑀𝑔 ) ],

𝐵𝜆𝑔 = [𝑣𝑒𝑐ℎ(𝑀𝑔𝐻𝑔,11,𝜆𝑔𝑀𝑔 ) 𝑣𝑒𝑐ℎ(𝑀𝑔𝐻𝑔,12,𝜆𝑔𝑀𝑔 ) . . .
. . . 𝑣𝑒𝑐ℎ(𝑀𝑔𝐻𝑔,𝐾𝐾,𝜆𝑔𝑀𝑔 ) ].

This modification improves the computational performance but has limitations. For big samples,
one needs computational algebra methods for matrix inversion and multiplication.
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13.6 Statistical Properties

In this section, we present the statistical properties of the stratum-specific estimators, the Mean
Stratum estimator and the variance-covariance estimators, using sequential asymptotic theory with
the number of individuals per stratum (𝑁𝑔) growing to infinity and the time dimension (𝑇𝑖𝑔 ) fixed.
This implies that the total number of observations per stratum (𝑛𝑔 =

∑𝑁𝑔
𝑖𝑔
𝑇𝑖𝑔 ) grows to infinity.

As mentioned in Section 13.2, we use the indexes 𝑖𝑔 to refer to individual 𝑖 belonging to stratum
𝑔 and 𝑡𝑖𝑔 for the time observation 𝑡 of individual 𝑖𝑔.

13.6.1 Stratum Specific GLS Estimator

Theorem 13.1 If i) Assumptions 9 to 23 and 21 hold, ii) {𝑦𝑖𝑔 , 𝑥𝑖𝑔 }
𝑁𝑔

𝑖𝑔=1 is a sequence of random
vectors containing 𝑇𝑖𝑔 observations ∀𝑔, iii) 𝑁𝑔→∞ and 𝑇𝑖𝑔 fixed (𝑛𝑔→∞), then

a) 𝜃𝑔,𝐺𝐿𝑆
𝑝
→ 𝜃𝑔 , b) √𝑛𝑔 (𝜃𝑔 − 𝜃𝑔 )

𝑑→ 𝑁 (0,𝑄𝑔 ) .

where 𝑄𝑔 = 𝑝𝑙𝑖𝑚
𝑛𝑔→∞(𝑛−1

𝑔 𝑍
′
𝑔Ω
−1
𝑔 𝑍𝑔 )−1.

Proof: See Appendix.

13.6.2 Variance-Covariance Matrix Estimators

Theorem 13.2 If i) Assumptions 9 to 23 and 21 hold, ii) 𝑝𝑙𝑖𝑚
𝑛𝑔→∞

∑𝑁𝑔
𝑖𝑔

∑𝑇𝑖𝑔
𝑡𝑖𝑔
𝑛−1
𝑔 𝐶𝑖𝑔𝑡𝑖𝑔𝐶

′
𝑖𝑔𝑡𝑖𝑔

= 𝑀𝑔

with | |𝑀𝑔 | |𝐹 <∞, iii) 𝜈𝑖𝑔𝑡𝑖𝑔 ∼ 𝑖𝑖𝑑 (0, 𝜎2
𝜈 ) , iv) 𝑙𝑖𝑚

𝑛𝑔→∞
∑𝑁𝑔
𝑖𝑔

∑𝑇𝑖𝑔
𝑡𝑖𝑔
𝑛−1
𝑔 𝐶𝑖𝑔𝑡𝑖𝑔 𝑅𝑖𝑔𝑡𝑖𝑔 = 0, v) 𝑁𝑔→∞

and 𝑇𝑖𝑔 fixed (𝑛𝑔→∞) then

a) Ω̂𝑔
𝑝
→Ω𝑔 , b) √𝑛𝑔 (Ω̂𝑔 −Ω𝑔 )

𝑑→ 𝑁 (0, 𝑣𝑎𝑟 (Ω̂𝑔 ) ) .

Proof: See Appendix.

13.6.3 Mean Stratum GLS Estimator

Corollary If i) Assumptions of theorems 13.1 and 13.2 hold ∀𝑔, then

√
𝑁 ( ˆ̄𝜃 −𝐸 [ 𝜃𝑔 ] )

𝑑→ 𝑁 (0,𝑄) ,
where 𝑄 =

∑
𝑔 𝜋

2
𝑔𝑄𝑔 . □

13.7 Misspecification of the Variance-Covariance Matrix

As mentioned in Section 13.5, the FGLS estimator in step 1 is non-robust to violations of the
assumptions 15 and 18 that state that 𝜆𝑔𝑖𝑡 and 𝜖𝑔𝑖𝑡 are not serially correlated and homoskedastic
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within stratum. The reason is that under contemporaneous exogeneity, the FGLS is consistent only if
the variance-covariance matrix of the model is diagonal. When the variance-covariance matrix of
the model is not diagonal, one requires the stronger condition of strict exogeneity of all regressors
included in the model. But in model (13.1), the strict exogeneity of all right-hand side regressors
does not hold because of the presence of the lag of the dependent variable (Wooldridge, 2010). Then
if 𝜆𝑔𝑖𝑡 and 𝜖𝑔𝑖𝑡 are serially correlated or/and heteroskedastic within stratum, it is better to estimate
the stratum-specific parameters using OLS with a fully robust variance estimator.

The correlation of 𝜖𝑔𝑖𝑡 and/or 𝜆𝑔𝑖𝑡 within stratum could be caused due to clustering within
stratum. For instance, students within schools belong to the same village. In this situation, we can
use a one-way cluster fully robust variance estimator per stratum. If we index by 𝑗𝑔 the cluster in
stratum 𝑔 and we assume that there is no cross-correlation across clusters, we can use the following
within stratum one-way fully-robust variance estimator:�𝑉𝑎𝑟 (𝛽𝑔 ) = (∑︁

𝑗𝑔

𝑋′𝑗𝑔 Ω̂
−1
𝑗𝑔
𝑋 𝑗𝑔 )−1 (

∑︁
𝑗𝑔

𝑋′𝑗𝑔 Ω̂
−1
𝑗𝑔
�̂� 𝑗𝑔 �̂�

′
𝑗𝑔
Ω̂−1
𝑗𝑔
𝑋 𝑗𝑔 ) (

∑︁
𝑗𝑔

𝑋′𝑗𝑔 Ω̂
−1
𝑗𝑔
𝑋 𝑗𝑔 )−1.

The estimator is fully-robust for heteroskedasticity and serial-correlation within cluster 𝑗𝑔 using
𝑚−1
𝑗𝑔

∑
𝑗𝑔
�̂� 𝑗𝑔 �̂�

′
𝑗𝑔

as an estimator of 𝐸 [𝑢 𝑗𝑔𝑢′𝑗𝑔 ]. If the number of clusters within stratum (𝑚 𝑗𝑔 )
grows and the number of observations within the clusters per stratum is fixed, the Wald t-statistic is
asymptotically normal (Wooldridge, 2003, Cameron & Miller, 2015). If the number of clusters within
stratum is fixed, the cluster within stratum robust variance-covariance estimator is downward-biased
(Cameron & Miller, 2015, Wooldridge, 2003) and the Wald t-statistic is no longer asymptotically
normal distributed (Cameron & Miller, 2015, Wooldridge, 2003). In this situation, the wild-cluster
within stratum bootstrap-t method proposed by Cameron, Gelbach and Miller (2008) could be used.

Another issue is that the one-way cluster within stratum fully robust variance estimator is valid
under the assumption that observations are not correlated across clusters within stratum. A solution
is using a two-way cluster within stratum fully-robust variance estimator, but this estimator requires
that the number of clusters within stratum and the number of time observations per individual within
cluster per stratum grow to infinity. If this is not the case, we can use the two-way wild-cluster within
stratum bootstrap-t method.

13.8 Relationship of the Mean Stratum Estimator with other
Estimators

Here we give some comparison results omitting the proofs for the sake of space.

• The FGLS estimator of two-level panel data containing interactions of stratum dummies with
one-hot encoding (𝑠 (𝑔)

𝑖
) with the regressors in the model is not equivalent to the MS-FGLS

estimator.
• The first-difference GMM (Arellano & Bond, 1991) estimator of model (13.1) is an inconsistent

estimator of 𝐸 [𝜌𝑔 ] and 𝐸 [𝛽𝑔𝑖𝑡 ] and it is equal to a weighted average of the stratum-specific
parameters.

• The Mean Group estimator is infeasible when 𝑇 is 3. When 𝑇 is big, the Mean-Stratum estimator
and the Mean Group estimator are consistent estimators of the average partial effects of model
13.1 under stratified sampling.
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13.9 Relationship between the Baseline Model and Two-level Panel
Data

Model (13.1) is related to a heterogeneous dynamic model for two-dimensional panel data under
special conditions. To see this, let us consider the following model:

𝑦𝑖𝑡 = 𝛼𝑖 +𝜌𝑖𝑦𝑖𝑡−1 + 𝑥′𝑖𝑡𝛽𝑖𝑡 + 𝜀𝑖𝑡 , 𝑖 = 1, 2, ..., 𝑁 , 𝑡 = 1, 2, ..., 𝑇𝑖 . (13.18)

The above specification needs further structuring of the 𝛽𝑖𝑡s before proceeding to the estimation
stage. Below we show that by making the following assumption on the 𝛽𝑖𝑡 parameters, along with
some additional assumptions on 𝛼𝑖 and 𝜌𝑖 , we get to our baseline model (13.1) from the above
two-level dynamic model.

Assumption 15 : The slope coefficients are conditional mean dependent on stratum belonging

𝐸 [𝛽𝑖𝑡 |𝑠 (𝑔)𝑖 , 𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑇 ] = 𝛽𝑔 .

This assumption is equivalent to Assumption 15.

Assumption 16 : The individual additive unobserved effect is homogeneous within stratum

𝛼𝑖 = 𝛼𝑔 ∀𝑖 ∈ 𝑔.

Under this assumption, the correlation of the additive unobserved individual heterogeneity with the
regressors is equal within strata. For instance, the innate ability of workers is equal within city. This
is feasible if workers self-select into a city based on their ability.

Assumption 17 : The individual persistence parameter is homogeneous within stratum

𝜌𝑖 = 𝜌𝑔 ∀𝑖 ∈ 𝑔.

This means that the persistence of the dynamic process is equal within strata. An example of
homogeneous persistence is equal consumption persistence within village. The homogeneity of
consumption persistence within village could happen if village characteristics drive consumption
habits.

The use of three-level or multi-dimensional panel data models surged due to the increasing
availability of big data (Mátyás, 2017, Sarafidis & Wansbeek, 2021). They are appealing because
they can 1) control for unobserved heterogeneity that is not only individual and/or time specific
(Sarafidis & Wansbeek, 2021), 2) accommodate the classification of each individual into strata or
groups (Sarafidis & Wansbeek, 2021), 3) deal with incidental parameter bias, 4) develop appropriate
inference that take into account sampling uncertainty.

13.10 Specification Tests

In order to test the assumption of strata-specific heterogeneity, we propose two specification tests
that are extensions of the Hausman test (Hausman & Taylor, 1981).

First, testing the null hypothesis of stratum additive and multiplicative heterogeneity versus
stratum-individual additive and multiplicative heterogeneity is not feasible when the time dimension
is as short as 3.

Second, testing the null hypothesis of complete homogeneity versus stratum additive and
multiplicative heterogeneity is possible. In this case, we propose to compare the Mean Stratum
estimator with the Pooled OLS estimator. More specifically, the null and alternative hypothesis are
the following:
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𝐻𝑜 : 𝛽𝑀𝐶 consistent and inefficient, 𝛽𝑃𝑂𝐿𝑆 consistent and efficient.
𝐻1 : 𝛽𝑃𝑂𝐿𝑆 inconsistent and 𝛽𝑀𝐶 consistent and most efficient.
The statistic is given by:

𝑄 = (𝛽𝑀𝐶 − 𝛽𝑃𝑂𝐿𝑆 ) ′𝑉𝑎𝑟 (𝛽𝑀𝐶 − 𝛽𝑃𝑂𝐿𝑆 )−1 (𝛽𝑀𝐶 − 𝛽𝑃𝑂𝐿𝑆 ) ,
follows a 𝜒2

𝑑 𝑓 =𝐾
.

In addition, testing the null hypothesis of stratum additive and multiplicative effects versus
stratum-individual additive and stratum multiplicative heterogeneity is also feasible. In this case, we
propose to use a Hausman-type test that compares Mean Stratum estimator s vs. a Mean Stratum
First-difference GMM estimator or the Mean Stratum estimator using a Mundlak approach .

The study of the statistical properties of these tests is left for further research.

13.11 Relaxing the Assumption of Stratum Additive Specific
Effects

13.11.1 Initial Conditions Generated from a Stationary Distribution

In this subsection, we relax the assumption of additive stratum specific effects and allow for the
presence of additive stratum-individual correlated random effects. Therefore, Assumption 13 is
replaced by the following one:

Assumption 18 : Correlated stratum-individual additive specific random effects 𝛼𝑔𝑖 . □

The inclusion of stratum-individual additive effects allows to control for endogeneity of the
regressors that might not be captured by the stratum additive fixed effects. In particular, we consider
the following extension of model (13.1):

𝑦𝑔𝑖𝑡 = 𝛼𝑔𝑖 +𝜌𝑔𝑦𝑔𝑖𝑡−1 + 𝑥′𝑔𝑖𝑡𝛽𝑔𝑖𝑡 + 𝜀𝑔𝑖𝑡 , 𝑡 = 1, ..., 𝑇𝑖𝑔 , (13.19)
where 𝛼𝑔𝑖 is a stratum-individual specific correlated random effect.

The estimation of model (13.19) with short time dimension has two main problems: i) the
incidental parameter bias caused by the presence of the stratum-individual specific effects and ii) the
impact of unobserved initial values (𝑦𝑔𝑖0) on the estimation.

In order to deal with the incidental parameter bias, we use a mean conditional approach instead
of a linear difference approach. We choose the mean conditional approach because it is appropriate
for heterogenous dynamic panel data models. As explained by Hsiao (2020), in this approach it
is needed to use a linear approximation of 𝐸 (𝛼𝑔𝑖 |𝑥𝑖𝑡 ) to model the correlation of the regressors
with the stratum-individual unobserved effects (This was a suggestion of Mundlak (1961) and
Chamberlain (1979)). Following this suggestion, we re-express 𝛼𝑔𝑖 as a linear projection on the
individual means of the regressors :

𝛼𝑔𝑖 = �̄�
′
𝑔𝑖.𝜑𝑔 + 𝜐𝑔𝑖 , (13.20)

where �̄�𝑔𝑖. = 𝑇−1 ∑𝑇
𝑡=1 𝑥𝑔𝑖𝑡 , 𝜐𝑔𝑖 is an orthogonal error term such that 𝐸 (𝜐𝑔𝑖 | �̄�𝑔𝑖. ) = 0, and 𝜑𝑔 is

a vector of unobserved parameters.
This linear projection can be replaced in model (13.19) obtaining:

𝑦𝑔𝑖𝑡 = �̄�
′
𝑔𝑖.𝜑𝑔 +𝜌𝑔𝑦𝑔𝑖𝑡−1 + 𝑥′𝑔𝑖𝑡𝛽𝑔𝑖𝑡 + 𝜐𝑔𝑖 + 𝜀𝑔𝑖𝑡 , 𝑡 = 1, ..., 𝑇𝑖𝑔 . (13.21)



382 Avila Márquez and Krishnakumar

Now, we are only left with the problem of unobserved initial conditions dependency. Modifying
Assumption 19 to allow for the presence of stratum-individual additive effects yields:

𝑦𝑔𝑖0 = 𝜌
ℎ𝑖𝑔
𝑔 𝑦𝑔𝑖,−ℎ𝑖𝑔 + 𝛼𝑔𝑖

1− 𝜌ℎ𝑖𝑔𝑔
1− 𝜌𝑔

+
ℎ𝑔𝑖∑︁
𝑙=0
𝜌𝑙𝑔𝑥

′
𝑔𝑖−𝑙𝛽𝑔𝑖−𝑙 +

ℎ𝑖𝑔∑︁
𝑙=0
𝜌𝑙𝑔 𝜀𝑔𝑖−𝑙 . (13.22)

If we assume that ℎ𝑔𝑖 →∞, we can re-write the initial conditions as follows:

𝑦𝑔𝑖0 =
𝛼𝑔𝑖

1− 𝜌𝑔
+
∞∑︁
𝑙=0
𝜌𝑙𝑔𝑥

′
𝑔𝑖−𝑙𝛽𝑔𝑖−𝑙 +

∞∑︁
𝑙=0
𝜌𝑙𝑔 𝜀𝑔𝑖−𝑙 . (13.23)

Following Hsiao (2020), we re-call the terms of equation (13.23) such that the equation of the initial
values is:

𝑦𝑔𝑖0 =
𝛼𝑔𝑖

1− 𝜌𝑔
+ 𝜓𝑔𝑖0 + 𝜀0𝑖 . (13.24)

Replacing the linear projection of the individual effects on the individual mean of the regressors to
obtain:

𝑦𝑔𝑖0 =
�̄�′
𝑔𝑖.
𝜑𝑔

1− 𝜌𝑔
+ 𝜓𝑔𝑖0 +

𝜐𝑔𝑖

1− 𝜌𝑔
+ 𝜀0𝑖 . (13.25)

In this equation, it is clear that we still have the problem of incidental parameters due to the presence of
𝜓𝑔𝑖0. In order to deal with this issue, we follow Hsiao (2020) and assume that 𝐸 (𝜓𝑔𝑖0 |𝑥𝑔𝑖 ) = �̄�′𝑔𝑖𝜙∗𝑔 .
This is possible under Assumptions 19 and 20.

The combination of (13.21), (13.25), and 𝐸 (𝜓𝑔𝑖0 |𝑥𝑔𝑖 ) = �̄�′𝑔𝑖𝜙∗𝑔 leads to the system of equations:

𝑦𝑔𝑖𝑡 = �̄�
′
𝑔𝑖.𝜑𝑔 +𝜌𝑔𝑦𝑔𝑖𝑡−1 + 𝑥′𝑔𝑖𝑡𝛽𝑔𝑖𝑡 + 𝜀∗𝑔𝑖𝑡 , 𝑡 = 1, ..., 𝑇𝑖𝑔 ,

𝑦𝑔𝑖0 =
�̄�′
𝑔𝑖.
𝜑𝑔

1− 𝜌𝑔
+ �̄�′𝑔𝑖𝜙∗𝑔 +

𝜐𝑔𝑖

1− 𝜌𝑔
+ 𝜀0𝑖 . (13.26)

where 𝜀∗
𝑔𝑖𝑡

= 𝜀𝑔𝑖𝑡 + 𝜐𝑔𝑖 .
For estimation of the system (13.26), we propose two different methodologies. The first one is a

Bayesian hierarchical estimator with a prior for the initial conditions. The second is an estimation
of the equation of the dependent variable conditional on the initial conditions. These methods are
described in the following subsections:

Bayesian hierarchical estimation
In order to set up the Bayesian hierarchical estimator, we define the likelihood of the observed

data by:

𝐿𝜁 |𝑦,𝑦−1 ,𝑋 =

𝑚∏
𝑔

𝑁𝑔∏
𝑖

𝐿 (𝜁𝑔 |𝑦𝑔𝑖 , 𝑋𝑔𝑖 ) , (13.27)

where 𝜁𝑔 = [𝜌𝑔 𝛽𝑔 𝜙𝑔 𝜎2
𝜀∗ ]′, 𝜁 = [𝜁1 𝜁2 ... 𝜁𝑚 ]′, 𝐿 (𝜁𝑔 |𝑦𝑔𝑖 , 𝑋𝑔𝑖 ) = 𝑓 (𝑦𝑔𝑖 |𝑋𝑔𝑖 ; 𝜁𝑔 )

with 𝑓 (𝑦𝑔𝑖 |𝑋𝑔𝑖 ; 𝜁𝑔 ) representing the multivariate normal distribution with variance equal to
𝜎2
𝜀 𝐼𝑇 + 𝜎2

𝜐 𝜄𝑇 𝜄
′
𝑇

and with expectation equal to 𝜇𝑦,𝑔𝑖 = 𝜌𝑔𝑦𝑔𝑖−1 +𝑑𝑖𝑎𝑔 (𝑥𝑔𝑖 )𝛽𝑔𝑖 + 𝜄𝑇𝑖𝑔 �̄�′𝑔𝑖.𝜑𝑔.
The prior distributions for the fixed parameters are:

(𝛽𝑔 |𝛽) ∼ 𝑁 (𝛽, 𝐻Δ𝛼,2𝐻
′
Δ𝛼,2
); (𝜌𝑔 |𝜌) ∼ 𝑁 (𝜌, 𝜎2

𝜌 ) (𝜑𝑔 |𝜑) ∼ 𝑁 (𝜑, 𝐹𝐹′ ) .

While the prior for the random effects is:

𝜆𝑔𝑖𝑡 ∼ 𝑁 (0, 𝐻Δ𝜆𝐻
′
Δ𝜆
); 𝐻Δ𝜆 ∼ 𝐿𝐾𝐽 (2) .

The prior distribution of the variance 𝜎2
𝜀 is half-normal with a location parameter equal to 0.5

and a scale parameter equal to 0.2. The prior distribution of the lower triangular matrix 𝐻Δ𝜆 is
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Lewandowski-Kurowicka-Joe (LKJ) with parameter equal to 2. The value of the parameter of the
LKJ prior means that the matrix has a low correlation.
Notice that the prior set-up imposes a non-centered parametrization on 𝛽𝑔𝑖𝑡 such that:

𝛽𝑔𝑖𝑡 = 𝛽𝑔 +𝐻Δ𝜆 𝑧𝑔𝑖𝑡 , (13.28)

where 𝑧𝑔𝑖𝑡 is a standard multivariate normal variable and 𝐻Δ𝜆 is the Cholesky factor of the
variance-covariance matrix of 𝜆𝑔𝑖𝑡 .
This non-centered parameterization improves the convergence of the Hamiltonian Monte Carlo
(HMC) algorithm because it reduces the correlation of the parameters (Frühwirth-Schnatter &
Tüchler, 2008, Betancourt & Girolami, 2015). This reduction of the correlation permits the
exploration of the whole parameter space improving the mixing of the chains.

Remark 13.4 According to Rossi and Allenby (2009) and Rendon (2013), imposing prior distribu-
tions only for the parameters of the model leads to a fixed effects specification. Thus, there is not
any prior specification for the hyper-parameters of the priors. Therefore, a Bayesian model for a
fixed effects specification has only first-stage priors while a Bayesian model for a random effects
specification includes second-stage or hyper-priors.

Under the simplifying assumption that 𝑦𝑔𝑖0 is known, we could just set up a naive Bayesian
estimator. But the assumption that 𝑦𝑔𝑖0 is fixed is not plausible. Its failure leads to inconsistent
estimates. This is why, we relax it and set up the following prior distribution for the initial conditions:

𝑓𝑦𝑔𝑖0 ∼ 𝑁 (𝜇0,𝑔𝑖 , 𝜎
2
𝑦0 ) , (13.29)

where 𝜇0,𝑔𝑖 =
𝛼𝑔𝑖

1−𝜌𝑔 + �̄�
′
𝑔𝑖
𝜙∗𝑔, and the prior distribution of the variance 𝜎2

𝑦0 is half-normal with
location parameter equal to 0.5 and scale parameter equal to 0.2.

Remark 13.5 Assuming that 𝑦𝑔𝑖0 comes from the stationary distribution means that the initialization
of the process happened a long time ago (ℎ𝑖𝑔 →∞). This implies that the parameter 𝑏𝑔 is equal to 0.

Conditioning on the initial value
Another option for consistent estimation of the parameters of interest is the estimation of model

13.19 after conditioning on the initial value. For this purpose, we follow Hsiao (2020) and condition
the first equation of the system 13.26 on the initial value 𝑦𝑔𝑖0 leading to:

𝑦𝑔𝑖𝑡 = �̄�
′
𝑔𝑖.𝜑

∗
𝑔 +𝜌𝑔𝑦𝑔𝑖𝑡−1 + 𝑥′𝑔𝑖𝑡𝛽𝑔𝑖𝑡 + 𝑦𝑔𝑖0�̃�𝑔 + 𝜀∗𝑔𝑖𝑡 , 𝑡 = 1, ..., 𝑇𝑖𝑔 (13.30)

Estimation of this model can be done using the Mean Stratum estimator with FGLS in the first stage.

When the initial conditions are not generated from a stationary distribution, one can also propose
appropriate Bayesian hierarchical estimators or condition on the initial value. We leave this out for
the sake of space.

13.12 Cross-sectional Dependence

13.12.1 A Model Including Common Factors

The models (13.1) and (13.19) do not consider cross-sectional correlation even though cross-sectional
dependence is a common problem in panel data.
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Cross-sectional dependence is caused by spatial dependence or common shocks ( Bai & Li,
2021) and it can be modeled either using spatial or factor models or a combination of both.

In this section, we extend model (13.1) in order to allow for cross-sectional dependence using a
factor model. For this purpose, we include a stratum-time-specific fixed effect since it represents a
stratum common factor. This is possible because the stratum-time specific effect 𝜏𝑔𝑡 can be rewritten
as

∑𝑚
𝑖 𝑠
(𝑔)
𝑖
𝑓𝑔𝑡 with 𝑠 (𝑔)

𝑖
equal to 1 and 0 (Bonhomme & Manresa, 2015, Kapetanios, Mastromarco,

Serlenga & Shin, 2017, Bai & Li, 2021). Additionally, we include time-specific effects that capture
common global factors across strata.

The extended model includes stratum-time additive effects as well as time-fixed effects as
common factors for individual 𝑖 in stratum 𝑔 as follows:

𝑦𝑔𝑖𝑡 = 𝛼𝑔 + 𝛾𝑡 + 𝜏𝑔𝑡 +𝜌𝑔𝑦𝑔𝑖𝑡−1 + 𝑥′𝑔𝑖𝑡𝛽𝑔𝑖𝑡 + 𝜀𝑔𝑖𝑡 , 𝑡 = 1, ..., 𝑇𝑖𝑔 . (13.31)

In this setting, Assumption 20 is relaxed to allow for regressors that present common factors.

Assumption 19 : 𝑥𝑔𝑖𝑡 are generated from:

𝑥𝑔𝑖𝑡 = 𝜇𝑔 + 𝛾𝑡 + 𝜏𝑔𝑡 +𝜌𝑥 𝑥𝑔𝑖𝑡−𝑙 +𝜔𝑔𝑖𝑡 , |𝜌𝑥 | < 1.

13.12.2 Identification and Estimation

The Mean Stratum estimator presented in Section 13.5 consistently estimates the parameters of
interest of model 13.31, which includes time and stratum-time dummies, by exploiting the different
moment conditions derived in this subsection.
We obtain moment conditions using the deviations with respect to stratum-time specific averages:

𝑦𝑔𝑖𝑡 − 𝑦𝑔.𝑡 = 𝜌𝑔 (𝑦𝑔𝑖𝑡−1 − 𝑦𝑔.𝑡−1 ) + (𝑥𝑔𝑖𝑡 − 𝑥𝑔.𝑡 ) ′𝛽𝑔
+ 𝑥′𝑔𝑖𝑡𝜆𝑔𝑖𝑡 − 𝑥′𝑔.𝑡𝜆𝑔.𝑡 + 𝜀𝑔𝑖𝑡 − 𝜀𝑔.𝑡 .

(13.32)

The stratum-time specific averages are equal to:∑
𝑖 𝑦𝑔𝑖𝑡

𝑁𝑔
= 𝛼𝑔 + 𝛾𝑡 + 𝜏𝑔𝑡 +𝜌𝑔

∑
𝑖 𝑦𝑔𝑖𝑡−1

𝑁𝑔
+

∑
𝑖 𝑥𝑔𝑖𝑡

𝑁𝑔
𝛽𝑔 +

∑
𝑖 𝑥
′
𝑔𝑖𝑡
𝜆𝑔𝑖𝑡

𝑁𝑔
+

∑
𝑖 𝜀𝑔𝑖𝑡

𝑁𝑔
. (13.33)

We can just rename the transformed variables as:

�̃�𝑔𝑖𝑡 = 𝜌𝑔 �̃�𝑔𝑖𝑡−1 + �̃�′𝑔𝑖𝑡𝛽𝑔 + �𝑥′
𝑔𝑖𝑡
𝜆𝑔𝑖𝑡 + �̃�𝑔𝑖𝑡 . (13.34)

Thus, after this transformation we obtain the following moment conditions:

𝐸 (�̃�𝑔𝑖𝑡 �̃�𝑔𝑖𝑠 ) = 0, 𝑠 = 1, 2, ..., 𝑇, 𝑖 = 1, 2, ..., 𝑁𝑔 , 𝑔 = 1, 2, ..., 𝑚, (13.35)
𝐸 (�̃�𝑔𝑖𝑡 �̃�𝑔𝑖𝑡−1 ) = 0, 𝑡 = 1, 2, ..., 𝑇, 𝑖 = 1, 2, ..., 𝑁𝑔 , 𝑔 = 1, 2, ..., 𝑚. (13.36)

In addition, we need to add the full-rank condition for the transformed regressors.

Assumption 20 :
For OLS: The matrix 𝐸 ( �̃�𝑔𝑖𝑡 �̃�′𝑔𝑖𝑡 ) is full rank.
For GLS: 𝐸 [�̃�𝑔�̃�′𝑔 ] is positive definite and 𝐸 (�̃� ′𝑔𝐸 [�̃�𝑔�̃�′𝑔 ]−1 �̃�𝑔 ) is nonsingular. □
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13.13 Long Time Dimension

Until now, we have focused on a dynamic panel data model with stratification and short-time
dimension. As mentioned, the problems in this setting are incidental parameters and initial
conditions dependency. When the time dimension is long, one does not run into the problem of
initial conditions dependency but the issues of non-stationarity and incidental parameter bias remain.

More specifically, if the time dimension is long the assumption that the initial conditions are
generated from a stationary distribution is no longer needed (Assumption 19). The reason is that the
influence of the initial conditions becomes negligible as 𝑇→∞.

However, the assumptions of stationary regressors and stationary dependent variables are
necessary for the consistency and asymptotical normality of the Mean Stratum estimator . The reason
is that the stationarity of the regressors guarantees that the error term of the model is integrated of
order 0. In the case of non-stationary regressors, we have two options: 1. transform the regressors to
obtain stationarity or 2. estimate the model in levels if there is co-integration between the dependent
variable and the regressors after including the lag of the dependent variable (Hamilton, 1994). In
the last case, the assumption of stratum-additive effects is crucial to obtain asymptotically normal
estimates within stratum (Choi, 2015). While in the presence of stratum-individual additive effects, it
is necessary to use the fully-modified OLS estimator proposed by Phillips and Moon (1999) stratum
per stratum or one can use OLS estimation with the Mundlak approach. If the dependent variable
and the regressors are not cointegrated and the model presents stratum-specific additive effects, it
is unclear if stratum OLS estimation and the Mean-Stratum estimator are consistent. The reason
is that Phillips and Moon (1999) show that pooled OLS is a consistent estimator of the long-run
average regression coefficient if the regressors are nonstationary and there is no cointegration
for a model without intercept and lagged dependent variable. Thus, further research is needed
to verify the consistency of the Mean Stratum estimator when there is no co-integration and the
model presents stratum additive specific effects. However, the MS-OLS estimator is consistent if
the model presents additive stratum-individual specific effects, and there is no cointegration if we
use the Mundlak approach (Phillips & Moon, 1999). Finally, in order to test for co-integration
one can extend the test proposed by Im et al. (2003) such that the model presents stratum-specific
parameters instead of individual-specific parameters. Concluding that there is co-integration would
entail that 𝑢𝑔𝑖𝑡 = 𝑥′𝑔𝑖𝑡𝜆𝑔𝑖𝑡 + 𝜀𝑔𝑖𝑡 is stationary, meaning that 𝜆𝑔𝑖𝑡 could be considered as a random
co-integrating vector. A study of a co-integration test and the properties of the Mean-stratum
estimator when there is no co-integration is out of the scope of this paper and both issues are left for
further research.

On the other hand, the problem of incidental parameter bias requires careful analysis. First,
the problem of incidental parameter bias is not present in model 13.1. The intuitive explanation is
that we have increasing observations to estimate stratum-specific parameters. But if we allow for
stratum-individual specific effects as in model 13.19, we need to be more careful. In this setting, the
estimated stratum-specific parameters using the within estimator are consistent and asymptotically
normal if 𝑙𝑖𝑚 𝑁𝑔

𝑇𝑖𝑔
= 0 and the regressors are not stationary (Phillips & Moon, 1999). If the regressors

are stationary, we must debias the within estimator per stratum (Hahn & Newey, 2004). A workaround
to avoid the condition 𝑙𝑖𝑚 𝑁𝑔

𝑇𝑖𝑔
= 0 or debiasing is to use the Mundlak approach and project the

stratum-individual specific effects onto the column space of the regressors. Finally, model (13.31)
suffers from the problem of incidental parameter bias due to the presence of stratum-individual
specific effects and stratum-time specific effects. But the transformation proposed in subsection
13.12.2 eliminates the incidental parameter problem.

Finally, the Mean Stratum estimator and the Mean Group estimator are consistent estimators
of the mean coefficients of model (13.1) when the time dimension is long. In addition, the MS
estimator remains consistent even when 𝑇 is short.
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13.14 Monte Carlo Simulation Experiment: Stratified Sampling

In this section, we present a Monte Carlo simulation experiment to test the proposed estimators for
the baseline model and the extensions of the baseline model under stratified sampling.

For this purpose, we generate 100 datasets from two different data-generating processes called
DGP 1 and DGP 2.

In the following subsections, we describe the different designs in more detail as well as the
results.

13.14.1 The Design

13.14.1.1 DGP 1

In order to test the Mean Stratum estimator proposed for a model with unobserved stratum
heterogeneity and mixed coefficients (model 13.1), we conduct a simulation experiment using a
data-generating process that is similar to the DGP used by Arellano and Bond (1991). We use a
modification of the DGP proposed by Arellano and Bond (1991) to illustrate that the first-differenced
GMM estimator breaks down in the presence of multiplicative unobserved stratum heterogeneity.

The main differences with the DGP of Arellano and Bond (1991) are: 1. inclusion of stratum
additive effects instead of individual-specific effects that are correlated with the regressors, 2.
inclusion of multiplicative stratum-individual-time specific effects, 3. the variance and variance-
covariance are stratum-specific and they are generated from Gamma and Wishart distributions.
More specifically, we generate 100 samples from the following model for individual 𝑖 in stratum 𝑔

at period 𝑡:

𝑦𝑔𝑖𝑡 = 𝛼𝑔 +𝜌𝑔𝑦𝑔𝑖𝑡−1 + 𝑥′𝑔𝑖𝑡𝛽𝑔𝑖𝑡 + 𝜀𝑔𝑖𝑡 ,

with 𝜌𝑔 = �̄�+ 𝛼2,𝑔, �̄�, 𝛽𝑔𝑖𝑡 = 𝛽 + 𝛼3,𝑔 +𝜆𝑔𝑖𝑡 and 𝛽 =
©«
1

1
ª®¬.

The number of strata is equal to 4, the number of individuals within stratum is equal to 100, and the
number of time observations is equal to 3.
The stratum additive effects 𝛼𝑔 are generated from a normal distribution centered at 0 with
heteroskedastic variance across strata (𝜎2

𝛼𝑔
∈ {1.01, 1.01, 0.9, 0.9}).

The stratum effects (𝛼2,𝑔) added to the persistence parameter (�̄�) are centered at 0, and equal to
𝛼2,𝑔 ∈ {−0.5, −0.5, 0.5, 0.5}.
The stratum effects (𝛼3,𝑔) added to the mean coefficient vector (𝛽) are centered at 0, and equal to
𝛼3,𝑔 ∈ {−0.5, −0.5, 0.5, 0.5}.

The regressors 𝑥𝑔𝑖𝑡 ∈ R2 follow stationary autoregressive processes similar to the process used
by Arellano and Bond (1991). The key difference is that we allow for correlation with the stratum
effects:

𝑥𝑔𝑖𝑡 = 𝛼𝑔 + 𝛼3,𝑔 + 𝜙𝑥𝑔𝑖𝑡−1 +𝜔𝑔𝑖𝑡 ,
with 𝜙 equal to 0.8.
The disturbance term of the regressors (𝜔𝑔𝑖𝑡 ) equation is sampled from the normal distribution
centered at 0 with variance that is stratum specific (𝜎2

𝜔𝑔
∈ {0.9, 0.9, 1.01, 1.01}).

The stratum-individual-time specific effects (𝜆𝑔𝑖𝑡 ) added to the mean coefficient vector (𝛽) are
generated from a multivariate normal distribution centered at 0 with heteroskedastic variance-
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covariance matrix across strata (Δ𝜆,1 =
©«

0.1 0.05

0.05 0.1
ª®¬,Δ𝜆,2 =

©«
0.11 0.05

0.05 0.11
ª®¬,Δ𝜆,3 =

©«
0.12 0.05

0.05 0.12
ª®¬,Δ𝜆,4 =

©«
0.13 0.05

0.05 0.13
ª®¬) .

The disturbance term (𝜀𝑔𝑖𝑡 ) is generated from a normal distribution centered at 0 with a stratum
heteroskedastic variance (𝜎2

𝜀𝑔
∈ {0.9, 0.9, 1.01, 1.01}).

13.14.1.2 DGP 2

In order to test the estimator proposed in subsection 13.11.1, we conduct a simulation experiment
using a data-generating process similar to DGP 1.

DGP 2 is the same as as DGP 1 except for the following :
1. Inclusion of correlated stratum-individual effects instead of individual-specific effects,
2. The variance and variance-covariance of the stratum-individual-time specific effects is equal
across strata.
More specifically, the stratum-individual additive effects 𝛼1,𝑔𝑖 are generated from a normal
distribution centered at 0 with variance equal to 1.
3. The stratum-individual-time specific effects (𝜆𝑔𝑖𝑡 ) added to the mean coefficient vector (𝛽) are
generated from a multivariate normal distribution centered at 0 with with variance-covariance matrix

equal across strata Δ𝜆,1 =
©«

0.1 0.05

0.05 0.1
ª®¬.

The disturbance term (𝜀𝑔𝑖𝑡 ) is generated from a normal distribution centered at 0 with a stratum
heteroskedastic variance (𝜎2

𝜀𝑔
∈ {0.9, 0.9, 1.01, 1.01}).

13.14.2 The Results

13.14.2.1 DGP 1

In Table 13.1, we present the bias and RMSE of the estimated mean parameters of interest for
different values of the persistence parameter. The estimates are obtained for 100 simulations for a
sample with 4 strata, 100 individuals per group, and a time dimension equal to 3.

The results show that the proposed Mean Stratum FGLS estimators have lower bias and RMSE
than the first-differenced GMM estimators.

13.14.2.2 DGP 2

In Table 13.2, we present the bias and RMSE of the estimated mean parameters of interest for
different values of the persistence parameter. The estimates are obtained for 100 simulations for a
sample with 4 strata, 100 individuals per group and a time dimension equal to 3. The results show that
the proposed Mean Stratum FGLS estimators have lower bias and RMSE than the first-differenced
GMM estimators and the system GMM estimators.
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Table 13.1: DGP 1

Mean Bias RMSE Mean Bias RMSE Mean Bias RMSE

𝜌 = 0.1 𝛽1 = 1 𝛽2 = 1

MS-OLS 0.0935 -0.0065 0.0036 1.0055 0.0055 0.0172 1.0025 0.0025 0.0161

MS-FGLS 0.1030 0.0030 0.0036 1.0046 0.0046 0.0089 1.0046 0.0046 0.0093

MS-JIFDGMM 0.5649 0.4649 85.1471 1.4842 0.4842 14.9840 0.6957 -0.3043 8.0302

JIFDGMM -0.4678 -0.5678 21.8730 1.1253 0.1253 1.2624 1.0540 0.0540 0.7525

MC-OIFDGMM 0.5649 0.4649 85.1471 1.4842 0.4842 14.9840 0.6957 -0.3043 8.0302

OIFDGMM 0.0749 -0.0251 0.0168 0.9938 -0.0062 1.0178 0.9364 -0.0636 1.2441

MS-SYSGMM 0.0723 -0.0277 0.0074 1.1414 0.1414 0.0400 1.1130 0.1130 0.0407

SYSGMM 0.0949 -0.0051 0.0088 1.1264 0.1264 0.0429 1.0925 0.0925 0.0404

𝜌 = 0.5 𝛽1 = 1 𝛽2 = 1

MS-OLS 0.4921 -0.0079 0.0039 1.0191 0.0191 0.0171 1.0171 0.0171 0.0162

MS-FGLS 0.4966 -0.0034 0.0288 1.0761 0.0761 0.2015 1.0190 0.0190 0.0357

MC-FDGMM -0.1210 -0.6210 108.3416 1.1141 0.1141 0.5770 0.8036 -0.1964 1.8841

FDGMM 0.5566 0.0566 0.1178 0.9929 -0.0071 0.0319 0.9725 -0.0275 0.0373

MS-OIGMM -0.1210 -0.6210 108.3416 1.1141 0.1141 0.5770 0.8036 -0.1964 1.8841

OIGMM 0.4702 -0.0298 0.0217 1.1090 0.1090 0.8645 1.0439 0.0439 0.8128

MS-SYSGMM 0.4773 -0.0227 0.0056 1.1533 0.1533 0.0470 1.1282 0.1282 0.0526

SYSGMM 0.5159 0.0159 0.0062 1.1095 0.1095 0.0397 1.0724 0.0724 0.0503

𝜌 = 0.9 𝛽1 = 1 𝛽2 = 1

MS-OLS 0.8976 -0.0024 0.0019 1.0264 0.0264 0.0167 1.0247 0.0247 0.0161

MS-FGLS 0.8975 -0.0025 0.0009 1.0297 0.0297 0.0090 1.0233 0.0233 0.0082

MS-JIFDGMM 0.9020 0.0020 0.0033 0.9972 -0.0028 0.0319 0.9825 -0.0175 0.0337

JIFDGMM 0.9088 0.0088 0.0028 0.9883 -0.0117 0.0306 0.9736 -0.0264 0.0359

MS-OIGMM 0.9020 0.0020 0.0033 0.9972 -0.0028 0.0319 0.9825 -0.0175 0.0337

OIGMM 0.8809 -0.0191 0.0074 1.4201 0.4201 1.6271 1.3970 0.3970 1.7727

MS-SYSGMM 0.9012 0.0012 0.0010 1.1236 0.1236 0.0381 1.0906 0.0906 0.0422

Note: MS-OLS: Mean-stratum OLS estimator, MS-FGLS: Mean-stratum FGLS estimator, MS-
JIFDGMM: Mean-stratum just-identified fist-differenced GMM estimator, JIFDGMM: Just-identified
fist-differenced GMM estimator, MC-OIFDGMM: Mean-stratum over-identified fist-differenced
GMM estimator, OIFDGMM: Over-identified fist-differenced GMM estimator, MS-SYSGMM:
System GMM estimator, SYSGMM: System GMM estimator.
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Table 13.2: DGP 2

Mean Bias RMSE Mean Bias RMSE Mean Bias RMSE

𝜌 = 0.1 𝛽1 = 1 𝛽2 = 1

MS-OLS 0.0931 -0.0069 0.001 1.0055 0.0055 0.0057 1.0055 0.0055 0.0062

MS-OLSy0 0.0931 -0.0075 0.002 1.0066 0.0066 0.0056 1.0066 0.0066 0.0064

MS-FGLS 0.0908 -0.0092 0.0123 1.0314 0.0314 0.0782 1.0314 0.0314 0.0241

MS-FGLSy0 0.0988 -0.0012 0.0103 1.0073 0.0073 0.0246 1.0073 0.0073 0.9594

MS-JIFDGMM 0.5545 0.4545 82.4716 0.8048 -0.1952 15.9684 0.8048 -0.1952 8.6445

JIFDGMM 0.1727 0.0727 3.4936 0.9846 -0.1952 0.0729 0.9846 -0.1952 0.3024

MS-OIGMM 0.0995 -0.0005 0.008 1.0919 0.0919 0.822 1.0919 0.0919 0.8789

OIGMM 0.1139 0.0139 0.0116 1.2076 0.2076 1.6085 1.2076 0.2076 1.3103

MS-SYSGMM 0.0901 -0.0099 0.0034 1.0851 0.0851 0.0303 1.0851 0.0851 0.0328

SYSGMM 0.1135 0.0135 0.0047 1.0937 0.0937 0.0356 1.0937 0.0937 0.0426

FGLS-Hsiao -0.0999 -0.1999 0.0434 1.0156 0.0156 0.0149 1.0156 0.0156 0.017

𝜌 = 0.5 𝛽1 = 1 𝛽2 = 1

MS-OLS 0.4931 -0.0069 0.0005 1.0083 0.0083 0.0061 1.0083 0.0083 0.0064

MS-OLSy0 0.4931 -0.0101 0.0021 1.009 0.009 0.0059 1.009 0.009 0.0065

MS-FGLS 0.4941 -0.0059 0.0081 1.0197 0.0197 0.1547 1.0197 0.0197 0.1069

MS-FGLSy0 0.4947 -0.0053 0.0261 1.0028 0.0028 0.0649 1.0028 0.0028 0.0924

MS-JIFDGMM 1.4552 0.9552 144.1671 1.0147 0.0147 5.5668 1.0147 0.0147 5.7164

JIFDGMM 0.5373 0.0373 0.4727 0.9605 0.0147 0.0566 0.9605 0.0147 0.0507

MS-OIGMM 0.4861 -0.0139 0.0107 0.9989 -0.0011 0.7261 0.9989 -0.0011 0.841

OIGMM 0.4962 -0.0038 0.0193 1.0505 0.0505 1.4267 1.0505 0.0505 1.1413

MS-SYSGMM 0.4894 -0.0106 0.0025 1.0912 0.0912 0.0318 1.0912 0.0912 0.0359

SYSGMM 0.5257 0.0257 0.0043 1.0782 0.0782 0.0382 1.0782 0.0782 0.0438

FGLS-Hsiao 0.2641 -0.2359 0.0594 1.0283 0.0283 0.0156 1.0283 0.0283 0.0186

𝜌 = 0.9 𝛽1 = 1 𝛽2 = 1

MS-OLS 0.8974 -0.0026 0.0002 1.0053 0.0053 0.0061 1.0053 0.0053 0.0064

MS-OLSy0 0.8974 -0.0062 0.0013 1.0064 0.0064 0.006 1.0064 0.0064 0.0065

MS-FGLS 0.9036 0.0036 0.0043 1.0246 0.0246 0.2824 1.0246 0.0246 0.1272

MS-FGLSy0 0.9285 0.0285 0.0649 1.0095 0.0095 0.1402 1.0095 0.0095 0.0832

MS-JIFDGMM 0.9536 0.0536 0.1542 0.9805 -0.0195 0.0363 0.9805 -0.0195 0.1542

JIFDGMM 0.9122 0.0122 0.0031 0.9698 -0.0195 0.032 0.9698 -0.0195 0.0386

MS-OIGMM 0.8783 -0.0217 0.0075 1.0368 0.0368 1.1681 1.0368 0.0368 1.0338

OIGMM 0.8996 -0.0004 0.0052 1.2316 0.2316 1.5646 1.2316 0.2316 1.428

MS-SYSGMM 0.9015 0.0015 0.0005 1.0766 0.0766 0.0316 1.0766 0.0766 0.0331

SYSGMM 0.9256 0.0256 0.0014 1.0576 0.0576 0.0403 1.0576 0.0576 0.0407

MS-OLSy0: MS OLS conditioning on initial value, MS-FGLSy0: MS FGLS conditioning on
initial value, MS-JIFDGMM: MS just-identified ist-differenced GMM estimator, JIFDGMM: Just-
identified fist-differenced GMM estimator, MC-OIFDGMM: MS over-identified fist-differenced
GMM estimator, OIFDGMM: Over-identified fist-differenced GMM estimator,MS-SYSGMM:
System GMM estimator, SYSGMM: System GMM estimator.
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13.15 Conclusions

In this paper, we investigate the identification and estimation of dynamic heterogeneous linear
models in the presence of stratum heterogeneity when stratum structure is known and panel data is
unbalanced due to randomly missing data with a short or fixed time dimension.

When the number of strata is fixed, we observe all the strata and the number of individuals grows
to infinity, it is possible to consistently estimate the mean slope coefficients and the persistence
parameter using a Mean Stratum estimator that is an extension of the Mean Group estimator
introduced by Pesaran and Smith (1995).

As an extension of the baseline model, we consider a model with stratum-individual additive
effects. In this setting, we suggest a hierarchical Bayesian estimation with a prior for the unknown
initial conditions. In addition, we propose to condition on the initial values in order to avoid making
assumptions about the data-generating processes of the initial conditions and the regressors.

A second extension is a model that allows for cross-sectional dependence by including a common
factor for the whole population and a stratum-specific common factor. In this setting, the Mean
Stratum OLS estimator using the time-demeaned regressors outperforms pooled OLS.

We can conclude from the simulation experiment, that the Mean Stratum estimators have lower
Relative Bias and RMSE than the MG estimator and OLS estimator. This shows that one can exploit
the underlying stratification in the data to estimate the mean coefficients and the stratum-specific
parameters of a heterogeneous linear dynamic panel data models.

Further, we show that the first-difference GMM estimator is inconsistent when there is multiplic-
ative stratum heterogeneity. In fact, the first-difference GMM estimator is equal to the weighted
average of the stratum-specific marginal effects. A similar conclusion can be drawn if the marginal
effects are individual-specific.

Finally, we show that the Mean Group estimator is equal to the Mean Stratum estimator when
the time dimension is long and the data are obtained by means of stratified sampling.

Appendix

Proofs of Theorems 13.1, and 13.2

Proof Theorem 13.1

Proof The stratum-specific GLS estimator is given by:

𝜃𝑔,𝐺𝐿𝑆 = (𝑍 ′𝑔Ω−1
𝑔 𝑍𝑔 )−1 (𝑍 ′𝑔Ω−1

𝑔 𝑦𝑔 ) .

We can re-write it as follows:

𝜃𝑔,𝐺𝐿𝑆 = 𝜃𝑔 + (𝑍 ′𝑔Ω−1
𝑔 𝑍𝑔 )−1 (𝑍 ′𝑔Ω−1

𝑔 𝑤𝑔 ) ,

with:
𝑤𝑔 = 𝑑𝑖𝑎𝑔 (𝑋𝑔 )𝜆𝑔 + 𝜖𝑔 .

Applying the plim operator and using Slutksy’s Theorem we obtain:

𝑝𝑙𝑖𝑚
𝑁𝑔→∞
𝑇𝑖𝑔 𝑓 𝑖𝑥𝑒𝑑

𝜃𝑔,𝐺𝐿𝑆 = 𝜃𝑔 + (
𝑝𝑙𝑖𝑚
𝑁𝑔→∞
𝑇𝑖𝑔 𝑓 𝑖𝑥𝑒𝑑

1
𝑛𝑔
𝑍 ′𝑔Ω

−1
𝑔 𝑍𝑔 )−1 (

𝑝𝑙𝑖𝑚
𝑁𝑔→∞
𝑇𝑖𝑔 𝑓 𝑖𝑥𝑒𝑑

1
𝑛𝑔
𝑍 ′𝑔Ω

−1
𝑔 𝑤𝑔 ) ,
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Now,
𝑝𝑙𝑖𝑚
𝑁𝑔→∞
𝑇𝑖𝑔 𝑓 𝑖𝑥𝑒𝑑

𝑛−1
𝑔 𝑍

′
𝑔Ω
−1
𝑔 𝑍𝑔 = 𝑄𝑔 by Assumption 21, and

𝑝𝑙𝑖𝑚
𝑁𝑔→∞
𝑇𝑖𝑔 𝑓 𝑖𝑥𝑒𝑑

1
𝑛𝑔
𝑍 ′𝑔Ω

−1
𝑔 𝑤𝑔 = 0 by As-

sumptions 16 and 17. The last conclusion is obtained as follows:
𝑝𝑙𝑖𝑚
𝑁𝑔→∞
𝑇𝑖𝑔 𝑓 𝑖𝑥𝑒𝑑

1
𝑛𝑔
𝑍 ′𝑔Ω

−1
𝑔 𝑤𝑔 =

𝑝𝑙𝑖𝑚
𝑁𝑔→∞
𝑇𝑖𝑔 𝑓 𝑖𝑥𝑒𝑑

∑
𝑖𝑔

∑
𝑡𝑖𝑔
𝑧𝑖𝑔𝑡𝑖𝑔 𝜔𝑖𝑔𝑡𝑖𝑔 𝜎𝑖𝑔𝑡𝑖𝑔 because Ω−1

𝑔 is a diagonal matrix with 𝜎𝑖𝑔𝑡𝑖𝑔 in each ele-

ment of the diagonal. Then,

𝑝𝑙𝑖𝑚
𝑁𝑔→∞
𝑇𝑖𝑔 𝑓 𝑖𝑥𝑒𝑑

1
𝑛𝑔

∑︁
𝑖𝑔

∑︁
𝑡𝑖𝑔

𝑧𝑖𝑔𝑡𝑖𝑔 𝜔𝑖𝑔𝑡𝑖𝑔 𝜎𝑖𝑔𝑡𝑖𝑔 =
1
𝑇𝑖𝑔

∑︁
𝑡𝑖𝑔

𝐸𝑔 [𝑧𝑖𝑔𝑡𝑖𝑔 𝜔𝑖𝑔𝑡𝑖𝑔 𝜎𝑖𝑔𝑡𝑖𝑔 ],

where 𝐸𝑔 [𝑧𝑖𝑔𝑡𝑖𝑔 𝜔𝑖𝑔𝑡𝑖𝑔 𝜎𝑖𝑔𝑡𝑖𝑔 ] represents the cross-sectional expectation. Now, under assumptions
16 and 17 𝐸𝑔 [𝑧𝑖𝑔𝑡𝑖𝑔 𝜔𝑖𝑔𝑡𝑖𝑔 𝜎𝑖𝑔𝑡𝑖𝑔 ] = 0. Then, 𝜃𝑔,𝐺𝐿𝑆 − 𝜃𝑔 = 𝑜𝑝 (1) .
In order to derive the asymptotic distribution of the stratum-specific parameter, I use the stabilizing
factor equal to √𝑛𝑔 such that:

√
𝑛𝑔 (𝜃𝑔,𝐺𝐿𝑆 − 𝜃𝑔 ) = (

1
𝑛𝑔
𝑍 ′𝑔Ω

−1
𝑔 𝑍𝑔 )−1 ( 1

√
𝑛𝑔
𝑍 ′𝑔Ω

−1
𝑔 𝑤𝑔 ) .

By Linderberg-Levy Central Limit Theorem 1√
𝑛𝑔
𝑍 ′𝑔Ω

−1
𝑔 𝑤𝑔→ 𝑁 (0,𝑄𝑔 ) .

Then, √
𝑛𝑔 (𝜃𝑔,𝐺𝐿𝑆 − 𝜃𝑔 ) 𝑑→𝑁 (0,𝑄−1

𝑔 ) .

Proof Theorem 13.2

Proof As derived in section 13.5.1, the variance-covariance components stacked up in the vector
𝜂𝑔 are estimated by the penalized LS estimator as �̂�𝑔 = (𝐶′𝑔𝐶𝑔 + 𝜏𝐼 )−1 (𝐶′𝑔 �̂�𝑔 ) with 𝐶𝑔 a full
rank matrix obtained following the procedure proposed there. Now, for 𝜏 = 0:

�̂�𝑔 = (𝐶′𝑔𝐶𝑔 )−1 (𝐶′𝑔 �̂�𝑔 )

That is equal to:
�̂�𝑔 = 𝜂𝑔 + (𝐶′𝑔𝐶𝑔 )−1 (𝐶′𝑔𝜈𝑔𝑖𝑡 )

Now, applying the plim operator and using Slutsky’s theorem:

𝑝𝑙𝑖𝑚�̂�𝑔 = 𝜂𝑔 + (𝑝𝑙𝑖𝑚
1
𝑛𝑔
𝐶′𝑔𝐶𝑔 )−1 (𝑝𝑙𝑖𝑚 1

𝑛𝑔
𝐶′𝑔𝜈𝑔 )

Now, 𝑝𝑙𝑖𝑚 1
𝑛𝑔
𝐶′𝑔𝐶𝑔 =𝐷𝑔 and 𝑝𝑙𝑖𝑚 1

𝑛𝑔
𝐶′𝑔𝜈𝑔 = 0 because 𝜈𝑔 is an error capturing estimation error

and it is orthogonal of 𝐶𝑔 (Assumption 22). Thus, �̂�𝑔 = 𝜂𝑔.
In order to derive the asymptotic distribution of the variance-covariance estimators, I use the
stabilizing factor √𝑛𝑔 such that:

√
𝑛𝑔 ( �̂�𝑔 − 𝜂𝑔 ) = (

1
𝑛𝑔

𝑁𝑔∑︁
𝑖𝑔

𝑇𝑖𝑔∑︁
𝑡𝑖𝑔

𝐶𝑖𝑔𝑡𝑖𝑔𝐶
′
𝑖𝑔𝑡𝑖𝑔
)−1 ( 1
√
𝑛𝑔

𝑁𝑔∑︁
𝑖𝑔

𝑇𝑖𝑔∑︁
𝑡𝑖𝑔

𝐶𝑖𝑔𝑡𝑖𝑔 𝜈𝑖𝑔𝑡𝑖𝑔 ) .

Then, by Linderberg-Levy CLT we have that 1√
𝑛𝑔

∑𝑁𝑔
𝑖𝑔

∑𝑇𝑖𝑔
𝑡𝑖𝑔
𝐶𝑖𝑔𝑡𝑖𝑔 𝜈𝑖𝑔𝑡𝑖𝑔 → 𝑁 (0, 𝜎2

𝜈,𝑔𝐷𝑔 ) . Thus,

√
𝑛𝑔 ( �̂�𝑔 − 𝜂𝑔 ) 𝑑→(0, 𝜎2

𝜈𝑔
𝐷−1
𝑔 ) .
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Finally, Ω𝑔 = 𝑔 (△𝜆𝑔 , 𝜎2
𝜀𝑔
) and 𝑔 (.) is a continuous function because it is a linear decomposition.

As a result, it is possible to use the Slutzky’s theorem to such that:
√
𝑛𝑔 (Ω̂𝑔 −Ω𝑔 ) 𝑑→𝑁 (0, 𝑣𝑎𝑟 (Ω̂𝑔 ) ) .
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Chapter 14
The Basics of the Mundlak and Chamberlain
Projections

Badi H. Baltagi and Tom Wansbeek

Abstract One of the best-known results in panel data econometrics, due to Mundlak (1978), is
the equality of the random-effects and fixed-effects estimators when the individual effects are
correlated with the means over time of the regressors. Chamberlain (1980) showed that the same
result holds when the individual effects are correlated with the regressors for all moments in time
separately. In this chapter, we review basic elements of the Mundlak and Chamberlain projections.
We emphasize the simplicity that is often obtained when the model is transformed into the within-
and between-model, following Arellano (1993). Topics that we discuss include the augmented
regression model, the Hausman test, minimum-distance estimation and its link to GMM, unbalanced
data, and higher-dimensional data.

14.1 Introduction

A historical moment in the development of panel data econometrics was the first conference in
the field, held in Paris, August 22-24, 1977, organized by the research unit of the French national
statistics bureau INSEE. Participants included Gary Chamberlain, Zvi Griliches, Andrew Harvey,
Jerry Hausman, Jim Heckman, Karl Jöreskog, G. S. Maddala, Jacques Mairesse, Yair Mundlak and
Marc Nerlove. Marc participated in organizing the conference and wrote the introductory paper of
the conference proceedings published as a special issue of the Annales de l’INSEE, Nerlove (1978),
later reprinted in Nerlove (2002). This first Paris conference was followed by 29 international panel
data conferences, mostly in Europe. The conferences take place under the auspices of a scientific
committee of which Marc Nerlove has been a member from the beginning.

One paper in the Annales de l’INSEE issue was Mundlak (1978b). This paper extends, to
the case of varying coefficients, Mundlak (1978a), published in the same year in Econometrica,
containing the classical result in panel data econometrics that the random-effects (RE) estimator is
the fixed-effects (FE or ‘within’) estimator when the individual effects correlate with the means over
time of all regressors. This result has often been invoked by applied researchers to justify the use of
the FE estimator, although it is costly in the sense of eliminating a lot of variation from the data. By
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September 9, 2024, the paper has amassed 2619 citations on the Web of Science (6872 citations by
Google scholar).

Shortly after, Mundlak’s idea was generalized by Chamberlain, see Chamberlain (1980) (1349
citations on the Web of Science, 4081 citations by Google scholar), Chamberlain (1982) (580 citations
on the Web of Science, 1800 citations by Google scholar), and the Handbook of Econometrics
chapter on panel data, Chamberlain (1984). Chamberlain credits Mundlak for the correlated random
effects model, see the ET interview with Chamberlain by Graham, Hirano and Imbens (2023),
pp.12-13. “...I guess step one is this correlated random effects setup. There you definitely want to
point to Yair Mundlak, who was visiting at Harvard while I was a graduate student and we interacted
a lot. I think he was very close to Zvi and had an office in that part of the building. So that notion
that you might try to build a link between the so-called fixed effects and random effects [was] very
clearly in Yair’s ‘78 Econometrica paper.”

In this paper we revisit, in Section 14.2, Mundlak’s projection and we propose a very brief
derivation of his main result by separating the model into a ‘within’ and a ‘between’ model. This is
obtained by a transformation of the model that we will call ‘Arellano’s transformation’ throughout.
We compare it with other derivations, not just for historical reasons but also this entails some
algebraic results that are of more general use. We also consider the augmented regression, where
Mundlak substituted for the individual effects as a linear function of all the regressors averaged
across time, and discuss the Hausman test for endogeneity.

In section 14.3 we discuss the alternative projection due to Chamberlain. We discuss when this
projection is better than Mundlak’s and we show that, also here, Arellano’s transformation leads
to a simple proof that the RE and FE estimators are the same. We discuss the minimum-distance
estimator put forward by Chamberlain and derive the link with GMM. The discussion of GMM
brings us to consider the moment conditions underlying the linear panel data model, which suggests
as an aside a discussion of two ways to test for the regression coefficients to be the same over time.
This is done in Section 14.4.

Section 14.5 addresses the issue of unbalanced data. We introduce a simple way to deal with
unbalancedness, for both the Mundlak and the Chamberlain projection. We discuss grouping as
one particular form of unbalancedness. In Section 14.6 we use Arellano’s transformation for the
case where also the time effects are allowed to correlate with the regressors. This directly leads
to the FE estimator for two dimensions, while in Section 14.7 we discuss the extension to the
three-dimensional data. We investigate whether correlated effects still produces the FE estimator
also here. When the effects are one-dimensional, it does, but when the effects are two-dimensional,
it does not; the GLS estimator is then more efficient than the FE estimator. In Section 14.8 we briefly
consider the model with an error term containing factors, the varying coefficient model, and the
spatial regression model, to see to what extent Arellano’s transformation still yields equality of the
RE and FE estimator.

14.2 Mundlak’s Projection

Throughout we consider the simplest static random effects model for panel data, 𝑦
𝑖𝑡
= x′

𝑖𝑡
𝛃+𝛼

𝑖
+ 𝜀

𝑖𝑡
,

or in matrix notation
y𝑖 = X𝑖𝛃 + i𝑇𝛼𝑖 + 𝛆𝑖 , (14.1)

for 𝑖 = 1, . . . , 𝑛, where y
𝑖

and 𝛆
𝑖

are𝑇 ×1, X𝑖 is𝑇 × 𝑘 while i is the vector of ones, its index indicating
the number of elements. Further, x

𝑖
≡ vecX𝑖 while J𝑇 ≡ i𝑇 i′𝑇 and ī𝑇 ≡ i𝑇/𝑇 and J̄𝑇 ≡ i𝑇 i′𝑇/𝑇 , so

the average over time of X𝑖 is x̄
𝑖
= X′𝑖 ī𝑇 . The centering operator is A𝑇 ≡ I𝑇 − J̄𝑇 where I𝑇 denotes

the identity matrix of dimension 𝑇 . The error term 𝛆
𝑖
∼

(
0, 𝜎2

𝜀I𝑇
)

is uncorrelated with everything
else while 𝛼

𝑖
∼

(
0, 𝜎2

𝛼

)
can be correlated with X𝑖 . To concentrate on the essentials we assume that

all regressors vary over time and have been demeaned. We denote by y the 𝑛𝑇 × 1 vector stacking
the y

𝑖
and X the 𝑛𝑇 × 𝑘 matrix stacking the X𝑖 , while Y is the 𝑛×𝑇 matrix with rows y′

𝑖
and ¤X the
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𝑛× 𝑘𝑇 matrix with rows x′
𝑖
, and X̄ the 𝑛× 𝑘 matrix with rows x̄′

𝑖
. The 𝑛𝑇 × 𝑛𝑇 covariance matrix

of the error terms is
𝛀 ≡ I𝑛 ⊗

(
𝜎2
𝜀I𝑇 + 𝜎2

𝛼J𝑇
)
.

So the model is a GLS model, where the GLS estimator is best linear unbiased. Mundlak (1978)
calls this the Balestra-Nerlove estimator, after Balestra and Nerlove (1966).

To handle the possible correlation between X𝑖 and 𝛼
𝑖
, Mundlak (1978) proposed to make it

explicit by adding the linear projection of 𝛼
𝑖

on x̄
𝑖

to the model,

𝛼𝑖 = x̄′𝑖𝛑M + 𝑣𝑖 , (14.2)

with 𝛑M of order 𝑘 × 1, while 𝑣
𝑖

is by construction uncorrelated with x̄
𝑖

and by assumption
homoskedastic. Substitution of (14.2) in (14.1) yields

y𝑖 = X𝑖𝛃 + i𝑇 x̄′𝑖𝛑M +u𝑖 , (14.3)

with u
𝑖
≡ i𝑇𝑣𝑖 + 𝛆𝑖 the composite error term. We now have an augmented regression model,

sometimes denoted as the correlated-effects (CRE) model, still a GLS model in the sense of
having a non-scalar covariance matrix. However, GLS yields the same result as OLS, as can be
shown as follows. Writing J̄𝑇X𝑖 for i𝑇 x̄′

𝑖
, the regressors for 𝑖 are

(
X𝑖 , J̄𝑇X𝑖

)
, so for all 𝑖 together

X̃ ≡
(
X,

(
I𝑛 ⊗ J̄𝑇

)
X
)
. There holds

(
𝜎2
𝜀I𝑇 + 𝜎2

𝛼J𝑇
) (

X𝑖 , J̄𝑇X𝑖
)
=

(
X𝑖 , J̄𝑇X𝑖

) ©«
I
𝑘

0

𝑇𝜎2
𝛼I
𝑘

(
𝜎2
𝜀 +𝑇𝜎2

𝛼

)
I
𝑘

ª®¬ .
Grouping this result for all 𝑖 yields 𝛀X̃ = X̃B for some B. According to a classical result due to
Zyskind (1967), OLS and GLS then produce the same result for 𝛃 and 𝛑M, see also Baltagi (2006).
However, the standard errors of �̂� and �̂�M are not the standard errors produced by OLS since the
error structure is still GLS, see Baltagi (2023a, 2024a) for an extensive discussion of this and its
effect on test of hypothesis for the correlated random effects model using OLS rather an GLS on the
augmented Mundlak regression in (16.3).

In fact, applications of the Mundlak correlated random effects model use OLS on the augmented
regression (14.3) rather than GLS as suggested by Mundlak. The latter is necessary because of
the presence of the random individual effect 𝑣

𝑖
. Baltagi (2006) showed that OLS is equivalent to

GLS for this augmented regression and both yield the fixed effects estimator for 𝛃, invoking the
result by Zyskind (1967) when OLS and GLS coincide. However, the standard errors using OLS are
different from those using GLS as they assume different variance-covariance structures. This also
affects test of hypotheses and in particular the test for 𝐻0 : 𝛑M = 0. In particular, the Mundlak GLS
regression yields the Hausman (1978) test based on the fixed versus between estimators, while the
test based on the OLS estimator yields a different statistic all together. Not rejecting the null in the
Mundlak (1978) augmented regression yields to non-rejection of the random effects model. While,
non-rejection of the null in the OLS augmented model yields pooled OLS as the efficient estimator.
This is certainly not what Mundlak (1978) intended.

A simple alternative, and a natural one given the two dimensions of panel data, is by separating
the within and between dimensions. Let R𝑇 be a matrix of order 𝑇 × (𝑇 − 1) such that R′𝑇R𝑇 = I

𝑇−1
and R′𝑇 i𝑇 = 0 and otherwise unspecified. One possible choice is first differences properly scaled.
For 𝑇 = 4 it is

R′4 =
1
√

2

©«
1 −1 0 0

0 1 −1 0

0 0 1 −1

ª®®®®¬
. (14.4)

There holds R𝑇R′𝑇 = A𝑇 since both are idempotent of rank 𝑇 − 1, with the same null-space i𝑇 .
Premultiplication of (14.1) by

(
R𝑇 , ī𝑇

) ′, which is a one-to-one transformation so nothing gets lost,
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gives an equivalent representation of (14.1),

R′𝑇y𝑖 = R′𝑇X𝑖𝛃 +R′𝑇 𝛆𝑖 (14.5)
�̄�𝑖 = x̄′𝑖𝛃 + 𝛼𝑖 + �̄�𝑖 , (14.6)

with �̄�𝑖 the average over time of 𝛆
𝑖
. Substitution of (14.2) in (14.6) yields

�̄�𝑖 = x̄′𝑖 (𝛃 +𝛑M ) + 𝑣𝑖 + �̄�𝑖
≡ x̄′𝑖𝛏M + 𝑣𝑖 + �̄�𝑖 . (14.7)

The two error terms, R′𝑇 𝛆𝑖 in (14.5) and 𝑣
𝑖
+ �̄�𝑖 in (14.7) are uncorrelated, while R′𝑇 𝛆𝑖 has a scalar

covariance matrix 𝜎2
𝜀I
𝑇−1 so OLS is optimal. Since 𝛏M is uninformative about 𝛃, only (14.5)

contains information about 𝛃. Because of R𝑇R′𝑇 = A𝑇 , the OLS estimator of 𝛃 in (14.5) is

�̂� =

(∑︁
𝑖

X′𝑖A𝑇X𝑖

)−1 ∑︁
𝑖

X′𝑖A𝑇y𝑖 . (14.8)

This �̂� is the FE estimator. With g a column of X and 𝑔
𝑖𝑡

its (𝑖, 𝑡 )th element, the FE estimator can
be obtained by the transformation �̃�

𝑖𝑡
= 𝑔𝑖𝑡 − 𝑔𝑖∗, an asterisk in the place of an index indicating the

average over that index. The OLS estimator of 𝛏M in (14.7) is the between estimator,

�̂�M =

(
X̄′X̄

)−1
X̄′ȳ.

Anyhow, with individual effects correlated with the means over time of all regressors, there is just
one estimator of 𝛃, the FE one. This equality of RE and FE when X𝑖 and 𝛼

𝑖
are correlated, due to

Mundlak (1978), is one of the basic results in panel data analysis that ‘everybody knows’.
As far as we know, this simple derivation of Mundlak’s result was first given by Arellano

(1993) and further discussed by Arellano and Bover (1995), for one particular form of R𝑇 , forward
orthogonal deviations. To give the idea, consider the case 𝑇 = 4. Then

R′4 =
©«
√︁

3/4 0 0

0
√︁

2/3 0

0 0
√︁

1/2

ª®®®®¬
©«

1 −1/3 −1/3 −1/3
0 1 −1/2 −1/2
0 0 1 −1

ª®®®®¬
.

According to Arellano and Bover (1995), p.42, this specific form of R𝑇 has the advantage that lags
of predetermined variables are valid instruments in the transformed equations. But this property is
irrelevant for our purpose here, and we will use the expression ‘Arellano’s transformation’ without
reference to one particular form of R𝑇 .

As to proving Mundlak’s incisive result, Mundlak (1978) himself does not provide a full proof
but leaves the derivation of his result partly to the reader (“Utilizing [the GLS structure arising when
the projection is inserted] and the expression for the inverse of a partitioned matrix, we can obtain
[the result] after some simplications[.]”). The derivation using partitioned inversion is given as
Exercise 7.13 in Baltagi (2009), pp. 151-154. Baltagi (2006) simplifies the derivation using system
estimation stacking the between Mundlak regression on top of the within regression and performing
GLS or OLS on this system. This yields Mundlak’s (1978) result without partitioned inversion.
Krishnakumar (2006) considers the case with time-constant variables included in the model. As far
as we know, the simple proof through Arellano’s transformation is rarely mentioned in the literature;
Biørn (2017), chapter 6, ‘Latent heterogeneity correlated with regressors,’ seems to be the only
place to make the point of the simple transformation.

Alternatively, given the equality of OLS and GLS augmented regression model shown above,
an algebraic proof not using Arellano’s transformation is of some interest because of its wider
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applicability. It is based on the Frisch-Waugh theorem, to show that projecting out the i𝑇 x̄′
𝑖
𝛑M

corresponds with the within transformation for X, and uses the ‘double projection’ general result

PCX = PPCXX, (14.9)

where PQ generically denotes the projection matrix ‘onto’, PQ ≡Q(Q′Q)−1Q′ for any appropriate
Q. We will also use MQ ≡ I− PQ. The result (14.9) follows immediately from letting Q = PC in
the definition of PQ. Now, choose C = I𝑛 ⊗ i𝑇 , so the regressor

(
I𝑛 ⊗ J̄𝑇

)
X equals PCX. When we

premultiply X with the projection matrix perpendicular to PCX, we obtain

MPCXX =

(
I𝑛𝑇 −PPCX

)
X =

(
I𝑛𝑇 −PC

)
X = MCX,

which is the within transformation of X. According to the Frisch-Waugh theorem, this leads to the
FE estimator.

Wooldridge (2013) finds it “a bit anticlimactic” that CRE is FE but feels that there are still two
reasons to consider CRE. First, one can use the estimate of 𝛑M in a test for exogeneity and make the
test robust to heteroskedasticity and serial correlation and, second, time-constant regressors can still
be included in the regression. As a third reason one may add the case where not all regressors are
considered to be potentially endogenous. One specific case arises when the researcher has doubts
about the exogeneity of one regressor in particular. When the first 𝑘1 regressors X1 are considered
exogenous a priori and the last 𝑘2 regressors X2 endogenous, the corresponding elements of 𝛉 in
(14.7) are zero, so

𝛼𝑖 = x̄′2𝑖𝛑M2 + 𝑣𝑖 , (14.10)
Then (14.7) becomes

�̄�𝑖 = x̄′1𝑖𝛃1 + x̄′2𝑖 (𝛃2 +𝛑M2 ) + 𝑣𝑖 + �̄�𝑖
≡ x̄′1𝑖𝛃1 + x̄′2𝑖𝛏M2 + 𝑣𝑖 + �̄�𝑖 .

So now this second equation of the model contains information about 𝛃1, and the fixed-effects
estimator is no longer optimal. An optimal estimator is easily obtained by substituting the projection
(14.10) in (14.1) to obtain

y𝑖 = X𝑖𝛃 + i𝑇 x̄′2𝑖𝛑M2 + i𝑇𝑣𝑖 + 𝛆𝑖 , (14.11)
which is the random effects model with the means over time of the endogenous variables added as
regressors. This way of ‘breaking the correlation’ due to endogeneity by adding the means of the
endogenous regressors has become quite popular with practitioners.

Comparing the difference between the between estimator �̂�M and the within estimator �̂� provides
a simple 𝜒2 (𝑘 ) test for exogeneity, 𝐻0 : 𝛑M = 0 so 𝐻0 : 𝛃 = 𝛏M. Because of the lack of correlation
between the two error terms, the variance of �̂�M − �̂� is the sum of their variances. So under 𝐻0

𝑞1 =
(
�̂�M − �̂�

) ′ [
V̂ar

(
�̂�M

)
+ V̂ar

(
�̂�
)]−1 (

�̂�M − �̂�
) as.∼ 𝜒2

𝑘 . (14.12)

This is exactly the test statistic obtained by Mundlak (1978) for testing 𝐻0 : 𝛑M = 0 by performing
GLS on the augmented regression in (16.3). In fact, using GLS, Mundlak (1978) obtains the within
estimator as the GLS estimator of 𝛃 and the difference between the between and within estimators
as the GLS estimator for 𝛑M, see Baltagi (2009). As emphasized earlier, one would not get this test
statistic for 𝐻0 : 𝛑M = 0 if one runs OLS on the augmented regression in (16.3). While it is true
that one can use a robust variance-covariance matrix to test this null with the OLS regression, not
rejecting the null yields the pooled OLS rather than the random effects estimator for this uncorrelated
random effects model.

We could also base a test on any other linear combination of 𝛏M and �̂� but that does not affect the
numerical value of the test statistic as it is all about one-to-one linear transformations, as was first
argued by Hausman and Taylor (1981). One such combination is to compare the GLS estimator with
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the FE estimator, which is what Hausman (1978) originally proposed and still enjoys popularity
among applied researchers. Since the GLS estimator is efficient under the null, this way of testing has
the elegant property that the variance of the difference between the two estimators is the difference
of the variances, as follows from the classical Rao-Blackwell theorem in statistics, but it requires the
estimation of 𝜎2

𝜀 and 𝜎2
𝛼, needed to estimate the variance of the GLS estimator.

Note that this yields different Hausman test test statistics depending on which feasible GLS
estimator is used. Stata uses the Swamy and Arora (1972) feasible GLS estimator. EViews computes
two other Hausman test statistics based on the feasible GLS estimators of Wallace and Hussain
(1969) and Amemiya (1971). Although these test statistics should give the same decision, they may
differ in small samples. Hausman and Taylor (1981) proved the equivalence of the Hausman test
based on three contrasts including (1) the between and within estimators, (2) the between and GLS
estimators, and (3) the within and GLS estimators. Programs that compute the Hausman test based
on the contrast of any two estimators automatically subtract the two variances. One gets the wrong
Hausman test if it is applied with Stata for the contrast using the between and fixed effects estimators.
Stata warns the user that one estimator should be efficient, and the other consistent under the null.
But in the case of the between-versus-fixed effects estimators, neither is efficient under the null, and
the variance of the difference is the sum of the two variances. The program automatically computes
the difference in variances, leading to an incorrect Hausman statistic.

Incidentally, Mundlak(1978) gets this result in his augmented regression (16.3), testing that
𝛑M = 0 with a Wald test, which yields a Hausman test based on the difference between the fixed
effects and the between estimators. Applying GLS rather than OLS on this augmented regression
yields the correct Hausman -type test as a Wald statistic, with the variance of the difference between
these two estimators being the sum of the variances. For practical tips on what to do in case you reject
the Hausman test, see Baltagi (2024b). A key point is that the Hausman test is valid only under the
null and does not endorse the alternative as it is signaling misspecification which is unknown. This
misspecification could be due to dynamic misspecification, ignored endogeneity of some regressors,
or incorrect functional form, to mention a few.

14.3 Chamberlain’s Projection

Chamberlain (1982) proposed modeling 𝛼
𝑖

as a projection on X𝑖 , at every point in time, rather than
on their average over time. Mundlak’s (1978) reduced form model in (16.2) is generalized as follows:

𝛼𝑖 = x′𝑖𝛑C + 𝑣𝑖 , (14.13)

where x
𝑖
≡ vecX𝑖 and 𝛑C is of order 𝑘𝑇 × 1. This projection has been amply discussed in the

literature, see Crépon and Mairesse (2008) for an overview.
The possible advantage of this projection over the Mundlak projection is that 𝑣

𝑖
is, by construction,

uncorrelated with all elements of X𝑖 . So, when we substitute the projection (14.13) for 𝛼
𝑖

in the
model, we get an error term that does not correlate with the regressors, which is not guaranteed with
the Mundlak projection. Whether there are cases where this matters empirically is not clear, but it
does give an argument of the Chamberlain projection over the Mundlak one.

One is hard put to find this argument in these simple words in the literature. Chamberlain (1982),
footnote 5, focuses on the case where the two projections are the same, saying: “A solution could be
based on Mundlak’s (1978a) proposal that E(𝑏 |x) = 𝜓0 + 𝜓1

∑𝑇
𝑡=1 𝑥𝑡 . However, even if we assume

that the regression function is linear in 𝑥1, . . . , 𝑥𝑇 , it may be difficult to justify the restriction that
only

∑
𝑡 𝑥𝑡 matters, unless 𝑇 is large and we have stationarity: cov(𝑏, 𝑥𝑡 ) = cov(𝑏, 𝑥1 ) and 𝑉 (x)

band diagonal.” To make this point explicit, assume momentarily the case of a single regressor, 𝑘 = 1,
to keep notation simple. The Mundlak approach can be seen as a special case of the Chamberlain
one. Since R𝑇R′𝑇 + ī𝑇 i′𝑇 = I

𝑘
,
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x′𝑖𝛑C = x′𝑖
(
R𝑇R′𝑇 + ī𝑇 i′𝑇 )

)
𝛑C

≡ x̃′𝑖 �̃�C + �̄�𝑖 𝜋M, (14.14)

where x̃𝑖 ≡ R′𝑇x
𝑖

and �̃�C ≡ R′𝑇𝛑C. The second term in (14.14) corresponds with the Mundlak
projection. So the two projections yield the same result when �̃�C = 0. We now use the expression
for the coefficient of the linear projection of 𝑎 on b, 𝚺−1

b 𝛔b𝑎 , in self-evident notation that we will
also use below. So, 𝛑C = 𝚺−1

x 𝛔x𝛼. Somewhat crudely stated, when 𝚺x is band diagonal, its inverse
will be approximately band diagonal, the difference vanishing when 𝑇 becomes large. When 𝛔x𝛼 is
proportional to i𝑘 , the same will hold for 𝛑C, and hence �̃�C will be zero.

Also when using the Chamberlain projection, Arellano’s transformation of premultiplication of
(14.1) by

(
R𝑇 , ī𝑇

) ′ yields the FE estimator. Premultiplication by R′𝑇 yields (14.5) again. Since

X𝑖𝛃 =
(
𝛃′ ⊗ I𝑇

)
x𝑖 (14.15)

so

ī′𝑇X𝑖𝛃 =
(
𝛃 ⊗ ī𝑇

) ′ x𝑖
= x′𝑖

(
𝛃 ⊗ ī𝑇

)
,

premultiplication of (14.1) by ī′𝑇 yields, instead of (14.7),

�̄�𝑖 = x′𝑖
(
𝛃 ⊗ ī𝑇 +𝛑C

)
+ 𝑣𝑖 + �̄�𝑖

= x′𝑖𝛏C + 𝑣𝑖 + �̄�𝑖 , (14.16)

with
𝛏C ≡ 𝛃 ⊗ ī𝑇 +𝛑C (14.17)

of order 𝑘𝑇 × 1, as compared to the order 𝑘 × 1 of 𝛏M. Again, the model for �̄�𝑖 is not informative
about 𝛃 and the error terms in (14.5) and (14.16) are not correlated, so the random-effects estimator
of 𝛃 is the FE estimator once again.

The original proof of this (and the only one we are aware of) is due to Chamberlain (1980),
Section 4, p.234. It is a bit hidden in an analysis of the likelihood approach to the farms example. It
says: “The ML estimator of (𝛃, 𝛑) , allowing for several variables in x𝑖𝑡 and given 𝜆 = 𝜎2

𝑣/𝜎2, can
be obtained from the regression of 𝑦𝑖𝑡 − 𝛾�̄�𝑖 on x𝑖𝑡 − 𝛾x̄𝑖 and (1− 𝛾)x

𝑖
. The resulting estimator for

𝛃 can be obtained from the regression of 𝑦𝑖𝑡 − 𝛾�̄�𝑖 on the residual from the regression of x𝑖𝑡 − 𝛾x̄𝑖
on x

𝑖
. This residual is x𝑖𝑡 − x̄𝑖 ; but the regression of 𝑦𝑖𝑡 − 𝛾�̄�𝑖 on x̄𝑖𝑡 − x̄𝑖 is equivalent to the

regression of 𝑦𝑖𝑡 − �̄�𝑖 on x̄𝑖𝑡 − x̄𝑖 .” This is followed by a new paragraph starting with “We have
obtained the interesting result that a random effects specification can give a ML estimator of 𝛃 that
is identical to the fixed effects estimator, if we allow the distribution of the incidental parameters to
depend upon x,” with footnote 15 added saying “This result is discussed in Mundlak (1978) for the
case 𝛑′x

𝑖
= 𝛅′x̄𝑖 .”

Also here the difference between estimators leads to a test for exogeneity, which now means
𝛑C = 0 or 𝛏′C − 𝛃 ⊗ ī𝑇 = 0. The test statistic, due to Ahn and Low (1996), see also Baltagi (2021),
pp.93-94, is

𝑞2 =
(
�̂�C − �̂� ⊗ ī𝑇

) ′ [
V̂ar

(
�̂�C

)
+ V̂ar

(
�̂�
)
⊗ i𝑇 i′𝑇

]−1 (
�̂�C − �̂� ⊗ ī𝑇

) as.∼ 𝜒2
𝑘𝑇 (14.18)

This test conceptually directly generalizes the test in (14.12). Again, the variance of the difference is
the sum of the variances. The number of degrees of freedom of this test is 𝑘𝑇 , instead of 𝑘 in (14.12).
So the power of the new test can be expected to be much lower when �̂�C shows little variation over
time, which may quite well be the dominant case, since then 𝑞2 becomes close to 𝑞1 in (14.12), but
with many more degrees of freedom.

The approach to estimation and testing taken by Chamberlain (1982), later on followed by Angrist
and Newey (1991), is different and is to insert the projection (14.13) in the original model (14.1)
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rather than in the between regression as in (14.16). With

𝚷 ≡ 𝛃′ ⊗ i𝑇 + I𝑇𝛑
′
C (14.19)

of order 𝑇 × 𝑘𝑇 this yields, using (14.15),

y𝑖 =𝚷x𝑖 + i𝑇𝑣𝑖 + 𝛆𝑖 . (14.20)

Chamberlain (1982) proposed to obtain estimators �̂� and �̂�C of 𝛃 and 𝛑C by the minimum-distance
(MD) method, that is, by minimizing d′Ṽ−1d, where

d ≡ vec
(
�̂�− 𝛃′ ⊗ I𝑇 − i𝑇𝛑

′
C

)
, (14.21)

with
�̂� ≡ Y′ ¤X( ¤X′ ¤X)−1,

with Ṽ a consistent estimator of the variance of d̃ based on initial consistent estimators of 𝛃 and 𝛑C.
The restrictions on 𝚷 according to (14.19) can be tested through the value of the criterion function
in the minimum, distributed as

𝑞3 = d̂′Ṽ−1d̂ as.∼ 𝜒2
𝑘 (𝑇2−𝑇−1) , (14.22)

where d̂ is d with the MD estimators plugged in.
Not rejecting the null using a Hausman test leads the researcher to report the random effects

estimator as the efficient estimator. Rejecting the null means there is misspecification and the random
effect is not efficient. However, in practice, rejecting the null is interpreted as support for the fixed
effects estimator. The random effects model assumes no correlation of the random individual effects
with all the regressors, whereas the Chamberlain correlated random effects model assumes that the
random individual effects are correlated with all the regressors at every point in time.

Chamberlain (1982) suggested testing the fixed effects restrictions using minimum distance
estimation. In this case, the test statistic is the minimand of the objective function and is a chi-squared
goodness-of-fit statistic for the restrictions on the reduced form. Angrist and Newey (1991) simplified
Chamberlain’s test using residuals of the fixed effects regression at every point in time. They showed
that this minimand can be obtained as the sum of 𝑇 terms. Each term of this sum is simply the
degrees of freedom times the 𝑅2 from a regression of the Within residuals for a particular period on
all leads and lags of the independent variables.

Baltagi, Bresson and Pirotte (2009) performed Monte Carlo experiments and showed that these
tests yield the same decision and are in conflict at most 2.2 % of the time. One caveat is that, like the
Sargan overidentification test for dynamic panels (see Arellano & Bond, 1991), the Chamberlain
test tends to understate the true variance of the test statistic as 𝑇 gets large. This is because as
𝑇 gets large, the number of testable restrictions increase, and the variance of the test statistic is
understated. They suggest careful examination of which regressors may or may not be correlated
with the individual effects. In this case, one should be willing to entertain a more restricted model
where only a subset of the regressors are correlated with the individual effects, as proposed by
Hausman and Taylor (1981). This would impose fewer restrictions than the general Chamberlain
model and is also testable with a Hausman test.

Alternatively, one could question the endogeneity of the regressors with the disturbances, not
only with the individual effects. This endogeneity leads to inconsistency of the FE estimator and
invalidates the Hausman test performed based on the fixed effects versus the random effects estimator,
see Baltagi (2024b).

Although Balestra and Nerlove (1966) popularized the random effects model, the dominant view
in the panel data literature is that its assumptions are too restrictive, and hence the common use of
the fixed effects model when a Hausman test is rejected. The fixed effects model assumes that all the
regressors are correlated with the individual effects, which is perceived as less restrictive than the



14 The Basics of the Mundlak and Chamberlain Projections 403

uncorrelated random effects model. As Chamberlain pointed out, these correlated effects restrictions
are testable but unfortunately not carried out in panel data except in a handful of applications.

Angrist and Newey (1991) illustrate the Chamberlain test using two examples. The first example
estimates and tests a number of models for the union wage effect using five years of data from
the National Longitudinal Survey of Youth (NLSY). They find that the assumption of fixed effects
in an equation for union wage effects is not at odds with the data. The second example considers
a conventional human capital earnings function. They find that the fixed effects estimates of the
return to schooling in the NLSY are roughly twice those of ordinary least squares. However, the
overidentification test suggests that the fixed effects assumption may be inappropriate for this model.

Carey (1997) applies the Chamberlain minimum chi-square method to the estimation of a multiple
output hospital cost function using a panel of 1733 facilities over the period 1987–1991. OLS (year
by year), fixed effects, seemingly unrelated regressions, and Chamberlain’s minimum chi-square
method are reported. In this application, the minimum chi-squared test rejects the restrictions
imposed by the null hypothesis. Other notable applications of Chamberlain’s approach of correlated
random effects include Card (1996), Islam (1995), and Nevo (2001).

As was already noticed by Arellano (2003), the MD approach is basically GMM. In the words of
Cameron and Trivedi (2005), p.753, ‘Minimum distance estimation has been supplanted by GMM;
see Arellano (2003, pp. 22–23) and Crepon and Mairesse (1995) for comparison of Chamberlain’s
MD estimator with GMM. However, Chamberlain’s approach of obtaining moment restrictions via
exogeneity assumptions and assumptions on the individual effects has had a big impact on the panel
literature.”

To see the link with GMM, consider the most general 𝑘𝑇2 moment conditions

vecE
(
𝛆𝑖x
′
𝑖

)
= E

(
x𝑖 ⊗ 𝛆𝑖

)
= 0 (14.23)

that follow from the exogeneity of x
𝑖
. From (14.23),

0 = E
(
𝛆𝑖x
′
𝑖

)
= E

(
y𝑖 − ¤X𝑖𝛃 − i𝑇x′𝑖𝛑C

)
x′𝑖

= E
(
y𝑖 −

(
𝛃′ ⊗ I𝑇

)
x𝑖 − i𝑇𝛑

′
Cx𝑖

)
x′𝑖 .

Summation over 𝑖 yields

E
( [

Y′ −
(
𝛃′ ⊗ I𝑇

) ¤X′ − i𝑇𝛑
′
C
¤X′

] ¤X)
= 0.

Postmultiplying by ( ¤X′ ¤X)−1 yields

E
(
�̂�− 𝛃′ ⊗ i𝑇 − I𝑇𝛑

′
C

)
= 0,

or E(d) = 0, which corresponds with (14.21), thus showing that MD and GMM, based on the largest
set of exogeneity-based moment conditions, are essentially the same.

We now consider the result of Arellano’s transformation in the GMM setting and take the within
and between dimensions apart. From (14.15) and (14.16), splitting up the moment conditions (14.23)
into the within and between components yields

h𝑖W ≡ x𝑖 ⊗R′𝑇 𝛆𝑖
= x𝑖 ⊗

(
R′𝑇y𝑖 −

(
𝛃 ⊗R𝑇

) ′ x𝑖 ) (14.24)

h𝑖B ≡ x𝑖 ī
′
𝑇 𝛆𝑖

= x𝑖
(
�̄�𝑖 − 𝛏

′
Cx𝑖 − 𝑣𝑖

)
. (14.25)

where we can neglect the term 𝑣
𝑖

since E
(
x
𝑖
⊗ 𝑣

𝑖

)
= 0. Now, h𝑖W and ℎ𝑖B are uncorrelated when the

errors are uncorrelated over time, as we assumed, and (14.24) only depends on 𝛃 while (14.25) only
depends on 𝛏C. So we can consider optimal GMM separately for 𝛃 and 𝛏C. The GMM estimator of
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𝛏C is the OLS estimator of the �̄�𝑖 on the x
𝑖
. To derive the GMM estimator of 𝛃, let

HW ≡
∑︁
𝑖

(
R′𝑇y𝑖 −

(
𝛃 ⊗R𝑇

) ′ x𝑖 ) x′𝑖

= R′𝑇Y′ ¤X−
(
𝛃 ⊗R𝑇

) ′ ¤X′ ¤X.
Then the optimal GMM estimator under homoskedasticity follows from minimizing

𝑞W ≡
(
vecHW

) ′ ( ¤X′ ¤X⊗ i𝑇−1

)−1 (
vecHW

)
(14.26)

= trH′WHW

(
¤X′ ¤X

)−1

= 𝑐 − 2tr
(
𝛃 ⊗A𝑇

)
Y′ ¤X+ tr

(
𝛃𝛃′ ⊗A𝑇

) ¤X′ ¤X
= 𝑐 − 2tr ¤X

(
𝛃 ⊗A𝑇

)
Y′ + tr ¤X

(
𝛃𝛃′ ⊗A𝑇

) ¤X′
= 𝑐 − 2

(
vec ¤X′

) ′ (
I𝑛 ⊗ 𝛃 ⊗A𝑇

)
vecY′ +

(
vec ¤X′

) ′ (
I𝑛 ⊗ 𝛃𝛃′ ⊗A𝑇

)
vec ¤X′

= 𝑐 − 2𝛃′X′
(
I𝑛 ⊗A𝑇

)
y+ 𝛃′X′

(
I𝑛 ⊗A𝑇

)
X𝛃, (14.27)

yielding the FE estimator. The result is not surprising but the length of the derivation is.

14.4 Testing if the Parameters are Constant over Time

With 𝛑C entering into (14.22), the 𝜒2-test based on it is known as a test for FE. But the test also has
power against the null-hypothesis of 𝛃 being constant over time, which has been implicitly assumed.
However, a test that is explicitly designed for this hypothesis has more power.

To simplify the discussion and focus on 𝛃 solely, we momentarily neglect the individual effects.
There are two approaches. One is the 𝐽-test on overidentification in a GMM setting. The other one
is to estimate 𝛃 for each wave and do a Wald test to see if the various �̂�s differ significantly. We
show that the two statistics are the same when the same weight matrix is used. Let, as before, ¤X𝑡 of
order 𝑁 × 𝑘 contain the regressors for time 𝑡 and y𝑡 likewise. Then the estimator of 𝛃 when it is
based on the data for time 𝑡 only is

�̂�𝑡 =
(
¤X′𝑡 ¤X𝑡

)−1 ¤X′𝑡y𝑡 . (14.28)

This estimator can be seen as an MM estimator following from the moment conditions E
(
x
𝑡𝑖
𝜀𝑡𝑖

)
= 0,

where x
𝑡𝑖

of order 𝑘 × 1 is transpose of the 𝑖th row of ¤X𝑡 or of the 𝑡th column of X𝑖 . By way of
comparison, (14.22) uses the data in the form of �̂�. The 𝑡th column of �̂�′ is

�̃�𝑡 ≡
(
¤X′ ¤X

)−1 ¤X′y𝑡 .

This expression depends on 𝑡 in a more limited way than does (14.28) and, intuitively, a test based
on the latter will have less power. We can collect these 𝑘 moment conditions into one large set of
𝑇𝑘 moment conditions, now requiring GMM to estimate 𝛃. Thus,

h𝑖 ≡
©«

x1𝑖 𝜀1𝑖
.
.
.

x
𝑇𝑖
𝜀
𝑇𝑖

ª®®®®¬
=

©«
x1𝑖𝑦1𝑖
.
.
.

x
𝑇𝑖
𝑦
𝑇𝑖

ª®®®®¬
−

©«
x1𝑖x

′
1𝑖
.
.
.

x
𝑇𝑖

x′
𝑇𝑖

ª®®®®¬
𝛃 ≡ g𝑖 −G𝑖𝛃.
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These 𝑇𝑘 moment conditions are a subset of the full set of 𝑇2𝑘 moment conditions (14.23). In
particular,

h𝑖 =
(
I𝑘 ⊗H𝑇

) ′ (x𝑖 ⊗ 𝛆𝑖 ) ,
with

H𝑇 ≡
∑︁
𝑡

e𝑡 ⊗ e𝑡e′𝑡

the ‘diagonalization’ matrix that selects the diagonal elements of the vec of a 𝑇 ×𝑇 matrix, 𝒆𝑡
being the 𝑡th unit vector of order 𝑇 × 1. Let the averages over 𝑖 of h𝑖 , g𝑖 and G𝑖 be h, g and G. An
estimator of the variance of h is �̂�. The optimal GMM estimator of 𝛃 is

�̃� = (G′�̂�−1G)−1G′�̂�−1g

so
g−G�̃� =

(
I𝑇𝑘 −G(G′�̂�−1G)−1G′�̂�−1

)
g.

Let B be of order𝑇𝑘 × (𝑇 −1)𝑘 with B′G = 0 and (B,G) of full rank, and Ŵ ≡ �̂�−
1/2. The 𝐽-statistic

for testing whether the �̂�𝑡s are the same is

𝑞𝐽 = (g−G�̃�) ′�̂�−1 (g−G�̃�)

= g′
(
�̂�
−1 − �̂�−1G(G′�̂�−1G)−1G′�̂�−1

)
g

= g′Ŵ
(
I𝑘𝑇 − ŴG(G′Ŵ2G)−1G′Ŵ

)
Ŵg

= g′Ŵ
(
Ŵ−1B(B′Ŵ−2B)−1B′Ŵ−1

)
Ŵg

= g′B(B′�̂�B)−1B′g,
≡ 𝑞W,

which is the form of a Wald statistic. The two matrices in square brackets in the third and fourth line
are identical as they are both symmetric idempotent of order 𝑝 × 𝑝 and rank 𝑝 − 𝑘, orthogonal to
ŴG of rank 𝑘. The result is due to Newey (1985). Now consider

©«
I
𝑘
−I
𝑘

. . .
. . .

I
𝑘
−I
𝑘

ª®®®®¬
©«
¤G−1

1 − ¤G−1
2

. . .
. . .

¤G−1
𝑇−1 − ¤G

−1
𝑇

ª®®®®¬
©«
¤G1
.
.
.

¤G𝑇

ª®®®®¬
= 0,

summarized as D′𝚫−1G = 0. Then a B that suites the requirements is B ≡ D′𝚫−1. Collect the �̂�𝑡 in
the 𝑇𝑘-vector �̂�. Then B′g = D′ �̂� and the Wald statistic can be rewritten as

𝑞W = �̂�
′
D(D′�̂�D)−1D′ �̂�,

with �̂� = 𝚫−1�̂�𝚫−1 an estimator of the variance of �̂�. This is the Wald statistic for 𝐻0 : �̂�1 = · · · = �̂�𝑇 .
The number of degrees of freedom of the test is 𝑘 (𝑇 − 1) , as compared to 𝑘 (𝑇2 −𝑇 − 1) for the

test based on (14.22). So the power of the specific test for parameter constancy over time will have
much more power.
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14.5 Unbalanced Panels

Here we check how unbalancedness affects the results. Following Baltagi (2021), we capture
unbalancedness by letting 𝑇 depend on 𝑖. With a slight abuse of notation we write i𝑖 for i𝑇𝑖 , A𝑖 for
A𝑇𝑖 , and R𝑖 for R𝑇𝑖 . So now, with the subscript R indicating the reduced version of the variables,
taking the unbalancedness into account,

yR𝑖 = XR𝑖𝛃 + i𝑖𝛼𝑖 + 𝛆R𝑖 , (14.29)

where yR𝑖 and 𝛆R𝑖 are 𝑇𝑖 × 1 and XR𝑖 is 𝑇𝑖 × 𝑘. Premultiplication of (14.29) by (R𝑖 , ī𝑇𝑖 )
′ yields

basically the same result for 𝛃 as in the balanced case,

�̂� =

(∑︁
𝑖

X′R𝑖A𝑖XR𝑖

)−1 ∑︁
𝑖

X′R𝑖A𝑖y𝑖 ,

cf. (14.8), which again is the fixed-effects estimator, adapted to the unbalanced case. This holds for
both the Mundlak and Chamberlain projections.

The between regression requires some care since the projection parameters now come to depend
on 𝑖 since the pattern of ‘missingness’ differs between cross-sectional units. Moreover, in the case of
the Chamberlain projection, even the number of such parameters itself comes to depend on 𝑖. We
denote by S𝑖 of order 𝑇 ×𝑇𝑖 the ‘selection matrix’ of zeros and ones indication which observations
over time are available for 𝑖, and let B𝑖 ≡ I𝑘 ⊗ S𝑖 . Then, for the Mundlak projection there holds

𝛼𝑖 = x̄′R𝑖𝛑M𝑖 + 𝑣𝑖
= x̄′𝑖S𝑖

(
S′𝑖𝚺x̄S𝑖

)−1 S′𝑖𝛔 x̄𝛼 + 𝑣𝑖
=

(
x̄′𝑖S𝑖

(
S′𝑖𝚺x̄S𝑖

)−1 S′𝑖𝚺x̄

) (
𝚺−1

x̄ 𝛔 x̄𝛼

)
+ 𝑣𝑖

≡ ˜̄x′𝑖𝛑M + 𝑣𝑖 .

while for the Chamberlain projection there holds

𝛼𝑖 = x′R𝑖𝛑C𝑖 + 𝑣𝑖
= x′𝑖B𝑖

(
B′𝑖𝚺xB𝑖

)−1 B′𝑖𝛔x𝛼 + 𝑣𝑖
=

(
x′𝑖B𝑖

(
B′𝑖𝚺xB𝑖

)−1 B′𝑖𝚺x

) (
𝚺−1

x 𝛔x𝛼

)
+ 𝑣𝑖

≡ x̃′𝑖𝛑C + 𝑣𝑖 .

These indicate how adapting the variables in the projections need to be adapted in order to corrrect
for unbalancedness. When making ˜̄x

𝑖
and x̃𝑖 operational, the population quantities 𝚺x̄ and 𝚺x need

to be replaced by their sample counterparts. The expression for x̃𝑖 shows that replacing the ‘missing’
observations by zeros is not adequate, as was already pointed out by Abrevaya (2013). In particluar,
he introduces a modified Chamberlain approach in which the projection depends upon the form
of missingness for a given individual. This leads to orthogonality conditions that depend upon the
form of exogeneity assumption maintained. These orthogonality conditions are used in a GMM
framework to develop estimators of the model (and projection) parameters as well as tests of strict
exogeneity and random effects.

A much related and in fact formally identical model was studied by Arkhangelsky and Imbens
(2024), who have groups (with their naturally different group sizes) rather than time as the second
dimension in the data. The model is

𝑦𝑖 = x′𝑖𝛃 + 𝛼𝑔 (𝑖) + 𝜀𝑖 , (14.30)
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with 𝑔 (𝑖) the group indicator and 𝛼𝑔 (𝑖) a fixed group effect. They state that OLS in this model
yields the same result for 𝛃 as does OLS in the model where the group fixed effects are replaced by
averages per group,

𝑦𝑖 = x′𝑖𝛃 + x̄′
𝑔 (𝑖) 𝛄 + 𝜀

∗
𝑖 . (14.31)

There is no reference to an underlying RE model to which Mundlak’s projection is applied. They
state that the numerical equivalence was first shown by Mundlak (1978) and follows from repeated
applications of textbook omitted variable bias formulas. In fact, the step from (14.31) to (14.30)
follows directly from applying the double projection result in (14.9).

14.6 Two-Way Effects

Arellano’s transformation of Section 14.2 is easily extended to two dimensions that add time effects
𝛾𝑡 , 𝑡 = 1, . . . , 𝑇 to the model in addition to the individual effects 𝛼

𝑖
that were already there. This

approach is much more concise than the one by Yang (2022) and Baltagi (2023a), who independently
considered this model. The kind of situations where this may be useful will not so much involve
time-series of cross-sections but e.g., trade flow data but we keep the notation with 𝑖 and 𝑡 .

Because the model is now symmetric in both dimensions we write also in symmetric form, for
all 𝑛𝑇 observations together. The extension of the notation to this case is self-evident. The model
now is

𝑦𝑖𝑡 = x′𝑖𝑡𝛃 + 𝛼𝑖 + 𝛾𝑡 + 𝜀𝑖𝑡 (14.32)
or, in matrix format,

y = X𝛃 +
(
I𝑛 ⊗ i𝑇

)
𝛂 +

(
i𝑛 ⊗ I𝑇

)
𝛄 + 𝛆. (14.33)

The Mundlak projections of the effects on the means of the regressors over time are

𝛂 =
(
I𝑛 ⊗ ī𝑇

) ′Xa+v

𝛄 =
(
ī𝑛 ⊗ I𝑇

) ′Xc+w.

Extending Arellano’s transformation to the case of two dimensions, we premultiply the model with
the orthonormal 𝑛𝑇 × 𝑛𝑇 matrix

(
R𝑛 ⊗R𝑇 ,R𝑛 ⊗ ī𝑇 , ī𝑛 ⊗R𝑇 , ī𝑛 ⊗ ī𝑇

)
and substitute for 𝛂 and 𝛄

to obtain (
R𝑛 ⊗R𝑇

) ′ y =
(
R𝑛 ⊗R𝑇

) ′X𝛃 +
(
R𝑛 ⊗R𝑇

) ′ 𝛆(
R𝑛 ⊗ ī𝑇

) ′ y =
(
R𝑛 ⊗ ī𝑇

) ′X (𝛃 +a) +
(
R𝑛 ⊗ ī𝑇

) ′
𝛆+R′𝑛v(

ī𝑛 ⊗R𝑇
) ′ y =

(
ī𝑛 ⊗R𝑇

) ′X (𝛃 + c) +
(
ī𝑛 ⊗R𝑇

) ′
𝛆+R′𝑇w(

ī𝑛 ⊗ ī𝑇
) ′ y =

(
ī𝑛 ⊗ ī𝑇

) ′X (𝛃 +a+ c) +
(
ī𝑛 ⊗ ī𝑇

) ′
𝛆+ ī′𝑛v+ ī′𝑇w.

The last equation is non-informative since the variables have been demeaned. The error terms of the
four equations of this model each have a scalar covariance matrix. For the first three equations they
are 𝜎2

𝜀I(𝑁−1) (𝑇−1) , (𝜎
2
𝜀 + 𝜎2

𝑣 )I𝑁−1, and (𝜎2
𝜀 + 𝜎2

𝑤 )I𝑇−1, respectively. They are uncorrelated
with each other and the regression coefficients do not overlap. So we have only the first equation to
estimate 𝛃. With R𝑛R′𝑛 ⊗R𝑇R′𝑇 = A𝑛 ⊗A𝑇 the estimator is

�̂� =
[
X′

(
A𝑛 ⊗A𝑇

)
X
]−1 X′

(
A𝑛 ⊗A𝑇

)
y, (14.34)

which again is the FE estimator, but now with fixed individual and time effects, corresponding with
the transformation �̃�

𝑖𝑡
= 𝑔

𝑖𝑡
− 𝑔𝑛∗ − 𝑔∗𝑡 +𝑔∗∗. This result was independently derived by Wooldridge

(2021), Yang (2022), and Baltagi (2023a).
Wooldridge (2021) shows that the OLS estimator of 𝛃 in (14.32) or (14.33) is the same as the

OLS estimator of 𝛃 in the model where the effects are replaced by the means over time and the
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means over individuals, so in the model

𝑦𝑖𝑡 = x′𝑖𝑡𝛃 + x̄′𝑖∗𝛂 + x̄′∗𝑡 𝛄 + 𝜀∗𝑖𝑡 (14.35)

in self-evident notation, or again

y = X𝛃 +
(
I𝑛 ⊗ J̄𝑇

)
X𝛂∗ +

(
J̄𝑛 ⊗ I𝑇

)
X𝛄∗ + 𝛆∗. (14.36)

Wooldridge (2021) calls this model the ‘two-way Mundlak regression’. No reference is made to an
underlying idea of a projection, and hence the GLS structure that remains after the projection is
not considered. But also here it can be shown that OLS and GLS coincide, while the same caveat
applies as in the one-way model as to the validity of test results.

To show that OLS in this model yields the FE estimator for 𝛃 it is of some interest to consider
an alternative proof to the one based on Arellano’s transformation, just as we did for the one-way
model in Section 14.2. The generalization to the two-way model is straightforward and is based
on the observation that the two sets of regressors containing the means, 𝒁 , say, are orthogonal to
each other, again using the fact that the variables are demeaned. Hence, the projection matrix onto
the space spanned by 𝒁 is the sum of the separate projection matrices. So we can apply the double
projection result (14.9) twice and find

P𝒁 =
(
I𝑛 ⊗ J̄𝑇 + J̄𝑛 ⊗ I𝑇

)
X

=
(
A𝑛 ⊗ J̄𝑇 + J̄𝑛 ⊗A𝑇

)
X

and hence M𝒁 ≡ I𝑛𝑇 −P𝒁 , the projection orthogonal to Z, is

M𝒁 =
(
A𝑛 ⊗A𝑇

)
X,

which leads to the two-way FE estimator. This result is “the key algebraic result in this paper”
(Wooldridge, 2021, Theorem 3.1).

Baltagi (2023a) shows that the 𝐹-tests for the significance of a and c in the augmented two-way
Mundlak regression generate Hausman (1978) type tests which were generalized from the one-way
to the two-way error components model by Kang (1985). Once again, it is important to emphasize
that even though OLS is equivalent to GLS on this two-way Mundlak augmented model, the standard
errors are different, and so are tests of hypotheses. In fact, performing the 𝐹 tests for the significance
of a and c with OLS on the augmented two-way Mundlak model yields completely different test
statistics than those using a two-way random effects GLS regression. Non-rejection of the null finds
pooled OLS to be the efficient estimator, while non-rejection of the null using GLS finds that the
two-way random effects estimator is the efficient estimator. This is in the spirit of what Mundlak
(1978) intended.

14.7 Extension to Three Dimensions

Up till now we considered two-dimensional data, with one or two effects. Following Baltagi (2024a)
and Yang (2021) we now consider three-dimensional data, where y now has 𝑀𝑁𝑇 elements, and
likewise for X and 𝛆. Balázsi, Mátyás and Wansbeek (2018, 2024) provide an overview. With effects
for the new dimension added, the model becomes 𝑦𝑚𝑛𝑡 = x′𝑚𝑛𝑡𝛃 + 𝜇 + 𝛿𝑚 + 𝛼𝑛 + 𝛾𝑡 + 𝜀𝑚𝑛𝑡 or

y = X𝛃 + 𝛅 ⊗ i𝑁𝑇 + i𝑀 ⊗ 𝛂 ⊗ i𝑇 + i𝑀𝑁 ⊗ 𝛄 + 𝛆, (14.37)

hence the design matrix for the effects is

D ≡
(
I𝑀 ⊗ i𝑁𝑇 , i𝑀 ⊗ I𝑁 ⊗ i𝑇 , i𝑀𝑁 ⊗ I𝑇

)
.
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Since all three submatrices in D span i𝑀𝑁𝑇 the rank of D is 𝑀 +𝑁 +𝑇 − 2.
Now consider the Mundlak projections of the effects on the means of X in the other two

dimensions as

𝛅 =
(
I𝑀 ⊗ ī𝑁𝑇

) ′Xd+u (14.38)

𝛂 =
(
ī𝑀 ⊗ I𝑁 ⊗ ī𝑇

) ′Xa+v (14.39)

𝛄 =
(
ī𝑀𝑁 ⊗ I𝑇

) ′Xc+w. (14.40)

Like before, we premultiply the model by transposed R matrices and ī vectors. We use the notation
C111 ≡R𝑀 ⊗R𝑖 ⊗R𝑇 and C110 ≡R𝑀 ⊗R𝑖 ⊗ ī𝑇 and so on, a subscript ‘1’ to C indicating an R and
a subscript ‘0’ an ī. We collect all the combinations in the orthonormal 𝑀𝑁𝑇 ×𝑀𝑁𝑇 matrix C,

C ≡
(
Q,C100,C010,C001,C000

)
,

with Q of order 𝑀𝑁𝑇 × (𝑀𝑁𝑇 −𝑀 − 𝑁 −𝑇 +2) defined as

Q ≡
(
C111,C110,C101,C011

)
.

When we follow Arellano’s transformation again and premultiply (14.37) by C′ we obtain

Q′y = Q′X𝛃 +Q′𝛆
C′100y = C′100X(𝛃 +d) +C′100𝛆+R′𝑀u

C′010y = C′010X(𝛃 +a) +C′010𝛆+R′𝑖v

C′001y = C′001X(𝛃 + c) +C′001𝛆+R′𝑇w

�̄� = x̄′ (𝛃 +d+a+ c) +�̄�+ ū+ v̄+ w̄.

(14.41)

Again, the last equation is non-informative due to the demeaning of the variables, and the error
terms of the equations each have a scalar covariance matrix and are uncorrelated with each other.
Reasoning as above, estimation of 𝛃 rests solely on the first equation, leading to

�̂� = (X′QQ′X)−1 X′QQ′y. (14.42)

Since Q′D = 0 and (Q,D) is nonsingular, the matrix QQ′ is the projection matrix orthogonal to D.
Hence �̂� in (14.42) is the FE estimator. With 𝑔 a generic variable, its computation can be based on
the transformation

�̃�𝑚𝑛𝑡 = 𝑔𝑚𝑛𝑡 − 𝑔𝑚∗∗ − 𝑔∗𝑛∗ − 𝑔∗∗𝑡 +2𝑔∗∗∗,
written in scalar notation.

A variant of some interest arises when the time effects 𝛄 are taken fixed a priori. Then the first
three equations of (14.41) are unaffected while the fourth becomes

C′001y = C′001X𝛃 + 𝛄 +C′001𝛆+R′𝑇w.

So this leaves the estimation of 𝛃 unaffected.
An alternative formulation that has been considered is the model with effects with double indices,

𝑦𝑚𝑛𝑡 = x′𝑚𝑛𝑡𝛃 + 𝛼𝑛𝑡 + 𝛾𝑚𝑡 + 𝛿𝑚𝑛 + 𝜀𝑛𝑡 so

y = X𝛃 + i𝑀 ⊗ 𝛂 +
(
I𝑀 ⊗K𝑇𝑁

) (
𝛄 ⊗ i𝑁

)
+ 𝛅 ⊗ i𝑇 + 𝛆,

with K𝑁𝑇 the commutation matrix with property K𝑁𝑇 (𝒑 ⊗ 𝒒) = 𝒒 ⊗ 𝒑 for any 𝒑 and 𝒒 of order
𝑁 × 1 and 𝑇 × 1, respectively. The Mundlak projections of the effects on the mean of X in the
remaining dimension are
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𝛂 =
(
ī𝑀 ⊗ I𝑁𝑇

) ′Xa+v (14.43)

𝛅 =
(
I𝑀𝑁 ⊗ ī𝑇

) ′Xd+u (14.44)

𝛄 =
(
I𝑀 ⊗ ī𝑛 ⊗ I𝑇

) ′Xc+w. (14.45)

so Arellano’s transformation leads to

C′111y = C′111X𝛃 +C′111𝛆

C′110y = C′110X(𝛃 +d) +C′110𝛆+
(
R𝑀 ⊗R𝑖

) ′ u
C′101y = C′101X(𝛃 + c) +C′101𝛆+

(
R𝑀 ⊗R𝑇

) ′w
C′011y = C′011X(𝛃 +a) +C′011𝛆+

(
R𝑖 ⊗R𝑇

) ′ u
C′100y = C′100X(𝛃 +d+ c) +C′100𝛆+

(
R𝑀 ⊗ ī𝑛

) ′ u+ (
R𝑀 ⊗ i𝑇

) ′w
C′010y = C′010X(𝛃 +d+a) +C′010𝛆+

(
R𝑖 ⊗ ī𝑇

) ′ v+ (
ī𝑀 ⊗R𝑖

) ′ u
C′001y = C′001X(𝛃 + c+a) +C′001𝛆+

(
ī𝑛 ⊗R𝑇

) ′ v+ (
ī𝑀 ⊗R𝑇

) ′w
�̄� = x̄′ (𝛃 +d+ c+a) +�̄�+ ū+ v̄+ w̄.

This again is a system where each equation has a scalar covariance matrix, and the errors of the
equations are two by two uncorrelated. However, the regression coefficients of the various equations
overlap and, unlike the previous cases, cannot be separated. Hence optimal estimation of 𝛃 requires
GLS estimation of the entire system.

As was shown by Balázsi, Mátyás, and Wansbeek (2018), the FE estimator in this case follows
from the transformation by C′111, so

�̂� =
[
X′

(
A𝑀 ⊗A𝑁 ⊗A𝑇

)
X
]−1 X′

(
A𝑀 ⊗A𝑁 ⊗A𝑇

)
y,

extending the result (14.34) for the two-dimensional case. It corresponds with the transformation

�̃�𝑚𝑛𝑡 = 𝑔𝑚𝑛𝑡 − 𝑔𝑚𝑛∗ − 𝑔𝑚∗𝑡 − 𝑔∗𝑛𝑡 +𝑔𝑚∗∗ +𝑔∗𝑛∗ +𝑔∗∗𝑡 − 1.

So in this case the Mundlak projection does not lead to the FE estimator. The finding that the
fixed-effects and random-effects estimators are not the same for double-indexed effects was first
derived by Yang (2021). Baltagi (2024a), however, shows that Mundlak’s result still holds for
higher-dimensional panel data with single-indexed effects. Once again, GLS rather than OLS should
be applied to derive this Mundlak higher dimensional panel result and also to get the correct
Hausman -type tests.

14.8 Other Applications of Arellano’s Transformation

We now consider how useful applying Arellano’s transformation is in three specific cases: factor
models, varying coefficients, and the spatial regression model.

14.8.1 Factor Models

Instead of i𝑇𝛼𝑖 in (14.1) we now consider the more general structure F𝛂
𝑖
, with F and 𝛂

𝑖
of order

𝑇 × 𝑟 and 𝑟 × 1, respectively. The matrix F contains factors, that is, variables that vary over time
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but not over individuals. We allow for the possibility that i𝑇 is a column of F. We consider directly
the Chamberlain-type projection, which now is 𝛂

𝑖
= G′x

𝑖
+v
𝑖
. With this projection substituted we

obtain

y𝑖 = X𝑖𝛃 +F𝛂𝑖 + 𝛆𝑖
= X𝑖𝛃 +F(G′x𝑖 +v𝑖 ) + 𝛆𝑖 .

Let F+ ≡ (F′F)−1F′. We generalize Arellano’s transformation in the sense that we now premultiply the
model by H′, of order (𝑇 − 𝑟 ) ×𝑇 and satisfying H′F = 0 and H′H = I𝑇−𝑟 so MF ≡ I𝑇 −FF+ = HH′,
and by F+, to obtain the equivalent two-equation model

H′y𝑖 = H′X𝑖𝛃 +H′𝛆𝑖 (14.46)
F+y𝑖 = F+X𝑖𝛃 +G′x𝑖 +v𝑖 +F+𝛆𝑖

=
(
(F+ ) ′ ⊗ 𝛃′ +G′

)
x𝑖 +v𝑖 +F+𝜀𝑖 . (14.47)

The two error terms are uncorrelated. The coefficient matrix in (14.47), (F+ ) ′ ⊗ 𝛃′ +G′, contains no
information about 𝛃 itself. This has to come from (14.46), which yields

�̂� =

(∑︁
𝑖

X′𝑖MFX𝑖

)−1 ∑︁
𝑖

X′𝑖MFy𝑖 ,

which is the estimator when the 𝛂𝑖 are taken to be fixed.
Thus, with factors, we can directly generalize (14.8), where (14.46) is the analogue of the within

regression and (14.47) the analogue of the between regression. We have implicitly assumed that
the factors are observable, which they usually are not, and the above just serves as a potentially
useful algebraic step in a more elaborate context, see e.g. Pesaran (2006), Bai (2009) and Westerlund
(2019).

14.8.2 Varying Coefficients

The panel data model with individual effects can be considered as a model with an intercept
that varies over individuals or, in other words, a constant term with a coefficient that varies over
individuals (Wooldridge (2019)). To check the possible relevance of Arellano’s transformation here,
one straightforward generalization of the basic model (14.1) is the model where one regressor has a
coefficient that varies over individuals. We thus consider the model

𝑦𝑖 = X𝑖𝛃 + z𝑖𝛾𝑖 + 𝛆𝑖 .

The generalization of Arellano’s transformation to this case entails projecting out the z
𝑖
, through the

matrix M𝑖 ≡ z
𝑖
z+
𝑖
, with z

𝑖
≡ z

𝑖
/z′
𝑖
z
𝑖
. Then

M𝑖y𝑖 = M𝑖X𝑖𝛃 +M𝑖𝛆𝑖 (14.48)
z+𝑖 y𝑖 = z+𝑖X𝑖𝛃 + 𝛾𝑖 + z+𝑖 𝛆𝑖 . (14.49)

This generalizes (14.5) and (14.6). We now consider the case where the variation in the varying
coefficients is correlated with the X𝑖 and express this correlation again by a projection of the 𝛾

𝑖
on a

function of the X𝑖 . The Mundlak-type projection is

𝛾𝑖 = z+𝑖X𝑖𝛑V + 𝑣𝑖

and substitution in (14.49) leads to
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z+𝑖 y𝑖 = z+𝑖X𝑖 (𝛃 +𝛑V ) + z+𝑖 𝛆𝑖 . (14.50)

Now, (14.48) leads to a generalized FE estimator, while (14.49) again allows for testing whether the
variation in the coefficients of the 𝑧

𝑖
is endogenous indeed.

14.8.3 The Spatial Mundlak Model

The spatial Mundlak model was first considered by Debarsy (2012) in the context of a spatial Durbin
panel data model (SDM). More specifically, the SDM includes a spatial lag of the dependent variable
Wy as well as X and WX, where W is a spatial weight matrix that describes the interaction between
the 𝑛 cross-sectional units. This weight matrix is row normalized. The random individual effects are
projected on the explanatory variables averaged over time as in (14.2), but additionally, Debarsy
(2012) includes the spatial weighted averages of these explanatory variables also averaged over
time. Maximum likelihood estimation using the normality assumption is applied and a likelihood
ratio (LR) test is used to test the significance of the correlation between the regressors and their
spatial weighted average (both averaged over time) and the individual effects. Here, the fixed effects
estimator is inconsistent due to the presence of a spatial lagged y, so the equivalence between the
GLS spatial random effects and the fixed effects spatial Mundlak estimators is not considered.

Debarsy (2012) applies this spatial Mundlak-Durbin model to explain housing price variations
across 588 municipalities in Belgium over the period 2004 to 2007. He finds significant non-zero
coefficients for the Mundlak terms indicating correlated random effects. Baltagi (2023b) also
considers the Mundlak (1978) model in the context of the spatial error panel data model (SEM) of
Anselin (1988). He shows that Mundlak’s classic result does not extend to the spatial panel SEM
model, i.e., the spatial random effects estimator does not reduce to the spatial fixed effects estimator
once the average regressors over time are included in the random effects SEM regression unless one
ignores the spatial correlation in the remainder error. More specifically, GLS on this Mundlak SEM
model does not yield the fixed effects estimator.

As in Debarsy (2012) for the SDM, one can use maximum likelihood estimation (MLE) for the
SEM (assuming normality) to test Mundlak’s (1978) idea that random effects are correlated with the
regressors using an LR test. This is applied to the Belotti, Hughes and Piano Mortari (2017) data
set on residential demand for electricity covering the 48 contiguous United States plus the District
of Columbia for the period 1990-2010. For both SAR and SDM, Baltagi (2023b) shows that the
spatial Mundlak correlated random-effects estimator does not reduce to its fixed-effects counterpart,
although for this empirical example the estimates are pretty close. The LR test shows that these
Mundlak averages are jointly significant in the SAR and SDM for residential demand for electricity
in the United States.
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Chapter 15
An Algebraic Equivalence between Generalized
Fixed Effects and a Generalized Mundlak
Regression with Applications to Heterogeneous
Trends and Difference-in-Differences

Jeffrey M. Wooldridge

Abstract Using a modified version of the Frisch-Waugh-Lovell partialling out result, I show how
the standard Mundlak regression for panel data can be extended to deliver ‘generalized fixed effects’
estimators, where coefficients on a subset of explanatory variables vary by cross-sectional unit.
The characterization shows that only fitted values from individual specific regressions need to
be controlled for – not the large set of interactions between unit-specific dummy variables and
explanatory variables. In the special case of a single additive heterogeneity, the fitted values are
simply the unit-specific time averages of the explanatory variables. The general results have practical
applications, particularly when testing the standard fixed effects estimator against heterogeneous
trend models. I derive a new, fully robust test that can be viewed as a regression-based Hausman
test for choosing the level of heterogeneity. As an example, I reconsider some recently proposed
difference-in-differences methods with staggered interventions and heterogeneous treatment effects
when the parallel trends assumption is possibly violated.

15.1 Introduction

The classic paper by Balestra and Nerlove (1966), showing how dynamic economic relationships
with unobserved heterogeneity can be estimated using panel data, is now almost 60 years old. Now,
the vast majority of intervention and policy analysis studies rely heavily on panel data structures, and
the wealth of methods that have been developed since the early work by Mundlak (1961), Balestra
and Nerlove (1966), and others.

In linear panel data analysis, the algebraic equivalence of the fixed effects estimates (on time-
varying covariates) and estimating the Mundlak (1978) equation – which adds the unit-specific
time averages of time-varying explanatory variables – by random effects has many applications. In
Wooldridge (2019), I showed not only does the equivalence carry over to unbalanced panels, but
also that pooled ordinary least squares (POLS) estimation of the Mundlak equation is identical to
the random effects generalized least squares (GLS) estimator. I referred to the POLS version of the
estimation as the ‘Mundlak regression’.

An important application of the algebraic equivalence between the Mundlak regression and the
fixed effects estimator is obtaining a fully robust approach to choosing between the random effects
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and fixed effects estimators: a robust, regression-based version of the Hausman (1978) test. It also
suggests that the Mundlak device can be useful for modeling the relationship between heterogeneity
and covariates in nonlinear panel data models where no consistent fixed effects estimators (with the
number of time periods fixed in the asymptotic analysis) are available. See, for example, (Wooldridge,
2010, Chapters 13, 15, 16, and 17).

In Wooldridge (2024), I extended the equivalence between fixed effects and the Mundlak
regression to explicitly include time effects. One way to characterize the so-called ‘two-way fixed
effects’ (TWFE) estimator is that one includes dummy variables for each time period (less one) and
each unit. The ‘two-way Mundlak regression’ adds an intercept and the cross-sectional averages
of the explanatory variables for each time period 𝑡 to the POLS estimation. Baltagi (2023) shows
how this equivalence leads to several insights concerning estimation of average treatment effects in
difference-in-differences settings with staggered interventions. Baltagi (2023) showed that a GLS
estimator that extends the usual one-way random effects estimator is equivalent to the pooled OLS
estimator.

In many applications, one wants to allow for additional heterogeneity, most commonly via
unit-specific trends. Even in microeconometric applications with a handful of time periods it can be
important to allow units to have different trends in the outcome variable and the covariates. In a
difference-in-differences setting, the outcome in the untreated state might be trending differently
for control units and treated units, and even among units treated for the first time in different time
periods. Such a situation would arise if the intervention decision is not based merely on levels
difference before the intervention but also on pre-existing differences in trends.

Many researchers use an extended fixed effects estimator that includes unit-specific dummy
variables along with those same dummy variables interacted with a linear time trend. An application
of the Frisch-Waugh-Lovell (FWL) Theorem shows that including the 2𝑁 regressors (where 𝑁 is
the cross-sectional sample size) is equivalent to using unit-specific detrending of the covariates (and,
optionally, the response variable). See, for example, Wooldridge (2010), Section 11.7.2.

In this paper, I extend the Mundlak regression to allow for a general model where a subset of
variables has unit-specific coefficients. As discussed by Chamberlain (1992), the fixed coefficients
can be estimated by generalizing the within transformation used by the simplest fixed effects
estimator. Here, I show that the partialling out approach proposed by Chamberlain (1992) – see also
Wooldridge (2010), Section 11.7.2 – is equivalent to adding unit-specific fitted values. The proof of
equivalence relies on a general result on the equivalence between adding fitted values and using
FWL partialling out. Though the equivalence, which I establish in Section 15.2, is straightforward
matrix algebra, it has applications to allowing lots of heterogeneity in panel data settings.

In Section 15.3, I show, in the context of panel data, how one can obtain Chamberlain’s
‘generalized fixed effects’ (GFE) estimator using a ‘generalized Mundlak regression’ (GMR).
The GMR consists of adding the fitted values from first-stage unit-specific regressions, where
the explanatory variables with fixed coefficients are regressed on the explanatory variables with
heterogeneous coefficients. The first step results in functions of the explanatory variables for each
unit 𝑖. Then, the outcome variable is regression on the explanatory variables with fixed coefficients
and the unit-specific fitted values.

In Section 15.4 I consider the important special case of heterogenous trends – which can
themselves be general. The key is that the variables with heterogeneous coefficients change only
across time, and not by unit. Again, this generalizes the usual Mundlak regression by putting in fitted
values that are linear combinations of the time trend for each unit 𝑖. The result is a relatively short
regression that nevertheless allows unrestricted heterogeneity on a subset of the regressors. I also
show how aggregate time variables with fixed coefficients – with the leading case being a full set of
time period dummies – can be accommodated. Also, for the purposes of testing whether enough
heterogeneity has been allowed, I show what changes when time-constant covariates are interacted
with general time trends. I then apply the characterizations to specification testing in Section 15.5. It
is straightforward to use a variable addition test to determine whether less heterogeneity is sufficient
against the alternative that more is needed in the context of heterogenous trends models. The leading
case is when the usual two-way fixed effects (TWFE) estimator has been computed, but one may
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worry that unit-specific linear trends are warranted. The test I propose appears to be novel, and it is
fully robust to serial correlation and heteroskedasticity.

The equivalences here also have useful implications for staggered interventions and so-called
‘difference-in-differences’ estimation. In Section 15.6 I show that, starting with the flexible model
I proposed in Wooldridge (2024), testing the important parallel trends assumption by interacting
time-constant treatment cohort dummies with linear trends is identical to choosing between the
usual fixed effects (Mundlak) estimator and Chamberlain’s extension to heterogeneous trends. The
equivalence provides further justification for the test that I motivated using a different argument in
Wooldridge (2024).

Section 15.7 provides an empirical illustration in the context of a common timing intervention. I
revisit the analysis in Moser and Voena (2012), who estimate the effects on domestic patents in the
U.S. chemical industry from compulsory licensing laws. I estimate a full set of dynamic effects and
show that, using the simple test from Section 15.6, that the parallel trends assumption is rejected.
When heterogeneous linear trends are allowed, the average effect is about 36% larger than that
reported by Moser and Voena (2012).

Section 15.8 contains concluding comments, including how the methods can be modified for
unbalanced panels.

15.2 A Reformulation of the Frisch-Waugh-Lovell Theorem

To derive results for panel data structures, it is useful to begin by reformulating the Frisch-Waugh-
Lovell (FWL) Theorem on the algebraic equivalence of estimators from partialling out regressions.
It must be emphasized that the result in this section is purely algebraic and has nothing to do with
underlying assumptions or the structure of the data. Let Y be an 𝑛 × 1 vector, X an 𝑛 × 𝑘 matrix,
and W an 𝑛×𝑚 matrix. In what follows, we need only assume the rank condition on the regressor
matrix, rank (X |W) = 𝑘 +𝑚.

Let 𝛽 (𝑘 × 1) and �̂� (𝑚× 1) be the vectors of OLS coefficients from the (long) regression

Y on X, W.

The well-known FWL result states that 𝛽 can be obtained as follows:
1. Regress X on W and obtain the matrix residuals,

¥X = X− X̂ =

[
I𝑛 −W (W′W)−1 W′

]
X,

where X̂ is the matrix of fitted values,

X̂ = W (W′W)−1 W′X.
2. Run the regression

Y on ¥X (15.1)
to obtain 𝛽. One has the option of replacing Y in (15.1) with Y =

[
I𝑛 −W (W′W)−1 W′] Y and 𝛽

is unchanged.
A simple modification to FWL, useful for the current paper, is to replace the second step with

the following:
2′. Run the regression

Y on X, X̂. (15.2)
The following result is fairly obvious but, as we will see, particularly useful in panel data contexts.

Proposition 15.1 Let 𝛽 be the coefficients on X in the regression (15.2). Then 𝛽 = 𝛽. □
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The proof of this proposition is itself a straightforward application of FWL, and it is included
in the appendix. Its usefulness is demonstrated in the next section when applied to panel data,
where the fitted values are obtained using unit-specific time-series regressions in place of including
potentially many unit-specific dummy variables and interactions of those dummy variables with
other covariates.

15.3 A Generalized Mundlak Regression for Panel Data

In what follows, we have in mind a panel data model with heterogeneous coefficients, c𝑖 , on a subset
of explanatory variables:

𝑦𝑖𝑡 = x𝑖𝑡𝛽 +w𝑖𝑡c𝑖 +𝑢𝑖𝑡 , 𝑡 = 1, 2, ..., 𝑇, (15.3)
where x𝑖𝑡 is 1×𝐾 and w𝑖𝑡 is 1× 𝐽 . For now, any aggregate time variables with fixed coefficients are
included in x𝑖𝑡 . Below we consider some issues that arise when x𝑖𝑡 and w𝑖𝑡 both include variables
that only vary across 𝑡 . We are thinking of micro panels, with the number of cross-sectional units,
𝑁 , notably larger than 𝑇; nevertheless, the results here are purely algebraic, with no restriction on
the dimensions of 𝑇 and 𝑁 except those necessary for full rank conditions. Moreover, the model in
(15.3) is for motivational purposes, as the key results are algebraic in nature.

In the simplest case, w𝑖𝑡 is a scalar equal to one, which gives us the usual additive unobserved
effects model:

𝑦𝑖𝑡 = x𝑖𝑡𝛽 + 𝑐𝑖 +𝑢𝑖𝑡 , 𝑡 = 1, 2, ..., 𝑇, (15.4)
where 𝑐𝑖 is the so-called ‘unobserved effect’. When x𝑖𝑡 includes 𝑇 − 1 time period dummies,
estimation of (15.4) by fixed effects produces the popular ‘two-way fixed effects’ (TWFE) estimator
of the remaining coefficients in 𝛽.

Again, even though the following is purely algebraic, it is useful to write the model in (15.3) by
stacking the time periods for each unit 𝑖:

y𝑖 = X𝑖𝛽 +W𝑖c𝑖 +u𝑖 ,
where

X𝑖 =

©«

x𝑖1
x𝑖2
.
.
.

x𝑖𝑇

ª®®®®®®®¬
, W𝑖 =

©«

w𝑖1
w𝑖2
.
.
.

w𝑖𝑇

ª®®®®®®®¬
, Y𝑖 =

©«

𝑦𝑖1

𝑦𝑖2
.
.
.

𝑦𝑖𝑇

ª®®®®®®®¬
.

A general version of the FE estimator of 𝛽 in (15.3) proceeds as follows. We assume that
rank (W𝑖 ) = 𝐽 for all 𝑖 = 1, ..., 𝑁 , which requires, at a minimum, that 𝑇 is sufficiently large.
Procedure 1 (Generalized FE Estimation of 𝛽):

1. For each 𝑖, run the (matrix) regression

X𝑖 on W𝑖

and obtain the fitted values X̂𝑖 and residuals,

¥X𝑖 ≡ X𝑖 −W𝑖

(
W′
𝑖W𝑖

)−1 W′
𝑖X𝑖 ≡ X𝑖 − X̂𝑖 .

2. Assuming rank
( ¥X𝑖 ) = 𝐾 for all 𝑖 (equivalently, ¥X′

𝑖
¥X𝑖 is nonsingular for all 𝑖), 𝛽𝐺𝐹𝐸 is obtained

from system OLS estimation
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y𝑖 on ¥X𝑖 , 𝑖 = 1, 2, ..., 𝑁 ,
which is equivalent to pooled OLS:

𝑦𝑖𝑡 on ¥X𝑖𝑡 , 𝑡 = 1, ..., 𝑇; 𝑖 = 1, 2, ..., 𝑁 .
Therefore,

𝛽𝐺𝐹𝐸 =

(
𝑁∑︁
𝑖=1

¥X′𝑖 ¥X𝑖

)−1 𝑁∑︁
𝑖=1

X′𝑖y𝑖 =

(
𝑁∑︁
𝑖=1

¥X′𝑖 ¥X𝑖

)−1 𝑁∑︁
𝑖=1

X′𝑖y𝑖 ,

where y𝑖 = y𝑖 −W𝑖

(
W′
𝑖
W𝑖

)−1 W′
𝑖
y𝑖 . □

The assumption that ¥X𝑖 has rank 𝐾 rules out certain situations. For example, if 𝐽 = 𝑇 then, under
the assumption that rank (W𝑖 ) = 𝐽 , X̂𝑖 = W𝑖

(
W′
𝑖
W𝑖

)−1 W′
𝑖
X𝑖 = W𝑖W−1

𝑖

(
W′
𝑖

)−1 W′
𝑖
X𝑖 = X𝑖 ,

and so ¥X𝑖 = 0. So a necessary condition is 𝐽 < 𝑇 . We come back to this in the next section when
applying the this characterization to heterogeneous trend models.
A generalized Mundlak regression is the following.

Procedure 2 (Generalized Mundlak Regression):
1. Obtain the fitted values, X̂𝑖 , as in (15.3).
2. Run the system OLS regression

y𝑖 on X𝑖 , X̂𝑖 , 𝑖 = 1, 2, ..., 𝑁
and obtain 𝛽𝐺𝑀 as the coefficient on X𝑖 . □

Application of Proposition 15.1 yields the following.

Proposition 15.2 (Equivalence of Generalized FE and Generalized Mundlak): In the setting
described in Procedure 2,

𝛽𝐺𝑀 = 𝛽𝐺𝐹𝐸 . □

The proof, which simply requires definitions and straightforward matrix algebra, is given in the
appendix.

A special case is when 𝑤𝑖𝑡 = 1 for all 𝑖 and 𝑡 , in which case, for all 𝑖,

x̂𝑖𝑡 = x̄𝑖
¥X𝑖𝑡 = x𝑖𝑡 − x̄𝑖 , 𝑡 = 1, ..., 𝑇

The conclusion is that the FE estimator and the POLS version of the Mundlak estimator – as studied
in Wooldridge (2019) – are the same.

Wooldridge (2019) shows that adding time-constant regressors z𝑖 , to the pooled Mundlak
regression,

𝑦𝑖𝑡 on x𝑖𝑡 , x̄𝑖 , 1, z𝑖 , 𝑡 = 1, ..., 𝑇; 𝑖 = 1, ..., 𝑁 ,
does not change the coefficient estimator on x𝑖𝑡 (but it does on x̄𝑖 , which has implications for
regression-based Hausman tests). We return to the issue of time-constant variables in the generalized
Mundlak regression below.

15.4 Heterogeneous Trend Models

We now consider the case where, for all 𝑖,
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w𝑖𝑡 = g𝑡 , 𝑡 = 1, ..., 𝑇,
so that the heterogeneous slopes are only on aggregate variables g𝑡 . The simplest extension from the
Mundlak regression (𝑔𝑡 = 1) allows heterogeneous linear trends:

g𝑡 = (1, 𝑡 ) . (15.5)
The choice of g𝑡 in (15.5) produces a generalized FE estimator based on unit-specific detrending of
x𝑖𝑡 (and 𝑦𝑖𝑡 ). In the underlying model, it allows for two sources of unobserved heterogeneity that are
correlated with x𝑖𝑡 .

With a general choice of g𝑡 (1× 𝐽) with 𝐽 < 𝑇 , the matrix fitted values are

X̂𝑖 = G (G′G)−1 G′X𝑖 , (15.6)
where G is the 𝑇 × 𝐽 matrix with row g𝑡 . The projection matrix in (15.6) does not vary with 𝑖.
The residuals, X𝑖 = X𝑖 − X̂𝑖 , are a generalized version of unit-specific detrending. It could be as
simple as adding higher-order polynomials in 𝑡 . If g𝑡 = (1, 𝑡 , ..., 𝑡𝑞 ) then the rank condition requires
𝑞 ≤ 𝑇 − 2.

15.4.1 Adding Time Effects with Constant Coefficients

As mentioned earlier, most applications of fixed effects are actually applications of TWFE, with a
full set of time dummies included. Generally, let f𝑡 be a 1×𝑄 vector of time effects. In the TWFE
case, we can take f𝑡 = ( 𝑓 1𝑡 , 𝑓 2𝑡 , ..., 𝑓 𝑇𝑡 ) or f𝑡 = (1, 𝑓 2𝑡 , ..., 𝑓 𝑇𝑡 ) , where 𝑓 𝑠𝑡 is a time period
dummy such that 𝑓 𝑠𝑡 = 1 if and only if 𝑠 = 𝑡 .

We have in mind the model

𝑦𝑖𝑡 = x𝑖𝑡𝛽 +g𝑡c𝑖 + f𝑡 𝛿 +𝑢𝑖𝑡 ,
where now x𝑖𝑡 omits variables that vary only across 𝑡 . As before, we run unit-specific regressions x𝑖𝑡
on g𝑡 , 𝑡 = 1, ..., 𝑇 to obtain the x̂𝑖𝑡 . What about for f𝑡? Not surprisingly, if G is a linear combination
of F, say G = FA for a𝑄 × 𝐽 matrix A, then adding the fitted values is redundant once f𝑡 is included.
The reason is because we can write

F̂ = G (G′G)−1 G′F = FA (G′G)−1 G′F = F
[
A (G′G)−1 G′F

]
,

which is a linear combination of F. It follows that the generalized Mundlak regression,

y𝑖 on X𝑖 , X̂𝑖 , F, F̂, 𝑖 = 1, ..., 𝑁
is the same as dropping F̂.

In the leading case where we include a full set of time dummies, we can take F = I𝑇 , and then G
is trivially a linear combination of F. In other words, the generalized Mundlak regression is

𝑦𝑖𝑡 on x𝑖𝑡 , x̂𝑖𝑡 , 1, 𝑓 2𝑡 , ..., 𝑓 𝑇𝑡 , 𝑡 = 1, ..., 𝑇; 𝑖 = 1, ..., 𝑁 . (15.7)
As mentioned previously, the usual Mundlak regression with x̂𝑖𝑡 = x̄𝑖 has been very useful in
obtaining specification tests, gaining new insights in difference-in-differences settings, and extending
methods to nonlinear models.



15 Generalized Mundlak Regression 423

15.4.2 Including Time-Constant Variables

Another useful algebraic result involves adding interactions between the elements of g𝑡 and observed
time-constant variables, say z𝑖 (1× 𝐿). Again, for motivational purposes only, consider the equation

𝑦𝑖𝑡 = x𝑖𝑡𝛽 +g𝑡c𝑖 + f𝑡 𝛿 + (g𝑡 ⊗ z𝑖 ) 𝜆+𝑢𝑖𝑡 , 𝑡 = 1, 2, ..., 𝑇,
where 𝜆 is 𝐽𝐿 × 1. The coefficients c𝑖 on g𝑡 are dealt with as before, by projecting x𝑖𝑡 onto g𝑡
separately for each 𝑖. Remember, this approach allows the linear relationship between x𝑖𝑡 and
g𝑡 to be different for each 𝑖. Therefore, intuitively, adding additional heterogeneous coefficients
through g𝑡 ⊗ z𝑖 should not affect estimation of 𝛽. This intuition carries over to algebraic equivalence.
Therefore, the pooled OLS regression

𝑦𝑖𝑡 on x𝑖𝑡 , x̂𝑖𝑡 , 1, 𝑓 2𝑡 , ..., 𝑓 𝑇𝑡 , g𝑡 ⊗ z𝑖 , 𝑡 = 1, ..., 𝑇; 𝑖 = 1, ..., 𝑁 (15.8)
results in the same coefficients 𝛽𝐺𝑀 from (15.7). Notice that the coefficients on x̂𝑖𝑡 do generally
change, something that has implications for specification testing below.

That (15.8) and (15.7) produce the same coefficients on x𝑖𝑡 is an extension of the result shown in
Wooldridge (2019), Proposition 2.1 for the basic Mundlak regression obtained by taking 𝑔𝑡 ≡ 1.
In particular, once the time averages x̄𝑖 have been included, adding additional variables z𝑖 has no
effect: the Mundlak regression still produces the FE estimator 𝛽𝐹𝐸 . Wooldridge (2019) further notes
that, with good controls in z𝑖 , one may not need to include x̄𝑖 . Testing this proposition effectively
produces a robust, regression-based version of the Hausman (1978) test comparing FE and random
effects. The extension of Wooldridge (2019), Proposition 2.1 is the following.

Proposition 15.3 Assume that the x̂𝑖𝑡 are obtained from (15.6). Then the coefficients on x𝑖𝑡 are the
same with or without g𝑡 ⊗ z𝑖 included. □

As in the special case in Wooldridge (2019), including g𝑡 ⊗ z𝑖 does generally change the estimated
coefficients on x̂𝑖𝑡 . In the next section explores why this is important in the context of specification
testing.

15.5 Choosing the Amount of Heterogeneity via Specification
Testing

The result that including g𝑡 ⊗ z𝑖 in (15.8) does not change the coefficient on x𝑖𝑡 in (15.8) has
implications for choosing the amount of heterogeneity in the model with heterogeneous trends, as
represented by g𝑡c𝑖 . Wooldridge (2019) covers the case where the decision is to include the time
averages, x̄𝑖 , in the regression

𝑦𝑖𝑡 on x𝑖𝑡 , x̄𝑖 , 1, 𝑓 2𝑡 , ..., 𝑓 𝑇𝑡 , z𝑖 , 𝑡 = 1, ..., 𝑇; 𝑖 = 1, ..., 𝑁 , (15.9)
where z𝑖 are time-constant controls. From Proposition 15.2 [or the special case in Wooldridge
(2019)], the Mundlak coefficients on x𝑖𝑡 equal the FE estimates: 𝛽𝑀 = 𝛽𝐹𝐸 . As us well known,
the inclusion of x̄𝑖 results in considerable multicollinearity because it is clearly correlated with
x𝑖𝑡 . If some elements of x𝑖𝑡 have little variation across 𝑡 , the collinearity can make it difficult to
precisely estimate elements of 𝛽. Therefore, if 𝜉 denotes the coefficients on x̄𝑖 , one might want to
test 𝐻0 : 𝜉 = 0. The null hypothesis is that once z𝑖 is controlled for and full time effects are allowed,
x̄𝑖 is uncorrelated with remaining, unobserved heterogeneity. A rejection typically is taken to mean
x̄𝑖 is retained in 15.9, in which case 𝛽 is estimated using (two-way) fixed effects. As discussed in
Wooldridge (2019), it does not matter whether pooled OLS or random effects is used when x̄𝑖 is
included in the equation: they lead to the same estimates. When x̄𝑖 is dropped, POLS and RE are no
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longer the same, and one may prefer the latter on efficiency grounds (although there is no guarantee
if, as is often the case, idiosyncratic errors exhibit serial correlation and heteroskedasticity).

Some econometrics software packages choose to test pooled OLS against fixed effects by
replacing x̄𝑖 in (15.9) with unit-specific dummies 𝑐1𝑖 , 𝑐2𝑖 , ..., 𝑐𝑁𝑖 , and then testing equality of
their coefficients (for 𝑁 − 1 restrictions). There are a couple of reasons this is undesirable. First,
one cannot obtain a version of the test that is robust to serial correlation and heteroskedasticity
because cluster-robust inference for the estimates �̂�ℎ, ℎ = 1, ..., 𝑁 (the coefficients on the 𝑐ℎ𝑖)
are not valid: in effect, we are using 𝑇 time series observations to estimate each 𝛼ℎ. One could
obtain a test under the classical linear model assumptions – which would add normality, no serial
correlation, and homoskedasticity – but that is too restrictive considering the test from (15.9) is
fully robust. Secondly, the test of equality of the 𝛼ℎ does not directly address the important question
of whether 𝑐𝑖 is correlated with the elements of x𝑖𝑡 . There could be lots of heterogeneity that is
uncorrelated with x𝑖𝑡 , in which case pooled POLS would be consistent (fixed 𝑇 , 𝑁 →∞). In a
randomized controlled trial, the treatment x𝑖𝑡 would be independent of everything. A related issue is
that, thinking of (15.9) as a regression-based Hausman test, there should be only 𝐾 = dim (x𝑖𝑡 )
restrictions to test – not 𝑁 − 1.

Because most data used in economics and the social sciences are not experimental, two-way
fixed effects continues to be a workhorse in empirical research, with many researchers rejecting a
pure random effects analysis even with rich controls z𝑖 . In fact, the concern with FE often is that it
allows only one source of additive heterogeneity. What if one wants to check whether allowing for a
single source of additive heterogeneity is sufficient? Provided we have 𝑇 ≥ 3, a natural alternative to
the usual FE estimator is a heterogeneous trends estimator where every unit is, say, allowed to have
its own linear trend. Without time-constant controls, the underlying model for each unit 𝑖 is

𝑦𝑖𝑡 = x𝑖𝑡𝛽 + 𝛾2 𝑓 2𝑡 + · · · + 𝛾𝑇 𝑓 𝑇𝑡 + 𝑐𝑖1 + 𝑐𝑖2 · 𝑡 +𝑢𝑖𝑡 , 𝑡 = 1, ..., 𝑇.
Then the x̂𝑖𝑡 are obtained from

x𝑖𝑡 on 1, 𝑡 , 𝑡 = 1, ..., 𝑇
and the unit-specific fitted values can be written as

x̂𝑖𝑡 = ĥ𝑖1 + ĥ𝑖2 · 𝑡 .
The generalized Mundlak regression is then

𝑦𝑖𝑡 on x𝑖𝑡 , ĥ𝑖1 + ĥ𝑖2𝑡 , 1, 𝑓 2𝑡 , ..., 𝑓 𝑇𝑡 , 𝑡 = 1, ..., 𝑇; 𝑖 = 1, ..., 𝑁 .
From Proposition 15.2, once x̂𝑖𝑡 is included, adding x̄𝑖 is redundant for obtaining 𝛽𝐺𝑀 because

x̄𝑖 does not change across time. In other words, the regression

𝑦𝑖𝑡 on x𝑖𝑡 , x̄𝑖 , x̂𝑖𝑡 , 1, 𝑓 2𝑡 , ..., 𝑓 𝑇𝑡 , 𝑡 = 1, ..., 𝑇; 𝑖 = 1, ..., 𝑁 , (15.10)
leads to the same 𝛽𝐺𝑀 coefficients on x𝑖𝑡 as dropping x̄𝑖 . By the usual Mundlak-FE equivalence,
dropping x̂𝑖𝑡 produces 𝛽𝑀 = 𝛽𝐹𝐸 . Consequently, the regression in (15.10) can be used to test
for joint significance of the coefficients on x̂𝑖𝑡 – call these �̂�. The test 𝐻0 : 𝜋 = 0 is a test of the
null of whether the usual FE estimator is sufficient of is FE rejected in favor of the heterogeneous
trends model. As in the usual comparison between FE and POLS (or RE), a primary motivation for
dropping x̂𝑖𝑡 from (15.10) and using FE is that adding x̂𝑖𝑡 creates even more collinearity with x𝑖𝑡 . In
fact, with 𝑇 = 2 (15.10) cannot even be carried out due to perfect collinearity. Naturally, we would
use a Wald test (often reported as an 𝐹-type test) that is robust to arbitrary serial correlation and
heteroskedasticity. For the reasons described earlier for the usual Hausman-type test, we do not want
to base the test the 𝑁 − 1 restrictions that the coefficients on the interactions 𝑐ℎ𝑖 · 𝑡 are the same
across ℎ = 1, ..., 𝑁 .

When time-constant controls z𝑖 are available, it is natural to allow the linear trends to vary with
z𝑖 , in which case the regression is

𝑦𝑖𝑡 on x𝑖𝑡 , x̄𝑖 , x̂𝑖𝑡 , 1, 𝑓 2𝑡 , ..., 𝑓 𝑇𝑡 , z𝑖 , z𝑖 · 𝑡 , 𝑡 = 1, ..., 𝑇; 𝑖 = 1, ..., 𝑁 . (15.11)
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If the linear trends are thought not change with z𝑖 then z𝑖 · 𝑡 can be dropped from (15.11). Whether
including just z𝑖 or (z𝑖 , z𝑖 · 𝑡 ) , the estimates on x𝑖𝑡 do not change, but those on x̂𝑖𝑡 generally do –
which will affect the test statistic.

By the usual Mundlak equivalence, all coefficients except those on x̄𝑖 , 1, z𝑖 can be obtained
by using fixed effects estimation. In other words, drop the time constant variables (1, x̄𝑖 , z𝑖 ) and
applying FE gives the generalized FE estimates.

Given (15.8), and the fact that x̄𝑖 is a linear combination of ĥ𝑖1 and ĥ𝑖2, the regression in (15.11)
is the same as

𝑦𝑖𝑡 on x𝑖𝑡 , ĥ𝑖1, ĥ𝑖2 · 𝑡 , 1, 𝑓 2𝑡 , ..., 𝑓 𝑇𝑡 , z𝑖 , z𝑖 · 𝑡 , 𝑡 = 1, ..., 𝑇; 𝑖 = 1, ..., 𝑁 ,
which gives another way to see that two sources of heterogeneity are being included (for each
element of x𝑖𝑡 ). But for specification testing, (15.10) or (15.11) should be used.

As a final comment, note that the regressions

𝑦𝑖𝑡 on x𝑖𝑡 , x̄𝑖 , 1, 𝑓 2𝑡 , ..., 𝑓 𝑇𝑡
and

𝑦𝑖𝑡 on x𝑖𝑡 , x̂𝑖𝑡 , 1, 𝑓 2𝑡 , ..., 𝑓 𝑇𝑡
are nonnested in the sense that x̄𝑖 and x̂𝑖𝑡 are different 1 × 𝐾 linear combinations of
{x𝑖𝑠 : 𝑠 = 1, ..., 𝑇 }. If the goal is to choose one of the two specifications, the usual 𝑅-squareds can
be used as goodness-of-fit measures. Alternatively, formal nonnested tests can be computed that are
robust to serial correlation and heteroskedasticity, as in Rahmani and Wooldridge (2019).

15.6 Application to Difference-in-Differences

The previous results can be applied to recent developments in so-called “difference-in-differences”
(DiD) estimation with staggered entry and heterogeneous treatment effects. Given 𝑇 time periods,
the first intervention period is 1 < 𝑞 ≤ 𝑇 , and new units enter “treatment” through period 𝑇 .
For simplicity, I assume here that there are some untreated units remaining in period 𝑇 (the
‘never treated’) group. Wooldridge (2024) derives the following equation, which maintains a ‘no
anticipation’ assumption and a ‘parallel trends’ assumption conditional on time-constant covariates
x𝑖 :

𝑦𝑖𝑡 =

𝑇∑︁
𝑔=𝑞

𝑇∑︁
𝑠=𝑔

𝜏𝑔𝑠 (𝑑𝑔𝑖 · 𝑓 𝑠𝑡 ) +
𝑇∑︁
𝑔=𝑞

𝑇∑︁
𝑠=𝑔

(
𝑑𝑔𝑖 · 𝑓 𝑠𝑡 · ¤x𝑖𝑔

)
𝜌𝑔𝑠

+
𝑇∑︁
𝑠=2
𝛾𝑠 𝑓 𝑠𝑡 +

𝑇∑︁
𝑠=2
( 𝑓 𝑠𝑡 · x𝑖 ) 𝜋𝑠 + 𝑐𝑖 +𝑢𝑖𝑡 ,

(15.12)

where 𝑑𝑔𝑖 is the treatment cohort indicator, with 𝑑𝑔𝑖 = 1 if unit 𝑖 is first treated in period 𝑔; 𝑓 𝑠𝑡 is
the time period dummy, as before; and ¤x𝑖𝑔 = x𝑖 − x̄𝑔 is the cohort-specific demeaned row vector of
covariates. The interaction 𝑑𝑔𝑖 · 𝑓 𝑠𝑡 is a treatment indicator for cohort 𝑔 in time period 𝑠 for 𝑠 = 𝑔,
..., 𝑇 . The coefficients of interest, 𝜏𝑔𝑠 , are average treatment effects on the treated.

Wooldridge (2024) suggests estimating (15.12) by fixed effects to account for 𝑐𝑖 ; with the
inclusion of the time dummies, it is ‘extended’ TWFE, where ‘extended’ refers to the model beyond
the simple constant (or single) effect model. The presence of 𝑓 𝑠𝑡 · x𝑖 allows differential trends by
observed covariates. The Mundlak equation corresponding to (15.12) is
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𝑦𝑖𝑡 =

𝑇∑︁
𝑔=𝑞

𝑇∑︁
𝑠=𝑔

𝜏𝑔𝑠 (𝑑𝑔𝑖 · 𝑓 𝑠𝑡 ) +
𝑇∑︁
𝑔=𝑞

𝑇∑︁
𝑠=𝑔

(
𝑑𝑔𝑖 · 𝑓 𝑠𝑡 · ¤x𝑖𝑔

)
𝜌𝑔𝑠

+
𝑇∑︁
𝑠=2
𝛾𝑠 𝑓 𝑠𝑡 +

𝑇∑︁
𝑠=2
( 𝑓 𝑠𝑡 · x𝑖 ) 𝜋𝑠 + 𝛼+

𝑇∑︁
𝑔=𝑞

𝛽𝑔𝑑𝑔𝑖

+x𝑖𝜅 +
𝑇∑︁
𝑔=𝑞

(
𝑑𝑔𝑖 · ¤x𝑖𝑔

)
𝜉𝑔 + 𝑎𝑖 +𝑢𝑖𝑡 .

(15.13)

When this equation is estimated by pooled OLS, the estimates in the first line are identical to the FE
estimates from (15.12).

As discussed in Wooldridge (2024), (15.12) does not account for differential trends that can
depend on unobserved heterogeneity, which can cause systematic bias in estimates of the ATTs.
Given at least two pre-treatment periods, we can expand the equation to

𝑦𝑖𝑡 =

𝑇∑︁
𝑔=𝑞

𝑇∑︁
𝑠=𝑔

𝜏𝑔𝑠 (𝑑𝑔𝑖 · 𝑓 𝑠𝑡 ) +
𝑇∑︁
𝑔=𝑞

𝑇∑︁
𝑠=𝑔

(
𝑑𝑔𝑖 · 𝑓 𝑠𝑡 · ¤x𝑖𝑔

)
𝜌𝑔𝑠

+
𝑇∑︁
𝑠=2
𝛾𝑠 𝑓 𝑠𝑡 +

𝑇∑︁
𝑠=2
( 𝑓 𝑠𝑡 · x𝑖 ) 𝜋𝑠 + 𝑐𝑖1 + 𝑐𝑖2 · 𝑡 +𝑢𝑖𝑡 ,

where 𝑐𝑖2 · 𝑡 is a unit-specific linear trend. What happens of we project 𝑑𝑔𝑖 · 𝑓 𝑠𝑡 onto (1, 𝑡 ) ,
𝑡 = 1, ..., 𝑇 , for each 𝑖? The fitted values are easily seen to be the same linear combinations
of (𝑑𝑔𝑖 , 𝑑𝑔𝑖 · 𝑡 ) . Likewise, projecting 𝑑𝑔𝑖 · 𝑓 𝑠𝑡 · ¤x𝑖𝑔 onto (1, 𝑡 ) gives linear combinations of(
𝑑𝑔𝑖 · x𝑖𝑔 , 𝑑𝑔𝑖 · 𝑡 · ¤x𝑖𝑔

)
. It follows that the generalized Mundlak equation is

𝑦𝑖𝑡 =

𝑇∑︁
𝑔=𝑞

𝑇∑︁
𝑠=𝑔

𝜏𝑔𝑠 (𝑑𝑔𝑖 · 𝑓 𝑠𝑡 ) +
𝑇∑︁
𝑔=𝑞

𝑇∑︁
𝑠=𝑔

(
𝑑𝑔𝑖 · 𝑓 𝑠𝑡 · ¤x𝑖𝑔

)
𝜌𝑔𝑠

+
𝑇∑︁
𝑠=2
𝛾𝑠 𝑓 𝑠𝑡 +

𝑇∑︁
𝑠=2
( 𝑓 𝑠𝑡 · x𝑖 ) 𝜋𝑠 + 𝛼+

𝑇∑︁
𝑔=𝑞

𝛽𝑔𝑑𝑔𝑖 +x𝑖𝜅

+
𝑇∑︁
𝑔=𝑞

(
𝑑𝑔𝑖 · ¤x𝑖𝑔

)
𝜉𝑔 +

𝑇∑︁
𝑔=𝑞

𝜂𝑔 (𝑑𝑔𝑖 · 𝑡 ) +
𝑇∑︁
𝑔=𝑞

(
𝑑𝑔𝑖 · 𝑡 · ¤x𝑖𝑔

)
𝜆𝑔 + 𝑎𝑖 +𝑢𝑖𝑡 .

(15.14)

The POLS estimator using this equation was proposed by Wooldridge (2024) using different
reasoning. The practical point is that allows for trends to differ linear by treatment cohort, relative
to the never treated state, through the terms 𝑑𝑔𝑖 · 𝑡 and 𝑑𝑔𝑖 · 𝑡 · x𝑖𝑔. If the estimates of the 𝜏𝑔𝑠
(and, sometimes, 𝜌𝑔𝑠) are sufficiently precise, one might just got with the estimates from (15.14).
However, the introduction of 𝑑𝑔𝑖 · 𝑡 causes clear collinearity with the treatment indicators 𝑑𝑔𝑖 · 𝑓 𝑠𝑡 ,
and the estimators �̂�𝑔𝑠 may be imprecise. By testing joint significance of the 𝑑𝑔𝑖 · 𝑡 and, if they are
included, 𝑑𝑔𝑖 · 𝑡 · ¤x𝑖𝑔, one might conclude that the usual TWFE estimator applied to (15.12), or its
equivalent in (15.13), are sufficient.

15.7 Empirical Example

As a simple application, I reanalyze the common timing difference-in-differences application in
Moser and Voena (2012), who study the effects of a compulsory licensing law that was instituted as
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part of the Trading with the Enemy Act passed in October 1917 during World War I. The law allowed
United States firms to violate enemy-owned patents if doing so would contribute to the war effort.
The focus on subclasses of chemicals, some of which were subjected to the compulsory licensing
law; the others are used as controls in a difference-in-differences analysis. Moser and Voena (2012)
are interested in determining whether relaxed restrictions on foreign licensing increases or decreases
domestic innovation, as measured by patents generated, in this case, in the United States.

The outcome variable, annual number of U.S. patents in a chemical class, is a count variable.
Like the original authors, I use a linear model. I do not use control variables, but I do estimate a full
set of dynamic effects and then average those effects to compare with the single estimated effect in
Moser and Voena (2012).

With common timing and no controls, the equation for estimating dynamic treatment effects
simplifies considerably:

𝑦𝑖𝑡 =

𝑇∑︁
𝑠=𝑞

𝜏𝑠 (𝑑𝑖 · 𝑓 𝑠𝑡 ) +
𝑇∑︁
𝑠=2
𝛾𝑠 𝑓 𝑠𝑡 + 𝑐𝑖1 + 𝑐𝑖2 · 𝑡 +𝑢𝑖𝑡 ,

where 𝑑𝑖 indicates whether unit 𝑖 – a chemical class in this case – is subjected to the compulsory
licensing law (eventually treated). With 𝑁 = 7, 248 classes, including a full set of unit-specific
dummies, and especially when those are also interacted with the linear time trend, is computationally
demanding (and requires a lot of memory). Without 𝑐𝑖2 · 𝑡 , we can use the regular fixed effects
estimator, ea. Equivalently, as follows from Wooldridge (2024) and Proposition 15.3 above, we can
simply add 𝑑𝑖 as a separate regressor and used pooled OLS – this simplifies the computation even
more. To repeat, it is somewhat remarkable that even in a fully dynamic model, controlling for the
single binary source of heterogeneity, 𝑑𝑖 , is equivalent to controlling for a lot of heterogeneity by
including 𝑁 unit-specific dummy variables.

For the heterogeneous trend model, from the discussion in Section 15.6, we simply add 𝑑𝑖 · 𝑡
along with 𝑑𝑖 . The equation is

𝑦𝑖𝑡 =

𝑇∑︁
𝑠=𝑞

𝜏𝑠 (𝑑𝑖 · 𝑓 𝑠𝑡 ) +
𝑇∑︁
𝑠=2
𝛾𝑠 𝑓 𝑠𝑡 + 𝛽𝑑𝑖 + 𝜂 (𝑑𝑖 · 𝑡 ) +𝑢𝑖𝑡 . (15.15)

If 𝜂 ≠ 0, selection into treatment is systematically related to the trend in the untreated state. If
𝜂 = 0 but 𝛽 ≠ 0, selection is based on level differences before the intervention but evidently not
on differing trends. This is the case that the TWFE estimator works well for. Remember, (15.15)
produces estimates of the 𝜏𝑠 that are identical to including 𝑁 unit-specific dummy variables and
another 𝑁 of those dummy variables interacted with 𝑡 . In the current application, estimating
(15.15) is essentially trivial, while including more than 14,000 regressors is much more challenging.
Incidentally, Wooldridge (2024), Proposition A.1 shows that the POLS estimator using all of the
data gives the same test on 𝑑𝑖 · 𝑡 is using only the untreated observations (𝑑𝑖 · 𝑓 𝑠𝑡 = 0), preserving
the interpretation as the test detecting trends in the untreated state.

The Moser and Voena (2012) data run from 1875 through 1939, with the intervention starting in
1919 for treated chemical classes. Consequently, there are 21 dynamic treatment effects that can be
identified. Out of the 7,248 total classes, 336 are treated. Across 471,120 class/year observations,
the average of annual U.S. patents granted is about 0.35, with about 83.1% of the outcomes equal
to zero. Here, I follow Moser and Voena (2012) and estimate linear models; Wooldridge (2023)
shows how Poisson regression with an exponential mean containing exactly the same variables can
be applied to nonnegative outcomes.

Table 15.1 shows the results of two models. Column (1) sets 𝜂 = 0 in (15.15), and so it is
identical to the TWFE estimates. The average of the coefficients, 0.255 (𝑠𝑒 = 0.038), reproduces
the estimate Column (2) of Table 2 in Moser and Voena (2012). The pattern by exposure time differs
significantly from the average. IN fact, many of the early estimates are actually negative (though not
statistically significant at any reasonable level). The first statistically significant effect does not come
until after eight years.
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Estimating heterogeneous trends changes the exposure time estimates markedly. All coefficients
are positive and all are much bigger than the corresponding TWFE estimates. Most estimates are
statistically significant at the 5% level starting with one year of exposure. The average estimated
effect is also notably larger, 0.349 compared with 0.255.

As a statistical matter, we can use the simple tests that are suggested by the discussion in Section
15.6. In column (1), there is clear evidence of a selection effect. The negative coefficient on 𝑑,
−0.145, which is large in magnitude given the small average number of patents, is very statistically
significant (𝑡 ≈ −7.70). It suggests that compulsory licensing agreements were targeted at chemical
classes that had fewer historical patents. In column (2) the coefficient is smaller in magnitude,
−0.983, but it still has an absolute 𝑡 statistic above five. Moreover, the coefficient on the trend
𝑑 · (𝑦𝑒𝑎𝑟 − 1875) is negative and statistically significant (𝑡 ≈ −2.43), implying a statistical rejection
of the usual TWFE estimator. This outcome suggests selection not just based on pre-intervention
levels of patents but also on trends. (Centering 𝑦𝑒𝑎𝑟 about 1875 ensures that the coefficient on 𝑑 is
the selection effect in the first year, 1875.) Assuming the difference in trends between (eventually)
treated units and untreated units is roughly linear, the estimates in (2) are more reliable, and the
average effects is notably larger than that reported in Moser and Voena (2012).
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Table 15.1: Effects of Compulsory Licensing on Patents by Exposure Time

Exposure Time (1) FE/Mundlak (2) Heterogeneous Trends

0 −0.0221
(0.0340)

0.0428
(0.0335)

1 0.0064
(0.0342)

0.0742
(0.0331)

2 0.0169
(0.0432)

0.0877
(0.0351)

3 −0.0163
(0.0407)

0.0574
(0.0471)

4 0.0474
(0.0479)

0.1239
(0.0552)

5 −0.0240
(0.0453)

0.0555
(0.0429)

6 −0.0200
(0.0476)

0.0623
(0.0522)

7 0.0556
(0.0482)

0.1408
(0.0445)

8 0.1556
(0.0485)

0.2437
(0.0539)

9 0.1786
(0.0494)

0.2696
(0.0580)

10 0.0867
(0.0493)

0.1806
(0.0626)

11 0.0772
(0.0545)

0.1740
(0.0723)

12 0.1937
(0.0686)

0.2934
(0.0765)

13 0.5966
(0.1021)

0.6991
(0.1188)

14 0.5709
(0.0982)

0.6764
(0.1067)

15 0.3812
(0.0865)

0.4895
(0.0911)

16 0.5001
(0.0926)

0.6113
(0.1073)

17 0.6717
(0.1070)

0.7858
(0.1187)

18 0.5217
(0.0905)

0.6387
(0.1050)

19 0.6321
(0.1010)

0.7519
(0.1121)

20 0.718
(0.1177)

0.8745
(0.1280)

Average 0.2553
(0.0376)

0.3492
(0.0495)

𝑑 −0.1451
(0.0188)

−0.0830
(0.0144)

𝑑 · (𝑦𝑒𝑎𝑟 − 1875) — −0.0029
(0.0012)
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15.8 Concluding Remarks and Extensions

Using a reformulation of the Frisch-Waugh-Lovell partialling out result, I show how the basic
Mundlak (1978) – studied in the case of pooled OLS in Wooldridge (2019) – can be extended
very generally when a subset of variables has heterogeneous coefficients. To estimate the fixed
coefficients, the generalized Mundlak regression involves adding fitted values from unit-specific
regressions. In generally, the estimators and tests do require a sequence of unit-specific regressions,
which can be time consuming with a large cross-sectional sample size. Nevertheless, this is no more
difficult than including many unit-specific dummy variables.

A leading application is allowing heterogenous trends, where the unit-specific fitted values are
obtained as functions of trends; the leading case is a linear trend. This characterization of Chamberlain
(1992) generalized fixed effects estimator leads to simple specification tests for determining whether,
say, the usual two-way fixed effects is sufficient or whether unit-specific trends should be added. The
test is standard because it does not involve testing hypothesis involving 𝑁 (or more) coefficients on
unit-specific dummies.

When applied to staggered difference-in-differences settings, the results imply that controlling
for cohort dummies and cohort specific trends in a flexible regression is identical to either doing
unit-specific detrending or including a full set of unit dummies along with those interacted with
time trends. Practically, this is an important simplification, as illustrated in the empirical application
to the Moser and Voena (2012) patents data for more than 7,000 chemical classes. The usual fixed
effects specification is rejected in favor of the heterogeneous linear trend specification, and the latter
produces an estimated average treatment effect more than 35% larger than that reported by Moser
and Voena (2012).

The previous results can be extended to unbalanced panels, but the notation is more complicated.
There are a few important considerations. First, only the complete cases are used at every step in
characterizing the estimators. As in Wooldridge (2019), one can introduce a complete cases indicator,
say 𝑠𝑖𝑡 , where 𝑠𝑖𝑡 = 1 if all data are observed for unit 𝑖 in period 𝑡 . An observation is used if and
only if 𝑠𝑖𝑡 = 1. This is true even when obtaining the x̂𝑖𝑡 even if, say, (x𝑖𝑡 ,w𝑖𝑡 ) is fully observed by
𝑦𝑖𝑡 is missing. There is nothing unusual here, as the fixed effects estimator only uses the complete
cases and Wooldridge (2019) shows that the Mundlak regression reproduces the FE estimator on the
unbalanced sample provided only the complete cases are used. Wooldridge (2019) also emphasizes
that aggregate time effects now need to be average over the complete cases – rather than the averages
being constant. Naturally, the same is true here in the more general case: the fitted values f𝑡 on g𝑡 ,
𝑡 = 1, ..., 𝑇 are obtained using 𝑠𝑖𝑡 = 1. That is why these fitted values now vary by unit.
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Chapter 16
Dimensionality and Exact Bound Tests in
Simultaneous Equations

Jean-Marie Dufour, Lynda Khalaf

Abstract In linear simultaneous equations (SE), nuisance parameters and weak identification (or
weak instruments) severely complicate exact and asymptotic tests. A sizable literature has proposed
test procedures which aim at being robust to these difficulties. We reconsider such problems in
the context of a general framework which combines statistical perspectives on multivariate linear
regression, dimensionality analysis, and bound tests in econometrics. We study how hypothesis
tests in a standard simultaneous equations model can be viewed as tests of rank restrictions (or
dimensionality) on a multivariate linear regression (MLR). We adopt a finite-sample perspective, and
show that exact tests and bounds can be obtained in this framework without relying on identification
assumptions. This eschews the need for local asymptotic approximations, such as drifting sequences
or local-to-nonidentification assumptions. For the problem of testing subvectors of structural
parameters in a linear SE model, the bounds proposed can be viewed as a refinement of a general
bound given in Dufour (1997), and the finite-sample analogue of the identification-robust asymptotic
bounds proposed by Guggenberger, Kleibergen, Mavroeidis and Chen (2012) in a LIML framework.
Simulation experiments illustrate the usefulness of the bounds as well as tests against alternatives
which are unrestricted by the structure.

16.1 Introduction

Economic models often lead to situations where parameters of economic interest are difficult to
estimate or test from observed data. This problem, which is broadly referred to as identification
failure, occurs when the statistical objective function is not sensitive or varies little with some
underlying parameters; see Dufour and Hsiao (2008) and Lewbel (2019) for formal definitions with
discussion.

Identification is a key regularity condition for statistical analysis, and its failure raises serious
concerns. In this regard, an active literature that may be traced back to Dufour (1997) and Staiger
and Stock (1997), has emphasized the following issues: (i) identification failure occurs with methods
that economists routinely use; (ii) this causes severe distortions in size and coverage of standard
methods, which casts serious doubt on associated economic decisions; (iii) distortions may not
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dissipate in large samples; (iv) alternative asymptotic and finite-sample methods are needed that do
not require identification. The latter are typically referred to as identification-robust methods.

In this paper, we study how hypothesis tests in a standard simultaneous equations (SE) model
can be viewed as tests of rank restrictions on a multivariate linear regression (MLR). We adopt
a finite-sample perspective and show that finite-sample tests and bounds can be obtained in this
framework without relying on identification assumptions or asymptotic arguments. The bounds are
based on an approach used in our earlier work (Dufour, 1989, 1997; Dufour & Khalaf, 2002). For the
problem of testing subvectors of structural parameters in a linear simultaneous model, the bounds
proposed can be viewed as a refinement of the general bound given in Dufour (1997, Theorem
5.1) and the finite-sample analogue of the identification-robust asymptotic bounds proposed by
Guggenberger et al. (2012) in a LIML framework.

Historically, econometricians started to comprehend the severity of identification problems
with simultaneous equations (SE) models or Instrumental Variables (IV) regression, in which
case identification failure stems from so-called weak, i.e. non-informative IVs; see the surveys of
Stock, Wright and Yogo (2002), Dufour (2003), Mikusheva (2013) and I. Andrews, Stock and Sun
(2019). This literature has experienced important developments, the most prominent build upon the
Anderson-Rubin (AR) Anderson and Rubin (1949) test, which is valid regardless of whether IVs are
weak or strong.

This chapter adds to this body of literature by defining a finite-sample framework which unifies
several methods and allows for size and power comparisons. The proposed framework combines
statistical perspectives on: (i) multivariate linear regression (MLR) (Anderson, 1984, Chapter 8;
Rao, 1973, chapter 8; Berndt & Savin, 1977; Dufour & Khalaf, 2002), (ii) dimensionality tests (Rao,
1973, Section 8c.6; Saw, 1974; Schott, 1984; Gouriéroux, Monfort & Renault, 1995; Calinsky &
Lejeune, 1998), and (iii) bounds tests in econometrics (Dufour, 1989, 1989, 1997; Dufour & Khalaf,
2002; Dufour & Taamouti, 2005, 2005, 2007).

The first perspective is relevant since the unrestricted reduced form of a SE is an MLR. The
second perspective derives from the identification condition in IV-regression, which is a rank
or dimensionality restriction. The third embeds an important property of test statistics whose
null distribution depends on nuisance parameters that control identification requirements: unless
the distribution in question can be bounded by another one which is invariant to these nuisance
parameters, the test size can deviate arbitrarily from its nominal levels. Statistics that can be bounded
along these lines are boundedly pivotal, using the definition of Dufour (1997); the simple existence
of bounds on the distribution of a test statistic provides a prima facie validation of the test statistic
for the null hypothesis considered. Along these lines, Dufour (1997) derives general bounds for
likelihood-ratio tests in SEs. Such bounds do not depend on identification assumptions (such as rank
restrictions matrices of reduced-form coefficients), irrespective of the sample size. Bounds can also
lead to concrete and useful identification-robust inference procedures, which will be concretized
through our analysis of SEs.

Our analysis focuses on the AR test in the context of a single SE (Dufour, 1997; Staiger & Stock,
1997; Dufour & Taamouti, 2007; D. W. K. Andrews, Moreira & Stock, 2006; Dufour & Taamouti,
2005; Doko Tchatoka & Dufour, 2020), and the related unconditional procedures that seek power
improvements on this test (Wang & Zivot, 1998; Kleibergen, 2002; Guggenberger et al., 2012).1 The
AR test is by far one of the most influential identification-robust procedures; see D. W. Andrews and
Marmer (2008) for non-parametric counterparts, Stock and Wright (2000) for extensions to GMM,
and Beaulieu, Khalaf, Kichian and Melin (2022) for an extension to several SEs with common
endogenous variables.

Our contribution is to derive exact and bounding distributions for these procedures, using the
same MLR framework, which does not require local-to-zero or drifting-sequences based asymptotics,
in contrast to Wang and Zivot (1998) and Guggenberger et al. (2012). Instead, bounds are validated
using exact stochastic dominance arguments under the null hypothesis, based on statistics whose
null distribution does not depend on identification assumptions. For the tests under consideration,

1 On conditional tests, see Moreira (2003), Guggenberger, Kleibergen and Mavroeidis (2019) and
Kleibergen (2021). The latter paper illustrates the merits of bounds in this context.
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this involves criteria associated with a special case of the null hypothesis that can be tested exactly.
Normality is not always needed to do this, in which case we clarify the hypotheses leading to the
bound, and underlying assumptions.

The AR test is applicable when one is interested in testing the full vector of endogenous variables
coefficients, denoted 𝛽, the dimension of which is 𝑚. This test is a linear least-squares based
exclusion procedure, where the dimension of the excluded vector, i.e. the degrees-of-freedom,
corresponds to the number of instruments, denoted 𝑘2. The AR test can be inverted using tractable
analytical formula (Dufour & Jasiak, 2001; Dufour & Taamouti, 2005) to derive confidence sets
for inference on the components of 𝛽. We will refer to a test on a component of 𝛽 based on the
projected AR-based confidence set to the hypothesized value of the component in question, as the
inverted AR (IAR) test.

Since 𝑘2 is typically larger than 𝑚, attempts to avoid perceived degrees-of-freedom losses
have driven much of the related enduring research on SEs. In particular, alternative procedures
based on limited information maximum likelihood (LIML) have gained momentum. Within this
class, the rank-based LIML identification-robust bound procedure of Guggenberger et al. (2012)
for inference on a sub-vector of 𝛽 of dimension 𝑚1, which we denote 𝛽1, involves 𝑘2 − (𝑚−𝑚1 )
degrees-of-freedom, which promises to reduce the losses attributed to the IAR-test.

In this context, our contributions can be summarized as follows. First, we derive the AR statistic
as a uniform linear (UL) restriction (Berndt & Savin, 1977; Dufour & Khalaf, 2002) test within an
MLR. This provides an interesting multivariate perspective on this statistic that sets the stage for
our dimensionality-based analysis in what follows. Second, we derive the finite-sample distribution
of the AR statistic in possibly non-normal contexts. This reveals that the results of Doko Tchatoka
and Dufour (2020) require separability assumptions, which we clarify. Third, we revisit the bound
of Wang and Zivot (1998) from a finite-sample perspective. We also revisit the test proposed by
Kleibergen (2002) through our context, which allows us to position the usefulness of these procedures
relative the AR test. Fourth, we derive the IAR test and the bound procedure of Guggenberger et al.
(2012) as dimensionality tests. The proposed finite-sample bounds can be viewed as the finite-sample
analogue of the latter, without recourse to asymptotic arguments. The bounds given here can also
be viewed as extensions of the bounds given by Saw (1974) and Schott (1984) in the more limited
context of multivariate analysis-of-variance with only means (or intercepts) as explanatory variables
(and no SE framework). Our analytic derivations allow us to compare the practical usefulness of
these procedures on exact grounds. A simulation study further illustrates the power properties of all
bounds, in contrast to the severe over-size problems that we document with IV-based Wald tests.

As demonstrated by I. Andrews et al. (2019), who examine 230 empirical analyses from 17
papers published in the American Economic Review from 2014-2018, weak IVs are a clear and
evident problem in empirical work. Despite the usefulness of local-to-zero asymptotics that have
facilitated improved approximations since Staiger and Stock (1997), we recommend finite-sample
arguments leading to proper pivots as an alternative solid basis for robust inference. Regardless of
the underlying method of proof, pivots are the key requirements for reliable inference, especially
when identification may fail.

The chapter is organized as follows. Section 16.2 describes the simultaneous equations framework
considered, and spells out the link with uniform linear restrictions in a multivariate linear regression
model, along with LIML estimation in this context. Section 16.3 recast Anderson-Rubin-type tests
as tests of dimensionality (reduced rank) on the coefficient matrix of a MLR model. Section 16.4
considers the problem of testing subvectors in a linear simultaneous equation model, and proposes
finite-sample identification-robust bounds for such tests. Section 16.5 presents the results of a small
simulation study. We conclude in Section 16.6.

16.2 Framework

Consider the limited-information (LI) linear simultaneous equations model:
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𝑦 =𝑌𝛽 +𝑋1𝛾 +𝑢 = 𝑍 𝛿 +𝑢,
𝑍 = [𝑌, 𝑋1 ], 𝛿 = (𝛽′, 𝛾′ ) ′,
𝑌 = 𝑋1Π1 +𝑋2Π2 +𝑉,

(16.1)

where 𝑦 is a 𝑇 × 1 vector, 𝑌 and 𝑋1 are 𝑇 ×𝑚 and 𝑇 × 𝑘1 matrices which respectively contain the
observations on the included endogenous and exogenous variables of the model, and 𝑋2 refers to the
𝑇 × 𝑘2 matrix of excluded exogenous variables (or instruments).

For the clarity of presentation, we will adopt the following notation:

𝐼𝑠 denotes an 𝑠-dimensional identity matrix;
𝑂(𝑠, 𝑗) denotes an 𝑠 × 𝑗 matrix of zeros;

given an 𝑠 × 𝑗 full-column rank matrix 𝑍 , 𝑀 (𝑍 ) = 𝐼𝑠 − 𝑍 (𝑍 ′𝑍 )−1𝑍 ′.

Z(𝑠) refers to a 𝑇 × 𝑠 matrix of i.i.d. 𝑠-dimensional standard normal variables Z𝑡 (𝑠) , i.e.

Z(𝑠) = [Z1 (𝑠) , . . . , Z𝑇 (𝑠) ]′, Z𝑡 (𝑠) 𝑖.𝑖.𝑑.∼ 𝑁 [0, 𝐼𝑠 ] , 𝑡 , . . . , 𝑇 .

We denote by 𝐹 (𝑛1, 𝑛2 ) the F-distribution with degrees of freedom 𝑛1 and 𝑛2, and by 𝐹𝛼 (𝑛1, 𝑛2 )
the associated 𝛼-level critical point. Similarly, 𝜒2 (𝑛) represents the 𝜒2 distribution with 𝑛 degrees
of freedom.

16.2.1 Distributional Assumptions

The LI reduced form associated with (16.1) is:

[
𝑦 𝑌

]
= 𝑋Π +

[
𝑣 𝑉

]
, Π =


𝜋1 Π1

𝜋2 Π2

 , 𝑋 =
[
𝑋1 𝑋2

]
, (16.2)

𝜋1 = Π1𝛽 + 𝛾, 𝜋2 = Π2𝛽, 𝑣 = 𝑢+𝑉𝛽 ,
which leads to the standard condition for identification:

rank(Π2 ) =𝑚.

We suppose that the rows of
[
𝑢 𝑉

]
satisfy the following distributional assumptions:(

𝑢𝑡 , 𝑉
′
𝑡

)
∼ 𝐽𝑊𝑡 , 𝑡 = 1, . . . , 𝑇, (16.3)

where vec(𝑊1 , ... , 𝑊𝑇 ) has a known distribution, and 𝐽 is an unknown nonsingular matrix. (16.3)
implies that [

𝑢 𝑉
]
=𝑊𝐽 ′ (16.4)

where 𝑊 := [𝑊1, . . . , 𝑊𝑇 ]′. A special case considered below is the following mixture of normals:

𝑊 = �̄�Z (𝑚+1) (16.5)

where �̄� is 𝑇 ×𝑇 , unknown and possibly random in which case it is independent of Z (𝑚+1) .
As defined above, Z (𝑚+1) denotes the 𝑇 × (𝑚+1) matrix of i.i.d. multivariate standard normal
variables, so the standard Gaussian model corresponds to (16.5) with �̄� = 𝐼𝑇 . The multivariate
Student-𝑡 distribution with 𝜅 degrees-of freedom corresponds to the following structure: �̄� is a
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diagonal matrix and diagonal terms denoted �̄�𝑡,𝑡 take the form:

�̄�𝑡,𝑡 = 1/(𝑣𝑡/𝜅 )1/2, 𝑡 = 1, . . . , 𝑇 ,

where 𝑣𝑡
𝑖.𝑖.𝑑.∼ 𝜒2 (𝜅 ) and are independent of Z (𝑚+1) .

16.2.2 Background: Finite-sample Multivariate Regression Tests

The unrestricted model (16.2) is a MLR. To facilitate the analysis, this section presents some
fundamental results on MLR models, based on Berndt and Savin (1977) and Dufour and Khalaf
(2002). In particular, we review results from the statistical theory on dimensionality tests (Calinsky
& Lejeune, 1998; Schott, 1984), which are relevant to the derivation of bounds on LIML-based tests
within (16.1).

The general MLR model is given by:

𝑌 = 𝑋Π +𝑈

where 𝑌 is a 𝑇 × 𝑛 matrix of observations on 𝑛 dependent variables, 𝑋 is a 𝑇 × 𝑘 full-column-rank
matrix of fixed regressors, and𝑈 = [𝑈1, . . . , 𝑈𝑇 ]′ is the 𝑇 × 𝑛 matrix of error terms. We assume
that we can condition on 𝑋 for statistical analysis, and we consider the hypothesis

𝐻0 :𝐶Π𝐺 = 0, for known 𝐶 and 𝐺, (16.6)

where 𝐶 is 𝑐 × 𝑘 with rank 𝑐, 𝐺 is 𝑛× 𝑔 with rank 𝑔. The (16.6) form fits within the UL class, as
defined by Berndt and Savin (1977). The associated trace or Wald-type statistic is given by:

𝑇0 (𝐶,𝐺) = tr[�̂�−1�̂�0 ] =
𝑠∑︁
𝑖=1
𝜃𝑖 ,

�̂� =𝐺′𝑌 ′𝑀 (𝑋)𝑌𝐺, �̂�0 =𝐺
′𝑌 ′𝑃𝐶 (𝑋)𝑌𝐺 ,

𝑃𝐶 (𝑋) = 𝑋 (𝑋′𝑋)−1𝐶′ [𝐶 (𝑋′𝑋)−1𝐶′ ]−1𝐶 (𝑋′𝑋)−1𝑋′ ,

where 𝑠 =min(𝑐, 𝑔) and 𝜃1 > 𝜃2 > · · · > 𝜃𝑠 are the 𝑠 positive (and distinct) eigenvalues of �̂�−1�̂�0.
The likelihood ratio (LR) statistic corresponds to the product of these eigenvalues. Under the null
hypothesis, 𝑃𝐶 (𝑋)𝑋Π𝐺 = 0 because 𝐶Π𝐺 = 0, so that

�̂� =𝐺′𝑈′𝑀 (𝑋)𝑈𝐺, �̂�0 =𝐺
′𝑈′𝑃𝐶 (𝑋)𝑈𝐺. (16.7)

It follows that under the null hypothesis, 𝑇0 (𝐶,𝐺) is distributed like the pivot

�̄�0 (𝐶,𝐺) = tr[𝐺′𝑈′𝑀 (𝑋)𝑈𝐺 ]−1𝐺′𝑈′𝑃𝐶 (𝑋)𝑈𝐺. (16.8)

The following approximation for the null distribution of this statistic is recommended by McKeon
(1974):

𝑇0 (𝐶,𝐺)
𝜘1

∼ 𝐹 (𝑐𝑔 , 𝜘2 ) (16.9)

where

𝜘1 = (𝑐𝑔) (𝜘2 − 2) /(𝜘2 (𝑇 − 𝑘 − 𝑔 − 1) ) , 𝜘2 = 4+ ( (𝑔𝑐 +2) /(𝜘3 − 1) ) ,

𝜘3 = (𝑇 − 𝑘 + 𝑐 − 𝑔 − 1) (𝑇 − 𝑘 − 1) /( (𝑇 − 𝑘 − 𝑔 − 3) (𝑇 − 𝑘 − 𝑔) ) .
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When min(𝑐, 𝑔) = 1 and𝑈𝑡
𝑖.𝑖.𝑑.∼ 𝑁 [0, Σ] , 𝑡 = 1, . . . , 𝑇 , the distribution 𝐹 (𝑐𝑔 , 𝜘2 ) is valid in

finite samples. In this case, the trace statistic coincides with the LR one, and (16.9) coincides with
the approximation given by Rao (1973, chapter 8). For further reference, when 𝑔 = 1 and 𝑐 = 𝑘,
(16.9) yields:

(𝑇 − 𝑘 )
𝑘

𝐺′𝑌 ′𝑃𝐶 (𝑋)𝑌𝐺
𝐺′𝑌 ′𝑀 (𝑋)𝑌𝐺 ∼ 𝐹 (𝑘 , 𝑇 − 𝑘 ) . (16.10)

Similarly, when 𝑐 = 𝑘 − (𝑛− 1) > 0, we have:

(𝑇 − 𝑘 )
𝑘 − (𝑛− 1)

𝐺′𝑌 ′𝑃𝐶 (𝑋)𝑌𝐺
𝐺′𝑌 ′𝑀 (𝑋)𝑌𝐺 ∼ 𝐹 (𝑘 − (𝑛− 1) , 𝑇 − 𝑘 ) . (16.11)

This may be verified from (16.7) by observing that𝑈𝐺 is a vector of normal variables when 𝑔 = 1.
Assuming 𝑘 > (𝑛− 1) , consider now the trace statistic associated with testing whether the rank

of Π is 𝑛− 1:
𝑇1 = 𝜇𝑛 (16.12)

where 𝜇𝑛 is the minimum eigenvalue of (𝑌 ′𝑀𝑋𝑌 )−1𝑌 ′𝑋 (𝑋′𝑋)−1𝑋′𝑌 . By Calinsky and Lejeune
(1998, equation (2.13)), we have under the null hypothesis of reduced rank:

Pr
[ (𝑇 − 𝑘 )
𝑘 − (𝑛− 1) 𝑇1 ≥ 𝐹𝛼 (𝑘 − (𝑛− 1) , 𝑇 − 𝑘 )

]
≤ 𝛼. (16.13)

The rationale for this bound can be spelled out as follows (Dufour & Khalaf, 2002). Consider a
right-tailed test statistic whose null distribution depends on nuisance parameters. Yet, it is possible
to find another statistic 𝑇∗ such that

𝑇 ≤ 𝑇∗ (16.14)
for all nuisance parameters compatible with the null hypothesis, where 𝑇∗ is pivotal (i.e., 𝑇∗ has a
known nuisance-parameter free null distribution). This includes the case where this distribution
can be derived by simulation. In particular, 𝑇∗ may be associated with a null hypothesis which is a
special case of the hypothesis under test. Let 𝑡𝛼 refer to the 𝛼-level critical point associated with 𝑇∗.
Then the dominance inequality (16.14) implies that

Pr[𝑇 ≥ 𝑡𝛼 ] ≤ Pr[𝑇∗ ≥ 𝑡𝛼 ]

which entails that a test based on referring the observed value of 𝑇 to 𝑡𝛼 is level-correct.
These arguments lead to (16.13) as follows. The reduced rank null hypothesis can be re-expressed

in the following form: there exists a (𝑘 − (𝑛− 1) ) × 𝑘 matrix 𝐶∗ of rank 𝑘 − (𝑛− 1) and an 𝑛× 1
non-zero vector 𝐺∗ such that

𝐶∗Π𝐺∗ = 0.
From standard results on matrix theory, it is also of interest to observe the following min-max
property:

𝑇∗ = inf
𝐶∗

sup
𝐺∗
𝑇0 (𝐶∗,𝐺∗ ) = inf

𝐺∗
sup
𝐶∗
𝑇0 (𝐶∗,𝐺∗ )

where 𝑇0 (𝐶∗,𝐺∗ ) is the statistic associated with known 𝐶∗ and 𝐺∗; see Calinsky and Lejeune
(1998, equation (2.13) and Appendix A). Furthermore, the hypothesis with known 𝐶∗ and 𝐺∗ is
a special case of the rank hypothesis under test, whereby (16.11) provides a known critical point
which is nuisance parameter invariant.

An alternative bound can also be derived by rewriting the rank hypothesis in the following form
when 𝑘 > 𝑛: there exists an 𝑛× 1 non-zero vector 𝐺† such that

Π𝐺† = 0 .

It follows that the statistic 𝑇0
(
𝐼𝑘 ,𝐺†

)
associated with a known 𝐺† can be used to bound the null

distribution of 𝑇1 leading to the bound
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Pr

[
(𝑇 − 𝑘 )
𝑘

𝑇1 ≥ 𝐹𝛼 (𝑘 ) , 𝑇 − 𝑘 )
]
≤ 𝛼. (16.15)

Clearly, (16.13) is a tighter bound. We use these arguments in what follows for statistical inference
on 𝛽 in (16.1).

16.2.3 LIML: Definitions and Multivariate Regression Perspectives

In the context of (16.1), LIML corresponds to maximizing the associated Gaussian likelihood.
It is well know that the solution obtains through an eigenvalue/eigenvector problem based on the
following determinantal equation

det
(
[ 𝑦 𝑌 ]′𝑀 (𝑋1 ) [ 𝑦 𝑌 ] − 𝜆[ 𝑦 𝑌 ]′𝑀 (𝑋) [ 𝑦 𝑌 ]

)
= 0 (16.16)

where 𝜆 refers to the eigenvalue in question. Using usual projection arguments and for presentation
ease, we write (16.16) as

det[ �̃�′ �̃� − 𝜆�̃�′𝑀 ( �̃� ) �̃� ] = 0
where

�̃� =𝑀 (𝑋1 ) [ 𝑦 𝑌 ] , �̃� =𝑀 (𝑋1 )𝑋2.

Indeed, it can be shown (see, for example Theil (1971, Appendix B), Wang and Zivot (1998)) that
the LIML estimator of 𝛽 is

𝛽 = ARGMIN
𝛽

{𝜆(𝛽) } , (16.17)

𝜆(𝛽) = 𝐺 (𝛽) ′ �̃�′ �̃�𝐺 (𝛽)
𝐺 (𝛽) �̃�′𝑀 ( �̃� ) �̃�𝐺 (𝛽) , 𝐺 (𝛽) = (1, −𝛽′ ) ′ ,

or alternatively, the LIML estimator of 𝛿 is

𝛿 =


𝛽

�̃�

 =

𝑌 ′𝑌 − �̃�𝑌 ′𝑀 (𝑋)𝑌 𝑌 ′𝑋

𝑋′𝑌 𝑋′𝑋


−1 

𝑌 ′ − �̃�𝑌 ′𝑀 (𝑋)
𝑋′

 𝑦 (16.18)

where �̃� is the smallest root of (16.16), i.e.

�̃� = min
𝛽
𝜆(𝛽) = 𝜆(𝛽)

with𝐺 (𝛽) = (1, −𝛽′ ) ′. Correspondingly, expressions for the estimates of the remaining parameters
obtain as follows (see Theil, 1971, Appendix B):[

�̃�1 Π̃1
]
= (𝑋′1𝑋1 )−1𝑋′1

( [
𝑦 𝑌

]
− 𝑋2

[
�̃�2 Π̃2

] )
, (16.19)

[
�̃�2 Π̃2

]
= ( �̃�′ �̃� )−1 �̃�′ �̃� − ( �̃�

′ �̃� )−1 �̃�′𝑦

𝐺 (𝛽) ′Σ̂𝐺 (𝛽)
𝐺 (𝛽)𝐺 (𝛽) ′Σ̂ , (16.20)

Σ̃ = Σ̂+ [𝜆(𝛽) − 1]
𝑇

�̃�′𝑀 ( �̃� ) �̃�𝐺 (𝛽)𝐺 (𝛽) ′ �̃�′𝑀 ( �̃� ) �̃�
𝐺 (𝛽) ′ �̃�′𝑀 ( �̃� ) �̃�𝐺 (𝛽)

,

Σ̂ =
�̃�′𝑀 ( �̃� ) �̃�

𝑇
.

The derivations of Theil (1971, Appendix B) also imply that det(Σ̃) satisfies
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det(Σ̃) = 𝜆(𝛽) det(Σ̂) .

The above can be derived by equating the equations (7) and (9) of Berndt and Savin (1977), in the
context of the regression of 𝑦 on 𝑥 where, in the notation of Section 16.2.2, restrictions are applied
that take the form 𝐶

[
𝜋2 Π2

]
𝐺 = 0, with 𝐶 = 𝐼(𝑘2 ) , 𝐸 = 0 and 𝐺 =𝐺 (𝛽) .

For hypotheses of the form 𝑅𝛿 = 𝑟 on the coefficients of (16.1), where 𝑅 is a known 𝑞 ×𝑚
matrix of rank 𝑞 and 𝑟 is known, Wald statistics are routinely applied and take the form

𝜏𝑤 =
1
𝑠2 (𝑟 − 𝑅𝛿 )

′{𝑅′ [𝑍𝑃 (𝑃′𝑃)−1𝑃′𝑍 ′ ]−1𝑅}−1 (𝑟 − 𝑅𝛿 ) , (16.21)

𝑠2 =
1
𝑇
(𝑦 − 𝑍 𝛿 ) ′ (𝑦 − 𝑍 𝛿 ) ′, 𝑃 =

[
𝑋 𝑋 (𝑋′𝑋)−1𝑋′𝑌

]
,

where 𝛿 is a consistent asymptotically normal estimator such as (16.18) or the 2SLS

𝛿 = [𝑍 ′𝑃 (𝑃′𝑃)−1𝑃′𝑍 ′ ]−1𝑍 ′𝑃 (𝑃′𝑃)−1𝑃′𝑦

imposing identification, in which case the asymptotic null distribution of 𝜏𝑤 is 𝜒2 (𝑞) . For an
asymptotic theory conformable with under-identification, see Staiger and Stock (1997). Note that
𝛿 corresponds to replacing �̃� by 1 in (16.18). When 𝑚 = 𝑘2, �̃� = 1 and LIML coincides as is well
known with 2SLS. We study these Wald statistics in our simulation experiment.

16.3 Anderson-Rubin-type Hypotheses

We first consider hypotheses that set the full vector 𝛽 to a known value, which has generated an
extensive literature since Dufour (1997) and Staiger and Stock (1997). Formally, in the context of
the LI model (16.1), we consider hypotheses of the form:

𝐻𝐴𝑅 : 𝛽 = 𝛽0 (16.22)

where 𝛽0 is a known vector. The restricted reduced form thus amounts to (16.2) with

𝜋1 = Π1𝛽0 + 𝛾 , 𝜋2 = Π2𝛽0 , 𝑣 = 𝑢+𝑉𝛽0 . (16.23)

16.3.1 Anderson-Rubin Test

The problem under consideration - specifically (16.23) - may be viewed in the context of the
regression of 𝑦 on 𝑥, namely

�̃� = �̃�
[
𝜋2 Π2

]
+𝑀 (𝑋1 )

[
𝑣 𝑉

]
,

with restrictions of the form[
𝜋2 Π2

]
𝐺 (𝛽0 ) = 0, 𝐺 (𝛽0 ) = (1, −𝛽′0 )

′ .

As reviewed in Section 16.2.2, the associated trace statistic against an unrestricted alternative can
be obtained as
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Λ𝐴𝑅 =
𝐺′0 �̃�

′ �̃� ( �̃�′ �̃� )−1 �̃�′ �̃�𝐺0

𝐺′0 �̃�
′𝑀 ( �̃� ) �̃�𝐺0

= 𝜆(𝛽0 ) − 1 (16.24)

where the function 𝜆( ·) is defined in (16.17).
Λ𝐴𝑅 corresponds to the AR statistic (up to a constant); in the context of simulation-based testing,

one thus may rely on 𝜆(𝛽0 ) to obtain AR-type tests.

Theorem 16.1 In the context of the LI model (16.1) with(16.3)-(16.4) , consider the problem of
testing (16.22) . Let Λ𝐴𝑅 refer to the statistic defined by (16.24) . Then, under the null hypothesis,
Λ𝐴𝑅 is distributed like the criterion

Λ̄𝐴𝑅 =
𝐺′0𝐽𝑊

′𝑀 (𝑋1 )𝑊𝐽 ′𝐺0

𝐺′0𝐽𝑊
′𝑀 (𝑋)𝑊𝐽 ′𝐺0

− 1 , 𝐺0 =
(
1,𝑂′(𝑚,1)

) ′
. (16.25)

If it is further assumed that the first row of 𝐽 has zeros everywhere except for the first element then

Λ̄𝐴𝑅 =
𝐺′0𝑊𝑀 (𝑋1 )𝑊𝐺0

𝐺′0𝑊
′𝑀 (𝑋)𝑊𝐺0

− 1 . (16.26)

Alternatively, under assumption (16.5) ,

Λ̄𝐴𝑅 =
𝐺′0Z (1)

′ �̄�′𝑀 (𝑋1 ) �̄�Z (1)𝐺0

𝐺′0Z (1)
′ �̄�′𝑀 (𝑋) �̄�Z (1)𝐺0

− 1 . (16.27)

Proof. Under the null hypothesis [
𝑢 𝑉

]
𝐺 (𝛽0 ) = 𝑣 −𝑉𝛽0 = 𝑢

so that
Λ𝐴𝑅 =

𝑢′𝑀 (𝑋1 )𝑢
𝑢′𝑀 (𝑋)𝑢 − 1.

Given assumption (16.3),
𝑢 =

[
𝑢 𝑉

]
𝐺0 =𝑊𝐽

′𝐺0 ,

which leads to (16.25). When the first row of 𝐽 in (16.3) has zeros everywhere, except for the first
element which equals (say) 𝜎 ≠ 0, then 𝐽 ′𝐺0 = 𝜎𝐺0 and𝑊𝐽 ′𝐺0 = 𝜎𝑊𝐺0, so that

Λ𝐴𝑅 =
𝜎𝐺′0𝑊

′𝑀 (𝑋1 )𝑊𝐺0𝜎

𝜎𝐺′0𝑊
′𝑀 (𝑋)𝑊𝐺0𝜎

− 1

which yields (16.26). Alternatively, under assumption (16.5), 𝑢 =
[
𝑢 𝑉

]
𝐺0 = �̄�Z (𝑚+1) 𝐽 ′𝐺0.

But the distribution of Z (𝑚+1) 𝐽 ′𝐺0 follows that of Z (1) 𝜎𝐽 where 𝜎𝐽 =
(
𝐺′0𝐽𝐽

′𝐺0
)1/2 which

yields (16.27). □
The latter result means that an exact test can be carried out in non-normal contexts within a

systems-based perspective. An assumption on the distribution of 𝑢 can be formulated as in Doko
Tchatoka and Dufour (2020), abstracting from the rest of the system. Our result reveals that this
subsumes a block-triangular structure on 𝐽 , unless the distribution is a mixture of normals. Block-
triangular forms can be reasonably defended through economic theory, for example by causation
arguments. Our point here is to emphasize the system perspective, in which case invariance to 𝐽
should not be taken for granted. If normality is imposed, then as reviewed in Section 16.2.2 (see
(16.10)) under the null hypothesis

𝑇 − (𝑘1 + 𝑘2 )
𝑘2

Λ𝐴𝑅 ∼ 𝐹 [𝑘2, 𝑇 − (𝑘1 + 𝑘2 ) ] . (16.28)
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16.3.2 Alternative Tests

Let us now turn to the LIML LR statistic associated with (16.22) (Wang & Zivot, 1998), which is a
monotonic transformation of

Λ𝐿𝐼 = 𝜆(𝛽0 ) − 𝜆(𝛽) (16.29)
where the function 𝜆( ·) is defined in (16.17) and 𝛽 is the LIML estimate of 𝛽 defined in (16.18).
Our MLR background approach of Section 16.2.2 allows us to derive a finite-sample bound on the
null distribution of this statistic, as follows.

Theorem 16.2 In the context of the LI model (16.1) with assumption (16.5) where �̄� = 𝐼𝑇 , consider
the problem of testing (16.22) . Let Λ𝐿𝐼 refer to the statistic defined by (16.29) . Then, under the
null hypothesis, we have:

Pr

[
𝑇 − (𝑘1 + 𝑘2 )

𝑘2
Λ𝐿𝐼 ≥ 𝐹𝛼 (𝑘2, 𝑇 − (𝑘1 + 𝑘2 ) )

]
≤ 𝛼. (16.30)

Proof. From (16.29), we have

Λ𝐿𝐼 = [𝜆(𝛽0 ) − 1] − [𝜆(𝛽) − 1] = Λ𝐴𝑅 − [𝜆(𝛽) − 1]

where 𝜆(𝛽) ≥ 1. It follows that Λ𝐿𝐼 ≤ Λ𝐴𝑅 , and the null distribution of the Λ𝐴𝑅 is given by (16.28).
Then the result follows based on the argument of Section 16.2.2. □

Theorem 16.2 provides a finite-sample counterpart to the bound of Wang and Zivot (1998),
which corresponds to the 𝜒2 approximation associated with (16.30). Theorem 16.1 further suggests
that a simulation-based bound may be considered for level correct tests beyond the Gaussian special
case. Yet from a power perspective, a test based on Λ𝐴𝑅 is expected to perform better. To be clear,
the statistics that we consider in our simulation study below are

Λ𝐴𝑅 = 𝜆(𝛽0 ) − 1 , (16.31)
Λ𝐿𝐼 = 𝜆(𝛽0 ) − 𝜆(𝛽) . (16.32)

To conclude, consider the test proposed by Kleibergen (2002) in the context of (16.22). Dufour
(2003) shows that the latter test corresponds to an AR-type test applied with a specific instrument
choice (denoted 𝑍𝐾 ). Specifically, equations (83) - (86) from Dufour (2003) rewritten in terms of
our notation lead to the instrument

𝑍𝐾 = 𝑋2Π2, Π2 = Π̂2 − �̂�2 (𝛽0 )
𝑆𝜀𝑉 (𝛽0 )
𝑆𝜀𝜀 (𝛽0 )

,

Π̂2 = ( �̃�′ �̃� )−1 �̃�′ �̃� , 𝜋2 (𝛽0 ) = ( �̃�′ �̃� )−1 �̃�′ �̃�𝐺 (𝛽0 ) ,

𝑆𝜀𝑉 (𝛽0 ) =
1

𝑇 − 𝑘𝐺 (𝛽0 ) ′ �̃�′𝑀 ( �̃� ) �̃� , 𝑆𝜀𝜀 (𝛽0 ) =
1

𝑇 − 𝑘𝐺 (𝛽0 ) ′ �̃�′𝑀 ( �̃� ) �̃�𝐺 (𝛽0 ) .

Here we argue that the later expression is a constrained OLS estimator of Π2, imposing the LIML
structure. The following estimates correspond to (16.19) - (16.20) replacing 𝛽 by 𝛽0:[

�̂�0
2 Π̂0

2

]
= ( �̃�′ �̃� )−1 �̃�′ �̃� − ( �̃�′ �̃� )−1 �̃�′ �̃�

𝐺 (𝛽0 ) ′Σ̂𝐺 (𝛽0 )
𝐺 (𝛽0 )𝐺 (𝛽0 ) ′Σ̂

which in turn corresponds exactly to the estimator of Π2, denoted Π2 by Kleibergen (2002). Dufour
(2003) has shown that Wang and Zivot (1998)’s LM𝐺𝑀𝑀 test obtains as an AR type test with
instrument 𝑋2Π̂2. We thus see that Kleibergen (2002) is highly related to the latter, since it is
obtained in a similar way, replacing the unconstrained OLS estimator of Π2 by a constrained OLS
estimator which imposes the structure.



16 Dimensionality and Exact Bound Tests in Simultaneous Equations 443

As mentioned in Dufour (2003), these tests are affected by the fact that estimated instruments are
not independent from the error term 𝑢, and thus are not pivotal in finite samples. One way around it
is to consider the split-sample AR test as proposed by Dufour and Jasiak (2001); see also Bolduc,
Khalaf and Moyneur (2008) for an application of this approach.

16.4 Subset Hypotheses

Now consider hypotheses of the form

𝐻1 : 𝛽1 = 𝛽
0
1 , (16.33)

where 𝛽 = (𝛽′1, 𝛽
′
2 )
′ and 𝛽1 is 𝑚1 × 1 and 𝛽2 is 𝑚2 × 1 where 𝑚2 = 𝑚 −𝑚1. Partition 𝑌 and 𝑉

conformably into the 𝑇 ×𝑚1 and 𝑇 ×𝑚2 matrices 𝑌1 and 𝑌2, and the 𝑇 ×𝑚1 and 𝑇 ×𝑚2 matrices
𝑉1 and 𝑉2, and consider the conformable partition of Π2 leading to the sub-system with dimension
𝑚2 +1

𝑦 −𝑌1𝛽
0
1 =𝑌2𝛽2 +𝑋1𝛾 +𝑢,

𝑌2 = 𝑋1Π21 +𝑋2Π22 +𝑉2.

The restricted LIML of 𝛽2 can be obtained as above through an eigenvalue/eigenvector problem.
The determinantal equation in this case is:

det
[
�̃�′0 �̃�0 − 𝜆0 �̃�

′
0𝑀 ( �̃� ) �̃�0 ]

]
= 0

where 𝜆0 refers is an eigenvalue, and

�̃�0 =𝑀 (𝑋1 )
[
𝑦 −𝑌1𝛽

0
1 𝑌2

]
=𝑀 (𝑋1 )

[
𝑦 𝑌

]
𝑆 (𝛽0

1 )

where 𝑆 (𝛽0
1 ) is the (𝑚1 +𝑚2 +1) × (𝑚2 +1) transformation matrix. Other than zeros and ones for

selection purposes, this matrix solely depends on 𝛽0
1 .

The restricted LIML estimator of 𝛽2 is

𝛽20 = ARGMIN
𝛽2

{𝜆0 (𝛽2 ) } ,

𝜆0 (𝛽2 ) =
𝐺0 (𝛽2 ) ′ �̃�′0 �̃�0𝐺0 (𝛽2 )

𝐺0 (𝛽2 ) �̃�′0𝑀 ( �̃� ) �̃�0𝐺0 (𝛽2 )
, 𝐺0 (𝛽2 ) =

(
1, −𝛽′2

) ′
,

or alternatively, the LIML estimator is
𝛽20

�̃�0

 =

𝑌 ′2𝑌2 − �̃�0𝑌

′
2𝑀 (𝑋)𝑌2 𝑌

′
2𝑋

𝑋′𝑌2 𝑋′𝑋


−1 

𝑌 ′2 − �̃�0𝑌
′

2𝑀 (𝑋)
𝑋′

 (𝑦 −𝑌1𝛽
0
1 )

where �̃�0 is the smallest root of the above determinantal equation, that is:

�̃�0 =min
𝛽2
𝜆0 (𝛽2 ) = 𝜆0 (𝛽20 ) .

Correspondingly, expressions for the estimates of the remaining parameters obtain as follows (by
replicating the above arguments based on Theil (1971, Appendix B):[

�̃�10 Π̃10
]
= (𝑋′1𝑋1 )−1𝑋′1

( [
𝑦 −𝑌1𝛽

0
1 𝑌2

]
− 𝑋2

[
�̃�20 Π̃20

] )
,
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[
�̃�20 Π̃20

]
= ( �̃�′ �̃� )−1 �̃� �̃�0 −

( �̃�′ �̃� )−1 �̃� �̃�0

𝐺0 (𝛽20 ) ′Σ̃0𝐺0 (𝛽20 )
𝐺0 (𝛽20 )𝐺0 (𝛽20 ) ′Σ̃0 ,

Σ̃0 = Σ̂0 +
(�̃�0 − 1)
𝑇

�̃�′0𝑀 ( �̃� ) �̃�0𝐺0 (𝛽20 )𝐺0 (𝛽20 ) ′ �̃�′0𝑀 ( �̃� ) �̃�0

𝐺0 (𝛽20 ) ′ �̃�′0𝑀 ( �̃� ) �̃�0𝐺0 (𝛽20 )
,

Σ̂0 =
�̃�′0𝑀 ( �̃� ) �̃�0

𝑇
.

16.4.1 LIML Bound Tests

In line with the previous section, we consider the following test statistics:

Λ𝑅 = 𝜆0 (𝛽20 ) − 𝜆(𝛽) , (16.34)

Λ𝑈 = 𝜆0 (𝛽20 ) − 1 , (16.35)
where the subscripts 𝑅 and𝑈 aim to discern the restricted from the unrestricted alternative. �̃�0 is
the statistic of interest in Guggenberger et al. (2012).

Λ𝑈 can be viewed as a test statistic for a rank hypothesis, based on the coefficient in the regression
of 𝑦0 on 𝑥, i.e. the transformed sub-system:

𝑦0 = �̃�
[
𝜋0

2 Π0
22

]
+𝑀 (𝑋1 )

[
𝑣0 𝑉2

]
where

[
𝜋0

2 Π0
22

]
=

[
𝜋2 Π2

]
𝑆 (𝛽0

1 ) and
[
𝑣0 𝑉2

]
=

[
𝑣 𝑉

]
𝑆 (𝛽0

1 ) . In this case, we have:

𝑣0 = 𝑢+𝑉1 (𝛽1 − 𝛽10 ) +𝑉1𝛽2 ,

[
𝑣 𝑉

]
=

[
𝑢 𝑉

]
𝐵, 𝐵 =


1 0

−𝛽′ 𝐼𝑚

 .
The associated hypothesis is:

rank
( [
𝜋0

2 Π0
22

] )
=𝑚2 . (16.36)

Indeed, �̃�0 corresponds exactly to the formula of the rank test statistic in (16.12).

Theorem 16.3 In the context of the LI model (16.1) with assumption (16.5) where �̄� = 𝐼𝑇 , consider
the problem of testing (16.33) when 𝑘2 > 𝑚2. Let Λ𝑈 = �̃�0 refer to the statistic defined by (16.35) .
Then under the null hypothesis we have

Pr
[𝑇 − (𝑘1 + 𝑘2 )

𝑘2 −𝑚2
Λ𝑈 ≥ 𝐹𝛼

(
𝑘2 −𝑚2 , 𝑇 − (𝑘1 + 𝑘2 )

) ]
≤ 𝛼. (16.37)

Further, the bound (16.37) remains valid irrespective of the rank of Π0
22.

Proof. The reduced-rank null hypothesis (16.36) can be re-expressed in the following form: there
exists a (𝑘2 −𝑚2 ) × 𝑘2 matrix 𝐶∗ of rank (𝑘2 −𝑚2 ) and an (𝑚2 +1) × 1 non-zero vector 𝐺∗ such
that

𝐶∗
[
𝜋0

2 Π0
22

]
𝐺∗ = 0. (16.38)

Consider the statistic denoted 𝑇0 (𝐶∗,𝐺∗ ) which is associated with known 𝐶∗ and 𝐺∗which is a
special case of (16.38). Applying (16.7), we can write under the null hypothesis
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𝑇0 (𝐶∗,𝐺∗ ) = tr
[ (
𝐺′∗𝑈

′𝑀 (𝑋)𝑈𝐺∗
)−1
𝐺′∗𝑈

′𝑀𝐶∗ (𝑋)𝑈𝐺∗
]
,

𝑈 =𝑀 (𝑋1 )
[
𝑣0 𝑉2

]
=𝑀 (𝑋1 )

[
𝑢 𝑉

]
𝐵𝑆 (𝛽0

1 ) .

Under the null hypothesis, 𝐵 depends on the unknown 𝛽2, yet regardless of the value of 𝛽2, the
vector

[
𝑢 𝑉

]
𝐵𝑆 (𝛽0

1 )𝐺∗ remains normally distributed so its variance will be evacuated from the
trace statistic. The rest of the proof follows from the results of Section 16.2.2 (see (16.13)) and
correcting for the pre-multiplication of

[
𝑢 𝑉

]
by 𝑀 (𝑋1 ) . It is important to emphasize that the

null distribution of 𝑇0 (𝐶∗,𝐺∗ ) does not depend on Π0
22 (see (16.8) and (16.11)) the matrix that

controls the identification of 𝛽2 when 𝛽1 = 𝛽
0
1 . □

The fact that the bound on the finite-sample distribution of Λ𝑈 (given by (16.37)) is valid for
all matrices

[
𝜋0

2 Π0
22

]
entails (by continuity) that it remains valid even if Π0

22 does not have full
column rank (i.e., under identification failure). In other words, this bound is robust to identification
failure. Guggenberger et al. (2012) derive the asymptotic 𝜒2 equivalent of this bound. Formally, they
show that

(
𝑇 − (𝑘1 + 𝑘2 )

)
Λ𝑈 can be bounded by the 𝜒2 (𝑘2 −𝑚2 ) distribution without assuming

identification, through drifting parameter sequences. Our proof, which builds on finite-sample
dominance results, does not require such approximations. Yet interestingly, both approaches lead to
similar bounds in the sense that the 𝜒2 bound in question is the typical limit of our 𝐹-based bound.

16.4.2 LIML Test versus Projection Anderson-Rubin Test

To begin with, observe that 𝐻𝐴𝑅 ⊆ 𝐻1, so the null distribution of both Λ𝑈 and Λ𝑅 , as defined in the
previous section, can be bounded by that of Λ𝐴𝑅 as defined by (16.24), which is pivotal under some
conditions as we have shown in Theorem 16.1. This leads to the alternative bounds [see (16.15)]:

Pr
[ (
𝑇 − (𝑘1 + 𝑘2 )

)
𝑘2

Λ𝑈 ≥ 𝐹𝛼
(
𝑘2 , 𝑇 − (𝑘1 + 𝑘2 )

) ]
≤ 𝛼 , (16.39)

Pr
[ (
𝑇 − (𝑘1 + 𝑘2 )

)
𝑘2

Λ𝑅 ≥ 𝐹𝛼
(
𝑘2 , 𝑇 − (𝑘1 + 𝑘2 )

) ]
≤ 𝛼. (16.40)

Since Λ𝑅 ≤ Λ𝑈 , it makes more sense to rely on Λ𝑈 for bound test purposes.
The bound underlying (16.39) corresponds to the one proposed by Saw (1974) to test (16.36).

Calinsky and Lejeune (1998) rely instead on the improved bound of Schott (1984), which we have
used to derive (16.37). The key ingredient underlying the validity of both bounds is that the null
distribution of the bounding statistics are invariant to Π0

22.
If 𝑚1 is a scalar, then a bound test based on (16.39) corresponds to the above defined IAR

test, which involves checking whether the projection-based confidence interval for 𝛽1 associated
with inverting the AR test based on Λ𝐴𝑅 covers 𝛽10. This is because Λ𝑈 corresponds to the
minimum of the Λ𝐴𝑅 criterion over 𝛽2 subject to 𝛽1 = 𝛽10. If this minimum over 𝛽2 exceeds
𝐹𝛼 (𝑘2 , 𝑇 − (𝑘1 + 𝑘2 ) ) , then the AR test associated with all other values of 𝛽2 will also exceed this
same cut-off, which in turn entails that the relevant projection will not cover 𝛽10.

From a practical perspective, inverting the test based on (16.37) for confidence set purposes
needs to be conducted numerically. In contrast, the AR test can be inverted analytically (Dufour &
Taamouti, 2005). Since both tests rely on the same statistic, it makes sense to obtain the projection
based confidence intervals for all model parameters, and then proceed to an analytical refinement
using the tighter bound. The numerical burden may be alleviated this way, as the search set may be
guided by the projections.

To conclude, note that a simulation-based alternative to the 𝐹𝛼 (𝑘2 , 𝑇 − (𝑘1 + 𝑘2 ) ) can
be easily derived, following Theorem 16.1. A simulation-based alternative to reliance on the
𝐹 (𝑘2 −𝑚2 , 𝑇 − (𝑘1 + 𝑘2 ) ) can be envisaged using Theorem 16.3, yet a supremum over 𝐶∗ will be
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required. This said, and as emphasized by Calinsky and Lejeune (1998), the approximation due to
McKeon (1974) performs well and provides a useful finite-sample alternative to the corresponding
𝜒2 from Guggenberger et al. (2012).

16.5 A Simulation Study

This section reports an investigation, by simulation, of the performance of the various proposed test
procedures. Each experiment relies on 1000 replications. All experiments are based on the LI model
(16.1). We consider three endogenous variables (𝑚 = 2) and 𝑘 = 4, 5 and 6 exogenous variables.
In all cases, the structural equation includes only one exogenous variable (so 𝑘1 = 1), the constant
regressor. In the following tables

𝑑 = (𝑘 − 1) − (𝑝 − 1) (16.41)
refers to the degree of over-identification. We consider in turn: hypotheses which set the full vector
of endogenous variables coefficients, i.e. of the form (16.22), and hypotheses which set a subset of
endogenous variables coefficients:

𝛽1 = 𝛽
0
1 (16.42)

where 𝛽 = (𝛽′1, 𝛽
′
2 )
′ and 𝛽1 is 𝑚1 × 1, with 𝑚1 = 1. The sample sizes are set to 𝑇 = 25, 50,

100. These sizes are small by design, given the focus of our paper. The exogenous regressors are
independently drawn from the normal distribution, with means zero and unit variances. These were
drawn only once. The errors were generated according to a multinormal distribution with mean zero
and covariance

Σ =


1 .95 −.95

.95 1 −1.91

−.95 −1.91 12

 .
The other coefficients were:

𝛾1 = 1, 𝛽 = (10, −1.5) ′, Π1 = (1.5, 2) ′, Π2 =


Π̄

𝑂(𝑘−3,2)

 .
The identification problem becomes mores serious as the determinant of Π′2Π2 gets closer to zero.
In view of this, we consider various choices for Π̃:

Π̄(1) =


2 1

1 2

 , Π̄(2) =


2 1.999

1.999 2

 , (16.43)

Π̄(3) =


.5 .499

.499 .5

 , Π̄(4) =


.01 .009

.009 .01

 . (16.44)

We first study the standard Wald statistics (see (16.21)), to document the severity of the weak
IV problems in our design. Despite the two decades of research on this problem, such tests are
still reported in empirical work. In each case, we consider 2SLS and LIML-based Wald tests,
as defined in Section 16.2, and denoted 𝜏𝑤/2𝑆𝐿𝑆 and 𝜏𝑤/𝐿𝐼𝑀𝐿 . We next examine the various
identification-robust statistics that we have discussed in the previous sections.

The statistics are fully defined in the notes to each table with reference to the previous sections,
and the identification-robust distributions considered are also fully defined. In sum, Λ𝐿𝐼 and
Λ𝑅 consider an alternative restricted by the model structure, whereas Λ𝑈 and Λ𝐴𝑅 consider an
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unrestricted alternative. With the exception of Λ𝐴𝑅 which is exactly size correct, the remaining
tests are exactly level correct where the underlying bounds are justified in the previous sections. We
report size results for the asymptotic Wald tests under various scenarios for identification strength,
and power results for the exact identification-robust tests for our scenario which reflects strong
identification. We have verified that the exact tests control size regardless of identification strength
in line with our analytical derivations. Power is not analyzed for the (here grossly) over-sized tests.
We also do not report power for the weak IV cases; the correctly sized test have no power - as it
should be - when the IVs are not informative.

Our main purpose is to document the usefulness of the bounds, to emphasize that the tests
although level - but not necessarily size - correct remain powerful when power is expected. Tables
16.1 - 16.3 summarize our findings.

Table 16.1: Empirical size: testing a subset of endogenous variables coefficients,
Wald tests.

𝜏𝑤/2𝑆𝐿𝑆 𝜏𝑤/𝐿𝐼𝑀𝐿 𝜏𝑤/2𝑆𝐿𝑆 𝜏𝑤/𝐿𝐼𝑀𝐿

𝑑 𝑇 Π̄ Asy Asy 𝑑 𝑇 Π̄ Asy Asy

1 25 Π̄(1) 8.6 8.3 1 25 Π̄(3) 10.9 6.0

50 6.4 6.2 50 7.2 4.8

100 5.4 5.5 100 6.8 5.9

2 25 11.0 9.9 2 25 17.7 10.5

50 8.0 8.5 50 13.3 6.7

100 7.6 7.2 100 11.0 8.3

3 25 14.2 14.3 3 25 22.6 10.2

50 10.4 10.9 50 18.3 10.4

100 8.1 7.4 100 14.3 6.3

1 25 Π̄(2) 8.2 8.6 1 25 Π̄(4) 88.9 75.1

50 4.6 5.2 50 84.9 66.8

100 4.2 5.1 100 85.0 68.0

2 25 12.6 13.9 2 25 85.0 79.7

50 8.3 10.4 50 55.5 76.9

100 7.6 11.7 100 95.3 74.3

3 25 14.7 18.7 3 25 99.3 84.4

50 13.4 18.8 50 98.9 81.6

100 11.6 17.1 100 98.9 77.8

Note: The null hypothesis has the form (16.42), with 𝛽10 = 10. 𝜏𝑤/· refers to the Wald statistic
(16.21); the subscripts 2𝑆𝐿𝑆 versus 𝐿𝐼𝑀𝐿 identify the underlying estimator 𝛿. Π̄( 𝑗) , 𝑗 = 1, ..., 4
are defined in (16.43)-(16.44) and control identification strength: the quality of the instruments
worsens moving from Π̄(1) to Π̄(4) . 𝑑 as defined in (16.41) is the degree of over-identification. ‘Asy’
refers to the asymptotic 𝜒2 (1) approximation which requires strong identification.
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Table 16.2: Power: Testing the full vector of endogenous variables coefficients

𝐻0 : 𝛽11 = 10 Λ𝐿𝐼 Λ𝐴𝑅 𝐻0 : 𝛽11 = 10 Λ𝐿𝐼 Λ𝐴𝑅

𝑇 𝑑 𝛽11 Bound Exact 𝑇 𝑑 𝛽11 Bound Exact

50 1 10.1 15.6 19.3 100 1 10.1 31.6 37.9

10.2 54.0 60.2 10.2 87.0 90.3

10.3 88.4 90.7 10.5 1.0 1.0

11.0 1.0 1.0 11.0 1.0 1.0

2 10.1 11.8 20.1 2 10.1 18.9 31.4

10.2 45.8 57.5 10.2 76.6 84.3

10.3 83.6 89.1 10.3 98.4 98.8

11.0 1.0 1.0 10.5 1.0 1.0

3 10.1 6.9 16.9 3 10.1 13.7 27.3

10.2 30.7 46.2 10.2 70.1 82.0

10.3 67.2 79.4 10.5 1.0 1.0

11.0 1.0 1.0 11.0 1.0 1.0

Note: The null hypothesis is of the form (16.22), with 𝛽0 = (10, −1.5) ′. Λ𝐴𝑅 is the AR statistic
(16.31); Λ𝐿𝐼 is the LIML-based statistic (16.32). The design imposes Π̄(1) as defined in (16.43),
which reflects instruments strength. 𝑑 as defined in (16.41) is the degree of over-identification.
‘Bound’ refers to the dominance result (16.30), and ‘Exact’ to the null distribution (16.28).

Table 16.1 clearly reveals the dire consequences of weak IVs: identification problems severely
distort the sizes of standard asymptotic tests. While the evidence of size distortions is notable even
in identified models, the problem is far more severe in near-unidentified situations. The results for
the Wald test are especially striking: empirical sizes exceeding 80 and 90% were observed. More
importantly, increasing the sample size does not correct the problem.

Table 16.2 emphasizes the power superiority of the AR test. This said, the LIML test does not
perform poorly despite its reliance on a bound, and catches up with the AR test as the DGP departs
from the null hypothesis. Overall, there seems to be no advantage to imposing the structure under
the alternative hypothesis. In some sense, this may be counter-intuitive. Concretely, the information
advantages which may stem from imposing the restrictions implied by the structure are offset by
the nuisance parameters that are introduced to do this. These nuisance parameters depend on the
quality of the IVs, which calls for bounds to correct this problem. The net effect is some power
loss, which although not dramatic, is worth noting. There is another advantage associated with
relaxing the structure, as shown by Dufour and Taamouti (2007). The AR test can be shown to be
robust to missing IVs, which brings in the broader question of model incompleteness. In line with
our research question, we have kept our design within a correctly specified DGP. Issues resulting
from misspecification or incomplete models are worthy research questions (beyond the scope of our
paper) that may call for a different perspective on comparing the considered tests.

Table 16.3 concerns nuisance parameter dependent problems, so all tests though level correct are
not size-correct. Our results clearly show the usefulness of the bounds. We have verified that power
reaches one as the sample size increases or as one departs from the null. For comparison purposes,
we report results for the same designs across tables. The power advantage of the bound test based on
Λ𝑈 and (16.37) is evident. Yet again, the IAR test (that is, the bound test based on Λ𝑈 and (16.39))
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Table 16.3: Power: Testing a subset of endogenous variables coefficients

𝐻0 : 𝛽11 = 10 Λ𝑅 Λ𝑈 𝐻0 : 𝛽11 = 10 Λ𝑅 Λ𝑈

𝑇 𝑑 𝛽11 BD BD∗ BD BD∗ 𝑇 𝑑 𝛽11 BD BD∗ BD BD∗

50 1 10.1 2.1 5.2 3.7 8.8 100 1 10.1 5.0 11.7 10.3 18.4

10.3 8.1 19.6 11.3 24.7 10.3 26.2 40.3 33.3 47.9

10.5 13.6 26.4 17.4 32.3 10.5 36.4 54.0 43.0 61.2

11.0 18.9 32.1 22.4 37.5 11.0 47.9 64.5 54.6 71.5

2 10.1 1.3 4.5 4.2 10.9 2 10.1 2.8 5.9 7.6 15.1

10.3 6.0 14.1 17.1 24.8 10.3 19.1 30.4 30.3 46.8

10.5 10.0 20.0 17.9 33.3 10.5 29.6 43.2 41.7 60.1

11.0 14.8 28.3 24.0 41.1 11.0 39.6 55.4 53.3 69.9

3 10.1 0.9 2.5 4.0 10.6 3 10.1 1.4 3.5 7.1 13.7

10.3 4.9 10.4 12.0 23.9 10.3 12.2 21.2 25.3 39.4

10.5 8.4 17.7 17.9 32.9 10.5 21.8 33.7 37.5 52.6

11.0 13.3 22.7 24.2 41.1 11.0 31.7 44.4 47.2 63.8

Note: The null hypothesis is of the form (16.42), with 𝛽10 = 10. Λ𝑅 is the LIML statistic (16.34)
against an alternative restricted by the structure; Λ𝑈 is its counterpart against an unrestricted reduced
form (16.35). ‘BD’ refers to the dominance results (16.39) and (16.40), and ‘BD∗’ to its alternative
(16.37), which is based on a tighter bound. The test based on Λ𝑈 and the BD bound corresponds to
the IAR test, which corresponds to referring the projection-based AR confidence set to the tested
value (here 10). The design imposes Π̄(1) as defined in (16.43), which reflects instruments strength.
𝑑 as defined in (16.41) is the degree of over-identification.

has good power, despite the superiority of the improved bound. Observe that the IAR test is easier to
generalize beyond normality from a simulation-based finite-sample perspective, in contrast to the
improved bound as shown analytically above. We have also pointed out above that the improved
bound will involve numerical searches for inversion purpose, in contrast with the AR test. All these
considerations should be weighed in, to interpret the benefit/cost trade-off of the improved bound.
Finally, whether the improved bound would deliver robustness to missing instruments remains an
open question. We reiterate the importance of further work on incomplete models.

16.6 Conclusion

The serious inadequacy of standard asymptotic tests in finite samples is widely observed in the SE
context. Here, we have proposed alternative exact and bound procedures, and demonstrated their
feasibility. Particular attention was given to the identification problem. The simulation results show
that relaxing the structure under the alternative hypothesis pays off power wise. While structures hold
information, this comes at an important cost: imposing the structure introduces nuisance parameters
that are influenced by the model’s identification status. Pivotal bounds will correct this problem,
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yet post-correction, the unrestricted tests perform better. Overall, pivotal statistics - even when
bounds-based - provide a sound basis for inference in the presence of weak IVs, provided the model
is complete (no excluded instruments).

This said, identification robust procedures will only avoid spurious rejections. Weak IVs will not
hold information on parameters of interest so power cannot be expected in this case. We conclude
by pointing to a promising research direction aiming to capture the information content of any IV,
weak or strong, through a reparametrized setting which is always identified; see Doko Tchatoka
and Dufour (2014), Beaulieu et al. (2022) and Beaulieu, Dufour, Khalaf and Melin (2023). The
parameter that one can identify is different from the original inference target, in the sense that
the former embeds the extent of endogeneity. Its interpretation is thus problem dependent. As the
discipline pursues the analysis of incomplete models, such alternative parameters which embed the
effects of unobservables will gain credibility in economics. Finally, it is important to remember that
tests based on the complete specification are not robust.
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Chapter 17
Dynamic Log-Linear Probability Model with
Interactions

Christian Gouriéroux and Nour Meddahi

Abstract The log-linear probability model has been initially introduced by Nerlove and Press
(1973) for the analysis of contingency tables constructed from business survey data. We extend this
modelling approach to the dynamic analysis of multivariate qualitative processes with the application
to technical analysis of financial returns in mind. We develop the dynamic qualitative models with
pairwise and/or three-wise interactions, discuss the interpretations of the interaction parameters,
study the filtering and prediction algorithms, and compare the approach to machine learning models
as the restricted Boltzmann machine and the normalizing flows.

17.1 Introduction

The chartism approach (or technical analysis) in finance provides empirical charts to predict the
future path of returns (or prices, or exchange rates) based on the observed past paths. This is an
example of chart (pattern) recognition technique with specific informative patterns known as Elliot
waves or Dow Theory (Rhea, 1932; Russell, 2012), Head and Shoulder (Lo, Mamaysky & Wang,
2000), Bull Market versus Bear Market (Lofton, 1986), and for a general presentations of technical
analysis see Frankel and Froot (1990); Taylor and Allen (1992); Archer and Bickford (2007); Neely
and Weller (2012). They lead to portfolio management strategies known as momentum or reversal
(Menkhoff, Sarno, Schmeling & Schrimpf, 2012). These empirical methods were largely applied
on commodity markets and foreign exchange rates (FOREX). They are pure univariate time series
approaches that were frequently compared with fundamental analysis (Vigfusson, 1997; Lui & Mole,
1998; Oberlechner, 2001; Dick & Menkhoff, 2013). They highlight the importance of nonlinear
dynamics features to predict future returns (prices, exchange rates) in contrast with the random walk
hypothesis defended in Fama (1995).

These approaches had the drawback to be mainly descriptive without the support of a stochastic
dynamic model for the observed series. In particular, they do not provide the associated inference as
the possibility to get term structure of pointwise predictions, prediction intervals, or do not provide
any diagnostic tools. This explains why these methods, less the portfolio strategies themselves, have
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been partly abandoned, especially with the apparition of the ARCH models and their extensions
(Engle, 1982; Bollerslev, 1986) able to capture some non-linear dynamic features as the volatility
persistence, or the fact that a higher volatility can be an advanced indicator of a turning point in the
evolution of the series in the ARCH-in-Mean models (Engle, Lilien & Robins, 1987).

Nonlinear dynamic features, however, such as the leverage effects (Black, 1976), the different
dynamics of left and right extreme returns, the waves and more generally the threshold effects are not
well-captured by the extended family of ARCH models (see Gourieroux & Monfort, 1992; Zakoian,
1994; and Section 5.4 of Gourieroux, 1997 for the first introductions of thresholds in the ARCH
modelling).

To capture these additional dynamic features, we propose to first transform the series into a
multivariate qualitative series. For instance into a bivariate qualitative series with alternatives:
positive returns versus negative ones, or standard returns versus extreme ones, or in a trivariate
qualitative series with alternatives: large negative returns, standard returns, and large positive returns,
and then to apply a flexible nonlinear dynamic model to such qualitative time series.

More precisely we adjust the log-linear probability models with interactions (Nerlove & Press,
1973; Bishop, Fienberg & Holland, 1975; Liang & Zeger, 1989) to the case of qualitative Markov
processes of order H, taking into account the fact that the alternatives are exclusive (this is a
competitor to the (multiple) Threshold Autoregressive (TAR) model recently applied to stock
returns by Zhang, Li and Tong (2023), whose implementation seems to impose arbitrarily a rather
small lag H in practice). This leads to transition distributions that are conditional logit models
with lagged endogenous variables that can include pairwise or three-wise interactions of the
past. These conditional models are easily estimated by composite maximum likelihood, or by
maximum likelihood with LASSO (Least Absolute Shrinkage and Selection Operator) penalties on
the interactions even with rather large lag H. These dynamic models have the advantage of providing
closed form expressions of the prediction and filtering distributions. They also underlie the Deep
Boltzmann Machine (DM), that treat complex interactions in (static) neural networks and deep
learning (see Ackley, Hinton & Sejnowski, 1985; Salakhutdinov & Hinton, 2009). In other words
the autoregressive logit model with interactions introduced in this chapter can also be used for deep
learning in a dynamic framework of neural network (i.e., for deep recurrent neural network).

The plan of the chapter is the following. Section 17.2 introduces the log-linear probability model
with interactions adjusted to dynamic qualitative observations and to exclusive alternatives. First
we adopt a progressive presentation for binary processes, then for qualitative processes with three
alternatives. These qualitative Markov processes can encounter the curse of dimensionality if they
are let unconstrained (saturated models). We explain how this dimensionality can be significantly
reduced by limiting the interactions to pairwise and/or three-wise interactions. In the three exclusive
alternatives case, we also distinguish the autoregressive logit model with interactions from the
autoregressive recursive model. Section 17.3 considers statistical inference. We review the properties
of the maximum likelihood estimator, explain how to use the estimated pairwise or three-wise
interactions as diagnostic tool. We also discuss the introduction of LASSO penalties, and the
possibility to also estimate the threshold to separate ‘standard’ and ‘extreme’ returns. Section 17.4
provides prediction and filtering distributions, while Section 17.5 concludes. Different technical
issues are gathered in the Appendices: a discussion of the ergodicity conditions in Appendix 1, the
static log-linear probability model with interactions and its properties are recalled in Appendix 2,
and the binary AR(1) process is discussed in Appendix 3.

17.2 The Dynamic Log-Linear and Logit Models with Interactions

This section explains how the static log-linear/logit modelling (see also Appendix 2) can be adjusted
to define the dynamics of a stationary univariate or multivariate series of binary variables. We first
consider univariate series, such as 𝑌𝑡 = 1, if the daily return is positive, 𝑌𝑡 = 0, if it is negative.
Then we extend the model to the multivariate case, with in mind a qualitative variable 𝑌𝑡 with
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three exclusive alternatives corresponding to extreme negative returns, standard ones, and extreme
positive ones, say.

In this section, we assume that the process {𝑌𝑡 } is a Markov process of order H and that
this process is ergodic with a unique stationary distribution which is not degenerate, that is:
𝑃 (𝑌𝑡 = 𝑦𝑡 | 𝑌𝑡−1 = 𝑦𝑡−1, . . . ,𝑌𝑡−𝐻 = 𝑦𝑡−𝐻 ) > 0, for any possible values of (𝑦𝑡 , 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 ) .
Under this assumption, the distribution of the process is characterized by the positive transition
distribution:

𝑃 (𝑌𝑡 = 𝑦𝑡 | 𝑌𝑡−1 = 𝑦𝑡−1, . . . ,𝑌𝑡−𝐻 = 𝑦𝑡−𝐻 ) , ∀𝑦𝑡 , 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 ∈ {0, 1},

or equivalently by the joint distribution:

𝑃 (𝑌𝑡 = 𝑦𝑡 ,𝑌𝑡−1 = 𝑦𝑡−1, . . . ,𝑌𝑡−𝐻 = 𝑦𝑡−𝐻 ) , ∀𝑦𝑡 , 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 ∈ {0, 1},

since the stationary distribution of the path (𝑌𝑡 ,𝑌𝑡−1, . . . ,𝑌𝑡−𝐻 ) is uniquely defined from the
positive transition distribution under the ergodicity condition (see the discussion of the ergodicity
condition in Appendix 1). This is especially important in the log-linear/logit modelling, where the
log-linear probability models with interactions introduced for the joint distributions are associated
with logit models with interactions for the conditional distributions.

17.2.1 Univariate Binary Process

17.2.1.1 Model with Pairwise Interactions

Let us first consider a log-linear probability model with marginal effects and pairwise interactions.
In the time series framework the binary variables are indexed by 𝑡 − ℎ, ℎ = 0, . . . , 𝐻. Then the
log-linear model involves:
𝛼ℎ , ℎ = 0, . . . , 𝐻, marginal effects and 𝛽ℎ𝑘 , ℎ, 𝑘 = 0, . . . , 𝐻, ℎ < 𝑘, pairwise interaction effects,

to get:
𝑃 (𝑌𝑡 = 𝑦𝑡 ,𝑌𝑡−1 = 𝑦𝑡−1, . . . ,𝑌𝑡−𝐻 = 𝑦𝑡−𝐻 ) ≡ 𝑝 (𝑦𝑡 , 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 ) ,

such that:

log 𝑝 (𝑦𝑡 , 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 ) = 𝜇 +
𝐻∑︁
ℎ=0
𝛼ℎ𝑦𝑡−ℎ +

𝐻∑︁
ℎ=0

𝐻∑︁
𝑘=ℎ+1

𝛽ℎ𝑘𝑦𝑡−ℎ𝑦𝑡−𝑘 , (17.1)

where 𝜇 is fixed by the unit mass restriction (see Appendix 2). However the specification above does
not account for the stationarity of the binary process (𝑌𝑡 ) . Under the strict stationarity assumption,
the parameters are not asymptotically identified. Intuitively, we can impose that the marginal effects
𝛼ℎ are independent of ℎ and the pairwise interaction effects 𝛽ℎ𝑘 depend on ℎ, 𝑘, 𝑘 > ℎ, by the
difference 𝑘 − ℎ only. Under this identification restriction, the number of parameters is reduced to
H+1 with new parameters 𝛼, 𝛽𝑘 , 𝑘 = 1, . . . , 𝐻, such that:

𝛼𝑘 ≡ 𝛼, ∀𝑘 = 1, . . . , 𝐻, 𝛽ℎ,ℎ−𝑘 ≡ 𝛽𝑘 , 𝑘 = 1, . . . , 𝐻, for any ℎ. (17.2)

Then we deduce the conditional distribution of 𝑌𝑡 given (𝑌𝑡−1, . . . ,𝑌𝑡−𝐻 ) as:

log 𝑝 (𝑦𝑡 | 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 ) = �̃�𝑡 + 𝛼𝑦𝑡 +
𝐻∑︁
𝑘=1
𝛽𝑘𝑦𝑡 𝑦𝑡−𝑘

= �̃�𝑡 + 𝑦𝑡

(
𝛼+

𝐻∑︁
𝑘=1
𝛽𝑘𝑦𝑡−𝑘

)
,

(17.3)
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where �̃�𝑡 depends on the parameters and 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 , by the unit mass restriction. Equivalently,
one has an autoregressive dichotomous logit model of order 𝐻 with:

log 𝑝 (1 | 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 ) = exp

(
𝛼+

𝐻∑︁
𝑘=1
𝛽𝑘𝑦𝑡−𝑘

) [
1+exp

(
𝛼+

𝐻∑︁
𝑘=1
𝛽𝑘𝑦𝑡−𝑘

)]−1

,

log 𝑝 (0 | 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 ) =
[
1+exp

(
𝛼+

𝐻∑︁
𝑘=1
𝛽𝑘𝑦𝑡−𝑘

)]−1

.

Remark 1: In the static log-linear probability model (see Appendix 2), the binary variables
are often indexed by individual, or localization (in spatial models). The marginal and interaction
effects are not jointly constrained ex-ante and the identification and estimation of the parameters are
performed by composite conditional likelihood that combines all possible conditional distributions,
such as the conditional distribution of 𝑌𝑡−1 given (𝑌𝑡 ,𝑌𝑡−2, . . . ,𝑌𝑡−𝐻 ) for instance. In the Markov
framework, this is not necessary since the transition distribution contains all the sufficient information
on the (restricted) set of parameters.

Remark 2: To understand the identification restriction (2.2), we can consider the average
1
𝑇
log 𝑝 (𝑦𝑡 , 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 ) under (2.1). We get an exponential family of distributions, where

the sufficient statistic associated with 𝛽ℎ𝑘 , say, is 1
𝑇

∑𝑇
𝑡=1 𝑦𝑡−ℎ𝑦𝑡−𝑘 . Asymptotically, this statistic

converges to 𝐸 [𝑦𝑡−ℎ𝑦𝑡−𝑘 ] = 𝑚2 (ℎ − 𝑘 ) by stationarity. Therefore this exponential family is
asymptotically degenerate, that explains the identification restriction (2.2).

Remark 3: Log-linear probability models with pairwise interactions are used in the machine
learning literature to define the architecture of Boltzmann machines (Salakhutdinov & Hinton,
2009). The underlying stochastic model assumes a sample drawing of two groups of binary variables
(𝑋′
𝑖
,𝑌 ′
𝑖
) , 𝑖 = 1, . . . , 𝑛, where 𝑋𝑖 = (𝑋1𝑖 , . . . , 𝑋𝐾𝑖 ) ′,𝑌𝑖 = (𝑌1𝑖 , . . . ,𝑌𝐿𝑖 ) ′. The log-linear probability

model with pairwise interactions is used to define the distribution of (𝑋′
𝑖
,𝑌 ′
𝑖
) ′. This Boltzmann

approach differs from our approach in two respects:
i) It is usually applied on individual data, and not to time series. In particular there is no parameter

restriction for stationarity purpose.
ii) Other restrictions are introduced in order to interpret the Boltzmann machine architecture as a

neural network with two layers, that are an entry layer with neurons the components of 𝑋 and the
exit layer with neurons the components of 𝑌 . Typically the Restricted Boltzmann Machine (RBM)
does not allow for intra-layer connections, that is there is no interaction between the neurons of a
given group.

The knowledge of the transition is equivalent to the knowledge of the joint distribution by
applying formula (17.3) and taking into account the stationarity constraints on the parameters. We
deduce:

log 𝑝 (𝑦𝑡 , 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 ) = 𝜇 + 𝛼
𝐻∑︁
ℎ=0
𝑦𝑡−ℎ +

𝐻∑︁
𝑘=1

[
𝛽𝑘

𝐻−𝑘∑︁
ℎ=0

𝑦𝑡−ℎ𝑦𝑡−ℎ−𝑘

]
, (17.4)

where 𝜇 is a function of the parameters fixed by the unit mass restriction. This expression can be
used to derive the other conditional logit model for providing the distribution of 𝑌𝑡−𝑘 given 𝑌𝑡−ℎ,
ℎ = 0, . . . , 𝐻, ℎ ≠ 𝑘, that is the nonlinear filtering of 𝑌𝑡−𝑘 that can be compared to the observed
value to construct diagnostic tools appropriate for binary variables (see Section 17.4).

By summing over 𝑡 formula (17.4), we can also note that we get an exponential family with the
sufficient statistics:

1
𝐻 +1

1
𝑇

𝑇∑︁
𝑡=1

𝐻∑︁
𝑘=0
𝑦𝑡−𝑘 ≈

1
𝑇
(𝑦1 + 𝑦2 + . . .+ 𝑦𝑇 ) ,

and
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1
𝐻 −𝐾 +1

1
𝑇

𝑇∑︁
𝑡=1

𝐻−𝑘∑︁
ℎ=0

𝑦𝑡−ℎ𝑦𝑡−ℎ−𝑘 ≈
1
𝑇

𝑇∑︁
𝑡=1
𝑦𝑡 𝑦𝑡−𝑘 , 𝑘 = 1, . . . , 𝐻,

that are the first and second-order moments.1 These are the expected summary statistics for linear
analysis of a binary time series.

The interpretations of the pairwise interactions and of the associated model (17.4) are deduced
from the following proposition.

Proposition 1: Under the log-linear probability model with pairwise interactions, the pairwise
interaction parameter 𝛽𝑘 measures the partial dependence between𝑌𝑡 and𝑌𝑡−𝑘 given𝑌𝑡−ℎ, ℎ ≠ 0, 𝑘.
This measure is independent of the conditioning values. Moreover 𝛽𝑘 = 0 if and only if 𝑌𝑡 and 𝑌𝑡−𝑘
are conditionally independent.

Proof. Let us consider 𝑘 = 1 for exposition purpose, the proof being similar for any 𝑘. From
(2.3), we get

𝛽1 = log(𝑝 (1 | 1, 𝑦𝑡−2, . . . , 𝑦𝑡−𝐻 )/𝑝 (1 | 0, 𝑦𝑡−2, . . . , 𝑦𝑡−𝐻 ) ) .

In particular 𝛽1 = 0 if and only if 𝑌𝑡 and 𝑌𝑡−1 are independent conditional on (𝑌𝑡−2, . . . ,𝑌𝑡−𝐻 ) . □

The sign of 𝛽1 is also informative on the sign of the conditional dependence.

Proposition 2: Under the log-linear probability model with pairwise interactions, the parameter
𝛽𝑘 is positive if and only if the (partial) correlation between 𝑌𝑡 and 𝑌𝑡−𝑘 given 𝑌𝑡−ℎ, ℎ ≠ 0, 𝑘, is
positive (for any conditioning values).

Proof. Let us consider 𝑘 = 1. We get:

𝛽1 > 0⇔ 𝑃 [𝑌𝑡 = 1 | 𝑌𝑡−1 = 1,𝑌𝑡−2 ] > 𝑃 [𝑌𝑡 = 1 | 𝑌𝑡−1 = 0,𝑌𝑡−2 ]
⇔ 𝑃 [𝑌𝑡 = 1,𝑌𝑡−1 = 1 | 𝑌𝑡−2 ]𝑃[𝑌𝑡−1 = 0 | 𝑌𝑡−2 ]
> 𝑃 [𝑌𝑡 = 1,𝑌𝑡−1 = 0 | 𝑌𝑡−2 ]𝑃 [𝑌𝑡−1 = 1 | 𝑌𝑡−2 ]
⇔ 𝑃 [𝑌𝑡 = 1,𝑌𝑡−1 = 1 | 𝑌𝑡−2 ]𝑃[𝑌𝑡 = 0,𝑌𝑡−1 = 0 | 𝑌𝑡−2 ]
> 𝑃 [𝑌𝑡 = 1,𝑌𝑡−1 = 0 | 𝑌𝑡−2 ]𝑃 [𝑌𝑡 = 0,𝑌𝑡−1 = 1 | 𝑌𝑡−2 ]
⇔ 𝐸 [𝑌𝑡𝑌𝑡−1 | 𝑌𝑡−2 ]𝐸 [ (1−𝑌𝑡 ) (1−𝑌𝑡−1 ) | 𝑌𝑡−2 ]
> 𝐸 [𝑌𝑡 (1−𝑌𝑡−1 ) | 𝑌𝑡−2 ]𝐸 [ (1−𝑌𝑡 )𝑌𝑡−1 | 𝑌𝑡−2 ]
⇔ 𝐸 [𝑌𝑡𝑌𝑡−1 | 𝑌𝑡−2 ] > 𝐸 [𝑌𝑡 | 𝑌𝑡−2 ]𝐸 [𝑌𝑡−1 | 𝑌𝑡−2 ]
⇔𝐶𝑜𝑣 [𝑌𝑡 ,𝑌𝑡−1 | 𝑌𝑡−2 ] > 0.

The result follows.□

As shown in Appendix 3 that 𝛽1 is a Kullback-Leilbler (KL) measure of dependence between
𝑌𝑡 and 𝑌𝑡−1 given 𝑌𝑡−2, 𝛽2 of dependence between 𝑌𝑡 and 𝑌𝑡−2 given 𝑌𝑡−1,𝑌𝑡−3, . . .. Properties
and interpretations of the conditional Kullback-Leibler measure of dependence are discussed in
Appendix 2.

Remark 4: If 𝛽1 is positive, all the conditional covariances 𝐶𝑜𝑣 [𝑌𝑡 ,𝑌𝑡−1 | 𝑌𝑡−2 ] are positive,
but this does not necessarily implies that the unconditional covariance 𝐶𝑜𝑣 [𝑌𝑡 ,𝑌𝑡−1 ] is positive.
This is a consequence of the covariance decomposition:

𝐶𝑜𝑣 [𝑌𝑡 ,𝑌𝑡−1 ] = 𝐸 [𝐶𝑜𝑣 [𝑌𝑡 ,𝑌𝑡−1 | 𝑌𝑡−2 ] ] +𝐶𝑜𝑣 [𝐸 [𝑌𝑡 | 𝑌𝑡−2 ], 𝐸 [𝑌𝑡−1 | 𝑌𝑡−2 ] ],

where the second term of the right hand side can be of any sign.

1 Note that 1
𝑇

∑𝑇
𝑡=1 𝑦

2
𝑡 =

1
𝑇

∑𝑇
𝑡=1 𝑦𝑡 , since 𝑦𝑡 ∈ {0, 1}.
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Then the next result easily follows:

Proposition 3: In the log-linear probability model with pairwise interactions, the following
properties are equivalent:

i) (𝑌𝑡 ) is a strong white noise, that is the 𝑌 ′𝑡 𝑠 are i.i.d.
ii) The 𝑌 ′𝑡 𝑠 are uncorrelated.
iii) All pairwise interaction parameters are equal to zero.

Remark 5: There exist equivalent parametrizations of the conditional logit model (17.3). For
instance,

log 𝑝 (𝑦𝑡 | 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 ) = �̃�𝑡 + (1− 𝑦𝑡 )
[
�̃�+

𝐻∑︁
𝑘=1
𝛽𝑘 (1− 𝑦𝑡−𝑘 )

]
,

where the code (0, 1) is implicitly replaced by the code (1, 0) . There also exists a more symmetric
parametrization, where:

log 𝑝 (𝑦𝑡 | 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 ) = �̃�𝑡 + 𝑦𝑡

[
�̃�∗ +

𝐻∑︁
𝑘=1
𝛽∗1𝑘𝑦𝑡−𝑘 +

𝐻∑︁
𝑘=1
𝛽∗0𝑘 (1− 𝑦𝑡−𝑘 )

]
, (17.5)

where 𝛽∗1𝑘 + 𝛽
∗
0𝑘 = 0, 𝑘 = 1, . . . , 𝐻, in order to treat the identification issue due to the collinearity

restrictions 𝑦𝑡−𝑘 + (1− 𝑦𝑡−𝑘 ) = 1, ∀𝑡 , 𝑘.

17.2.1.2 Model with Three-wise Interactions

Similar computations can be developed for log-linear probability models with three-wise interactions.
Sufficient stationarity restrictions on the parameters lead to a new parametrization 𝛼, 𝛽𝑘 , 𝛾𝑘,𝑙 such
that:

𝛼 ≡ 𝛼𝑘 , ∀𝑘, 𝛽𝑘 ≡ 𝛽ℎ,ℎ+𝑘 , 𝑘 = 1, . . . , 𝐻 for any ℎ, (17.6)
and

𝛾𝑘,𝑙 ≡ 𝛾ℎ,ℎ+𝑘,ℎ+𝑙 , 𝑘, 𝑙 = 1, . . . , 𝐻, 𝑙 > 𝑘, for any ℎ. (17.7)
Then the transition distribution becomes a dichotomous logit model, with a score function which is
linear in lagged and crossed lagged observations:

log 𝑝 (𝑦𝑡 | 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 ) = �̃�𝑡 + 𝛼𝑦𝑡 +
𝐻∑︁
𝑘=1
𝛽𝑘𝑦𝑡 𝑦𝑡−𝑘 +

𝐻∑︁
𝑘=1

𝐻∑︁
𝑙=𝑘+1

𝛾𝑘𝑙𝑦𝑡 𝑦𝑡−𝑘𝑦𝑡−𝑙

= �̃�𝑡 + 𝑦𝑡

(
𝛼+

𝐻∑︁
𝑘=1
𝛽𝑘𝑦𝑡−𝑘 +

𝐻∑︁
𝑘=1

𝐻∑︁
𝑙=𝑘+1

𝛾𝑘𝑙𝑦𝑡−𝑘𝑦𝑡−𝑙

)
.

(17.8)

Therefore the pointwise prediction of 𝑌𝑡 , that is:

𝐸 [𝑌𝑡 | 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 ] = 𝑝 (1 | 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 ) ,

has a logit form with “explanatory” variables the lagged and cross lagged values.
To get an interpretation of a three-wise interaction, let us consider the case 𝐻 = 2. We have:

𝑦𝑡𝛾12 = log

(
𝑝 (𝑦𝑡 | 𝑦𝑡−1 = 𝑦𝑡−2 = 1) 𝑝 (𝑦𝑡 | 𝑦𝑡−1 = 𝑦𝑡−2 = 0)

𝑝 (𝑦𝑡 | 𝑦𝑡−1 = 1, 𝑦𝑡−2 = 0) 𝑝 (𝑦𝑡 | 𝑦𝑡−1 = 0, 𝑦𝑡−2 = 1)

)
,

and then

𝛾12 = 0⇐⇒



17 Dynamic Log-Linear Probability Model with Interactions 459

𝑝 (𝑦𝑡 | 𝑦𝑡−1 = 𝑦𝑡−2 = 1) 𝑝 (𝑦𝑡 | 𝑦𝑡−1 = 𝑦𝑡−2 = 0) =
= 𝑝 (𝑦𝑡 | 𝑦𝑡−1 = 1, 𝑦𝑡−2 = 0) 𝑝 (𝑦𝑡 | 𝑦𝑡−1 = 0, 𝑦𝑡−2 = 1) .

It is shown in Appendix 2 that 𝛾12 measures the effect of a shock on 𝑌𝑡−2 on the Kullback-Leibler
measure of dependence between 𝑌𝑡 and 𝑌𝑡−1 given 𝑌𝑡−2 (see Proposition A.2).

17.2.1.3 Dimensionality

The objective of limiting the type of interactions is to reduce the curse of dimensionality of the
saturated conditional logit model that involves 2𝐻 parameters. Despite this reduction, the number
of parameters under the stationarity assumption equals to 1 +𝐻 (𝐻 + 1)/2 in the model with
three-wise interactions can still be large. These dimensions, and the degrees of overidentification
2𝐻 − 1−𝐻 (𝐻 +1)/2 are provided in Table 17.1 below for different lags: 𝐻 = 5− 7 corresponding
to a week of opening days for daily data, 𝐻 = 12 for the year and monthly data. Then it can be useful
to continue to reduce this dimension by looking for zero pairwise and three-wise interactions by an
automatic approach as LASSO (Hastie, Tibshirani & Wainwright, 2015). Observe that three-wise
interactions are possible when 𝐻 ≥ 3.

Table 17.1: Number of Parameters and Degree of Overidentification
Log-linear probability model with three-wise interactions

H 3 4 5 6 7 12

Number of parameters 7 14 15 21 28 66

Degree of overidentification 1 5 16 47 99 4029

17.2.2 Multivariate Qualitative Process

The conditional autoregressive logit model of Section 17.2.1.1 can be extended to qualitative
processes with more than two exclusive alternatives. For the application to chartism, we focus
below on the case of three exclusive alternatives corresponding to ‘large negative returns’, ‘standard
returns’, and ‘large positive returns’. It is usual to code the three alternatives as (1, 0, 0) , (0, 1, 0) ,
and (0, 0, 1) and to consider the process (𝑌𝑡 ) as a 3-dimensional process taking these values, or
equivalently as the 2-dimensional process (�̃�𝑡 ) with values (1, 0) , (0, 1) and (0, 0) corresponding
to the two first components of 𝑌𝑡 , since the third component is then uniquely defined.

However, there exists another way for coding these observations. We can first introduce a binary
process 𝑋𝑡 such that 𝑋𝑡 = 1, if the returns are extreme, and 𝑋𝑡 = 0, otherwise. Then, if 𝑋𝑡 = 1, a
second binary variable 𝑍𝑡 characterizes the sign of the return. Whereas 𝑋𝑡 is observed at all dates,
𝑍𝑡 is only observed when 𝑋𝑡 = 1.

Remark 6: The case of three alternatives is more complex than the case of four alternatives.
Indeed with four alternatives the second code will lead to �̃�𝑡 with values (1, 1) , (1, 0) , (0, 1) , (0, 0) ,
where �̃�𝑡 can be written as a bivariate vector (�̃�1𝑡 , �̃�2𝑡 ) ′ of binary variables. Then it will be possible
to consider a joint log-linear probability model with pairwise interactions on the multivariate
variables (�̃�1,𝑡 , �̃�2,𝑡 , �̃�1,𝑡−1, �̃�2,𝑡−1, . . . , �̃�1,𝑡−𝐻 , �̃�2,𝑡−𝐻 ) , and derive the associated transitions.
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The different interpretations above and their associated codes lead to two extensions of the
autoregressive dichotomous logit model that are the autoregressive polytomous logit model and the
autoregressive recursive logit model, respectively.

17.2.2.1 The Autoregressive Polytomous Logit Model with Interactions

Let us consider the first code and denote 𝑌𝑡 = (𝑌1,𝑡 ,𝑌2,𝑡 ,𝑌3,𝑡 ) ′. The transition distribution of 𝑌𝑡 is
characterized by the conditional probability that 𝑌1,𝑡 = 1 (then 𝑌2,𝑡 =𝑌3,𝑡 = 0) and the conditional
probability that 𝑌2,𝑡 = 1 (then 𝑌1,𝑡 =𝑌3,𝑡 = 0), since the alternatives are exclusive.

Model with pairwise interactions
The model is an extension of the autoregressive dichotomous logit model introduced for the

univariate binary process. It can be written with different equivalent parametrizations (see Remark
5). The direct extension of model (17.3) takes into account all possible pairwise interactions, but
considers only the components 𝑌1,𝑡 ,𝑌2,𝑡 (i.e., the process �̃�𝑡 ). The model is defined by:

log 𝑝 (𝑌1,𝑡 = 1 | 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 ) = �̃�𝑡 + 𝛼1 +
𝐻∑︁
𝑘=1
𝛽1𝑘 �̃�𝑡−𝑘

= �̃�𝑡 + 𝛼1 +
𝐻∑︁
𝑘=1
𝛽11,𝑘𝑦1,𝑡−𝑘 +

𝐻∑︁
𝑘=1
𝛽12,𝑘𝑦2,𝑡−𝑘 ,

log 𝑝 (𝑌2,𝑡 = 1 | 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 ) = �̃�𝑡 + 𝛼2 +
𝐻∑︁
𝑘=1
𝛽2𝑘 �̃�𝑡−𝑘

= �̃�𝑡 + 𝛼2 +
𝐻∑︁
𝑘=1
𝛽21,𝑘𝑦1,𝑡−𝑘 +

𝐻∑︁
𝑘=1
𝛽22,𝑘𝑦2,𝑡−𝑘 ,

log 𝑝 (𝑌3,𝑡 = 1 | 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 ) = �̃�𝑡 ,

where 𝛽1𝑘 = (𝛽11,𝑘 , 𝛽12,𝑘 ) , 𝛽2𝑘 = (𝛽21,𝑘 , 𝛽22,𝑘 ) .
This definition of the conditional polytomous logit model does not highlight the ‘symmetry’

among the alternatives. In particular the interpretation of the parameters depend on the ordering of
the alternatives, that is the choice of the alternative where the dependence from the past is entirely
captured by the term �̃�𝑡 .

A more symmetric formulation extends the specification (17.5) in Remark 5 and corresponds to
another parametrization. We can write:

log 𝑝 (𝑌1,𝑡 = 1 | 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 ) = �̃�𝑡 + 𝛼∗1 +
𝐻∑︁
𝑘=1
𝛽∗1𝑘 �̃�𝑡−𝑘

= �̃�𝑡 + 𝛼∗1 +
𝐻∑︁
𝑘=1
𝛽∗11,𝑘𝑦1,𝑡−𝑘 +

𝐻∑︁
𝑘=1
𝛽∗12,𝑘𝑦2,𝑡−𝑘

+
𝐻∑︁
𝑘=1
𝛽∗13,𝑘𝑦3,𝑡−𝑘 ,

log 𝑝 (𝑌2,𝑡 = 1 | 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 ) = �̃�𝑡 + 𝛼∗2 +
𝐻∑︁
𝑘=1
𝛽∗2𝑘 �̃�𝑡−𝑘
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= �̃�𝑡 + 𝛼∗2 +
𝐻∑︁
𝑘=1
𝛽∗21,𝑘𝑦1,𝑡−𝑘 +

𝐻∑︁
𝑘=1
𝛽∗22,𝑘𝑦2,𝑡−𝑘

+
𝐻∑︁
𝑘=1
𝛽∗23,𝑘𝑦3,𝑡−𝑘 ,

log 𝑝 (𝑌3,𝑡 = 1 | 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 ) = �̃�𝑡 .

However, to avoid the collinearity issue among the regressors:

𝑦1,𝑡−𝑘 + 𝑦2,𝑡−𝑘 + 𝑦3,𝑡−𝑘 = 1, ∀𝑡 , 𝑘,

identification restrictions have to be introduced on the interactions. The pairwise interactions

𝛽+
𝑘
=

©«
𝛽∗1𝑘

𝛽∗2𝑘

ª®¬ can be constrained by

𝛽+𝑘

©«
1

1

1

ª®®®®¬
=

©«
0

0

0

ª®®®®¬
, ∀𝑘 = 1, . . . , 𝐻⇔


𝛽∗11,𝑘 + 𝛽

∗
12,𝑘 + 𝛽

∗
13,𝑘 = 0

𝛽∗21,𝑘 + 𝛽
∗
22,𝑘 + 𝛽

∗
23,𝑘 = 0

, ∀𝑘 = 1, . . . , 𝐻

(see Nerlove and Press (1973) for such a parametrization).
The unconstrained (i.e., saturated) model depends on 2× 3𝐻 parameters, that are the conditional

elementary probabilities. The autoregressive polytomous logit model with pairwise interactions
depends on a number of independent parameters equal to 2 (for 𝛼∗s)+6𝐻 (for 𝛽∗s)-2H (for
identification restrictions)=2+4H.

The parameter dimensions and the degrees of overidentification are summarized in Table 17.2.

Table 17.2: Number of Parameters and Degree of Overidentification
(3 exclusive alternatives, pairwise interactions)

H 2 3 4 5 6 7 12

Number of parameters 10 14 18 22 26 30 50

Degree of overidentification 8 40 144 464 1432 4344 1062832

Model with three-wise interactions
This extension will also include cross-terms for the conditioning variables appearing in the

score function of the polytomous logit models. The conditional logit model will admit as regressors
the quadratic functions of 𝑦𝑡−ℎ and 𝑦𝑡−𝑘 . Since 𝑦1𝑡 + 𝑦2𝑡 + 𝑦3𝑡 = 1, ∀𝑡 , it is equivalent to use
only the quadratic functions of �̃�𝑡−ℎ and �̃�𝑡−𝑘 . This leads to the following specification (since
�̃�𝑡−𝑘 �̃�′𝑡−𝑘 = 𝑑𝑖𝑎𝑔�̃�𝑡−𝑘 , the cross-effects from the values at a same lag are already included in the
marginal effects):

log 𝑝 (𝑌𝑡 = 1 | 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 ) = �̃� + 𝛼1 +
𝐻∑︁
𝑘=1
𝛽1𝑘 �̃�𝑡−𝑘 +

𝐻∑︁
𝑘=1

𝐻∑︁
𝑙=𝑘+1

�̃�′𝑡−𝑘𝐶1𝑘𝑙 �̃�𝑡−𝑙 ,

log 𝑝 (𝑌𝑡 = 2 | 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 ) = �̃� + 𝛼2 +
𝐻∑︁
𝑘=1
𝛽2𝑘 �̃�𝑡−𝑘 +

𝐻∑︁
𝑘=1

𝐻∑︁
𝑙=𝑘+1

�̃�′𝑡−𝑘𝐶2𝑘𝑙 �̃�𝑡−𝑙 ,
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where the matrices 𝐶1𝑘𝑙 , 𝐶2𝑘𝑙 define the three-wise interactions. The parameter dimension is
increased by 4𝐻 (𝐻 − 1) parameters.

Table 17.3: Number of Parameters and Degree of Overidentification
(3 alternatives, three-wise interactions)

H 3 4 5 6 7 12

Number of parameters 38 66 102 146 198 578

Degree of overidentification 16 96 384 1312 4176 1062304

Tables 17.2 and 17.3 have been introduced to show the inflation of the number of parameters
with the increase of lag 𝐻 and of the orders of interactions. Then we can encounter the curse of
dimensionality if the number of observations is not large enough with both effects on the estimator’s
accuracy (statistical efficiency) and the cost of estimation (numerical efficiency).

17.2.2.2 The Recursive Autoregressive Logit Model

The recursive model is based on two latent binary processes 𝑋𝑡 , 𝑍𝑡 . In our application they define
the alternatives “standard” versus “extreme”: 𝑋𝑡 = 1, if extreme, 𝑋𝑡 = 0, if standard. Then 𝑍𝑡 defines
the sign of the potential extreme: 𝑍𝑡 = 1 if positive extreme, 𝑍𝑡 = 0, if negative extreme. The model
has the form of a state-space model:
Measurement equation:

We have 𝑌𝑡 =
©«

1

0

0

ª®®®®¬
, if 𝑋𝑡 = 0, 𝑌𝑡 =

©«
0

1

0

ª®®®®¬
, if 𝑋𝑡 = 1, 𝑍𝑡 = 0, 𝑌𝑡 =

©«
0

0

1

ª®®®®¬
, if 𝑋𝑡 = 1, 𝑍𝑡 = 1.

When 𝑌𝑡 is observed, 𝑋𝑡 is observed too, but 𝑍𝑡 is not observed when 𝑋𝑡 = 0. Therefore 𝑍𝑡 is
partially a latent variable.
Transition equation:

The model is completed by autoregressive logit models with interactions, that can include the
effects of 𝑋𝑡−𝑘 , 𝑍𝑡−𝑘 , not only the effects of the lagged observed qualitative variables 𝑦𝑡−𝑘 . For
instance the transitions can be defined as:

log 𝑝 (𝑋𝑡 = 1 | 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 ) = 𝜇𝑡 + 𝛼+
𝐻∑︁
𝑘=1
𝛽𝑘𝑥𝑡−𝑘 +

𝐻∑︁
𝑘=1
𝛿𝑘𝑥𝑡−𝑘𝑧𝑡−𝑘 ,

log 𝑝 (𝑍𝑡 = 1 | 𝑦𝑡−1, . . . , 𝑦𝑡−𝐻 ) = �̃�𝑡 + �̃�+
𝐻∑︁
𝑘=1
𝛽𝑘𝑥𝑡−𝑘 +

𝐻∑︁
𝑘=1
𝛿𝑘𝑥𝑡−𝑘𝑧𝑡−𝑘 ,

assuming that the variables 𝑋𝑡 , 𝑍𝑡 are independent conditional on the lagged observations. Note
that it is equivalent to observe 𝑦𝑡 , or to observe 𝑥𝑡 and 𝑥𝑡 𝑧𝑡 . This independence assumption means
that the variable sign, i.e., 𝑍𝑡 , is latent when the return is standard, but can be filtered by using the
same conditional distribution as if the returns was extreme, that is when 𝑋𝑡 = 1.

It has been observed in empirical studies that the signs of the return were close to a strong white
noise. Thus we can expect that the interactions parameters 𝛽𝑘 , 𝛿𝑘 are often non significant.
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We can also expect that the dynamics of extreme features is exogenous, that is that the 𝛿𝑘’s
parameters are zero. Indeed, this recursive model with latent variables is an analogue for qualitative
𝑌𝑡 of the stochastic volatility model introduced for quantitative returns, with stochastic volatility as
the latent process. Such a recursive logit model with latent qualitative variables appears also in the
(static) Boltzmann machine literature (see Ackley et al., 1985). In our framework it is extended to
dynamic models.

17.3 Statistical Inference

Let us focus on the conditional autoregressive logit models with interactions introduced in Sec-
tions 17.2.1.1 and 17.2.2. These models depend on the interaction parameters 𝑎 = 𝑣𝑒𝑐 (𝛼) , 𝑏 =

𝑣𝑒𝑐 (𝛽) , 𝑐 = 𝑣𝑒𝑐 (𝐶 ) , where the different types of interactions are stacked in a vector. The models
can also depend on additional parameters 𝛿 that define the alternatives. For instance in the three
exclusive alternative specification, the alternatives can be defined as

− extreme negative return if 𝑟𝑡 < −𝛿,
− standard return if | 𝑟𝑡 | ≤ 𝛿,
− extreme positive return if 𝑟𝑡 > 𝛿.

(17.9)

Then, the transition at date 𝑡 can be written as 𝑝 (𝑦𝑡 | 𝑦𝑡−1;𝑎, 𝑏, 𝑐, 𝛿 ) and the log-likelihood as:

𝐿𝑇 (𝑦;𝑎, 𝑏, 𝑐, 𝛿 ) =
𝑇∑︁

𝑡=𝐻+1
log 𝑝 (𝑦𝑡 | 𝑦𝑡−1;𝑎, 𝑏, 𝑐, 𝛿 ) . (17.10)

17.3.1 Maximum Likelihood Estimation

Different maximum likelihood approaches can be implemented.2 In general the maximum likelihood
estimators have no closed form expressions and they are unfeasible. The parameters can be estimated
online by applying the Average Stochastic Gradient Descent (ASGD) algorithm (Ruppert, 1988;
Polyak & Juditsky, 1992).

17.3.1.1 Maximum Likelihood with Known 𝜹

When 𝛿 is known, the conditional autoregressive logit model is a generalized linear model for which
special optimization softwares are available and the expression of the estimated information matrix
is greatly simplified (see Nelder & Wedderburn, 1972). The ML estimators are the solution of the
maximization below:

[ �̂�𝑡 (𝛿 ) , �̂�𝑡 (𝛿 ) , �̂�𝑡 (𝛿 ) ] = 𝐴𝑟𝑔𝑚𝑎𝑥
𝑎,𝑏,𝑐

𝐿𝑇 (𝑦;𝑎, 𝑏, 𝑐, 𝛿 ) . (17.11)

2 Likewise, composite likelihood approaches could be implemented; see Appendix 2. These methods
can be used sequentially with first the estimation of the 𝛼’s by marginal composite likelihood,
second the estimation of the 𝛽’s by pairwise conditional composite likelihood, then of the 𝛾’s by
conditional three-wise composite likelihood. This approach is numerically efficient.
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Note that the online ASGD estimator has the same asymptotic properties as the (unfeasible)
maximum likelihood estimator. If the model is well specified and the observed process is stationary
ergodic, this estimator is consistent, asymptotically normal and asymptotically efficient. Moreover
its asymptotic variance, that is the inverse of the information matrix, can be also estimated online.

17.3.1.2 Maximum Likelihood with Unknown 𝜹

When 𝛿 is unknown, the log-likelihood can also be maximized with respect to the threshold
parameter 𝛿. This can be done in two steps by first concentrating the log-likelihood with respect to
the interaction parameters. More precisely, let us denote:

�̂�𝑇 (𝑦; 𝛿 ) = 𝐿𝑇 (𝑦; �̂�𝑡 (𝛿 ) , �̂�𝑡 (𝛿 ) , �̂�𝑡 (𝛿 ) , 𝛿 ) , (17.12)

the maximum value of the concentrated objective function. Then the ML estimator ˆ̂𝑎𝑇 , ˆ̂
𝑏𝑇 , ˆ̂𝑐𝑇 , 𝛿𝑇

is defined as:

𝛿𝑇 = 𝐴𝑟𝑔𝑚𝑎𝑥
𝛿

�̂�𝑇 (𝑦; 𝛿 ) , ˆ̂𝑎𝑇 = �̂�𝑇 (𝛿𝑇 ) , ˆ̂
𝑏𝑇 = �̂�𝑇 (𝛿𝑇 ) , ˆ̂𝑐𝑇 = �̂�𝑇 (𝛿𝑇 ) . (17.13)

This method is the analogue in the pure qualitative framework of the ML approach used for instance
in Zhang et al. (2023) with threshold autoregressive model.

The interpretation of 𝛿 as a threshold implies that the ML estimators and their online analogues
are consistent, but no longer satisfy the standard asymptotic properties of normality and efficiency.

17.3.1.3 Maximum Likelihood with LASSO

To reduce the number of parameters, the objective function of the ML estimation can also be
penalized by LASSO with penalties written on the different interactions (see Hastie et al. (2015)
for a general introduction to LASSO). Let us for instance consider the case with known 𝛿. The
objective function is replaced by:

𝐿𝑇 (𝑦;𝑎, 𝑏, 𝑐, 𝛿 ) − 𝜆1 ∥ 𝑎 ∥1 −𝜆2 ∥ 𝑏 ∥1 −𝜆3 ∥ 𝑐 ∥1,

where ∥ 𝑎 ∥1 denotes the 𝑙1−norm of the vector 𝑎, that is the sum of the absolute values of the its
components and 𝜆1, 𝜆2, 𝜆3 are positive tuning scalars.

The solution of the penalized optimization depends on the tuning parameters 𝜆1, 𝜆2, 𝜆3. Larger
the 𝜆′s, smaller the number of nonzero interactions. Note also that the penalization is the same for
all pairwise interactions (resp. three-wise interactions). This choice is justified by the behavior of
the ML estimates in a neighborhood of the strong white noise hypothesis.

17.3.2 Close to Independence Behavior (Binary Process)

Let us consider the case of a binary process. By Proposition 1, the binary process is a strong white
noise if and only if the interaction parameters 𝛽𝑘 , 𝛾𝑘𝑙 are all equal to zero. Under the independence
hypothesis, the ML estimator 𝛽𝑘,𝑇 , �̂�𝑘𝑙,𝑇 have simplified asymptotic properties, similar to the
properties of estimated ACF. In particular, the asymptotic variance of the 𝛽𝑘,𝑇 (resp. �̂�𝑘𝑙,𝑇 ) are
independent of the index 𝑘 (resp. of the pairwise index 𝑘𝑙).

Therefore the estimates can be provided with their (fixed) confidence bound under the null, in a
plot of 𝛽𝑘,𝑇 function of 𝑘 and a heat plot of the �̂�𝑘𝑙,𝑇 function of 𝑘, 𝑙. These plots can also be given
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setting to 0, the nonsignificant values, as a diagnostic tool of the real interactions, before introducing
LASSO penalties.

17.4 Prediction and Filtering

Once the models are estimated, they can be used for prediction and filtering. Since the processes are
qualitative, the standard pointwise analysis based on conditional expectations has no real meaning
and the complete predictive distributions have to be considered. In our framework we get closed
form expressions of the prediction and filtering distributions due to the conditional logit models
corresponding to the joint log-linear probability model (see Appendix 2).

17.4.1 Prediction of Future Patterns

With in mind the technical analysis, we are interested in the future pattern of returns. More precisely,
let us fix a horizon 𝐻∗, we are interested at date 𝑇 in the prediction of (𝑌𝑇+1, . . . ,𝑌𝑇+𝐻∗ ) given
(𝑌𝑇 , . . . ,𝑌𝑇−𝐻+1 ) . By the Markov property, this predictive distribution takes the form:

𝑝𝐻∗ (𝑦𝑇+1, . . . , 𝑦𝑇+𝐻∗ | 𝑦𝑇 , . . . , 𝑦𝑡−𝐻+1 ) =
𝐻∗∏
𝑘=1
𝑝 (𝑦𝑇+𝑘 | 𝑦𝑇+𝑘−1, . . . , 𝑦𝑡+𝑘−𝐻 ) .

Remark 7: This prediction of future patterns differ from the prediction at date 𝑇 of 𝑌𝑇+𝐻∗ only.
In terms of derivative products, the technical analysis is more focused on American derivatives than
on European ones.

17.4.2 Filtering

As mentioned in the introduction, an advantage of the log-linear probability model with interactions
is to satisfy invariance properties by conditioning and to provide closed form expressions of the
predictive distributions. As simple example, we can consider the problem of backward forecast and
the determination of the filtering distributions for a binary time series.
Backward forecasting

This concerns the predictive distribution of 𝑌𝑡 given 𝑌𝑡+1 = (𝑌𝑡+1,𝑌𝑡+2, . . .) .
Proposition 4:
i) The conditional logit autoregressive process with interactions is both Markov in calendar and

reversed times
ii) The process with pairwise interactions is reversible.

Proof:
i) Let us consider a process of order 1 for expository purpose and compute the backward

transition. We have:

𝑝 (𝑦𝑡 | 𝑦𝑡+1, . . . , 𝑦𝑡+𝐻 ) =
𝑝 (𝑦𝑡 , 𝑦𝑡+1, . . . , 𝑦𝑡+𝐻 )
𝑝 (𝑦𝑡+1, . . . , 𝑦𝑡+𝐻 )

=
𝜋 (𝑦𝑡 ) 𝑝 (𝑦𝑡+1 | 𝑦𝑡 ) . . . 𝑝 (𝑦𝑡+𝐻 | 𝑦𝑡+𝐻−1 )

𝜋 (𝑦𝑡+1 ) 𝑝 (𝑦𝑡+2 | 𝑦𝑡+1 ) . . . 𝑝 (𝑦𝑡+𝐻 | 𝑦𝑡+𝐻−1 )
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=
𝜋 (𝑦𝑡 ) 𝑝 (𝑦𝑡+1 | 𝑦𝑡 )

𝜋 (𝑦𝑡+1 )
,

where 𝜋 ( ·) denotes the stationary distribution. We deduce that:

𝑝 (𝑦𝑡 | 𝑦𝑡+1, . . . , 𝑦𝑡+𝐻 ) = 𝑝 (𝑦𝑡 | 𝑦𝑡+1 ) , ∀𝐻,

and then by taking the limit where 𝐻 tends to infinity, we deduce that the process satisfies the
Markov property in reversed time (see Cambanis and Fakhre-Zakeri (1995) for a similar property
for real valued processes).

ii) More generally for a logit autoregressive process of any order H, we deduce that the process
satisfies also a conditional logit autoregressive process of the type (see (2.4)):

log 𝑝 (𝑦𝑡 , 𝑦𝑡+1, . . . , 𝑦𝑡+𝐻 ) = 𝜇∗ + 𝛼∗
𝐻∑︁
ℎ=0
𝑦𝑡+ℎ +

𝐻∑︁
𝑘=1
(𝛽∗𝑘

𝐻−𝑘∑︁
ℎ=0

𝑦𝑡+ℎ𝑦𝑡+ℎ+𝑘 ) .

We deduce that 𝛼∗ = 𝛼, 𝛽∗
𝑘
= 𝛽𝑘 , ∀𝑘, 𝑘 = 1, . . . , 𝐻, by the interpretation of the interactions

parameters. For instance 𝛽∗
𝑘

is the Kullback-Leibler (KL) measure of independence between 𝑌𝑡 and
𝑌𝑡−𝑘 and coincides with the KL measure between 𝑌𝑡 and 𝑌𝑡+𝑘 .□

Whereas the Markov conditions in calendar and reversed times are still equivalent for processes
with three alternatives, the reversibility can require constraints on the three-wise interaction
parameters.

Filtering distributions
This concerns the prediction of 𝑌𝑡 given 𝑌𝑡−1 and 𝑌𝑡+1. The result below extends to this

qualitative framework the closed form expression known for the univariate Gaussian AR(1) model,
𝑌𝑡 | 𝑦𝑡−1 ∼ N(𝜌𝑦𝑡−1, 1− 𝜌2 ) , where the filtering distribution for 𝑌𝑡 is Gaussian, with a conditional

mean equal to 𝜌

1+𝜌2 (𝑦𝑡−1 + 𝑦𝑡+1 ) and a variance equal to 1−𝜌2

1+𝜌2 .

Proposition 5:
i) The filtering distribution of 𝑌𝑡 given 𝑌𝑡−1 and 𝑌𝑡+1 is equal to the filtering distribution of 𝑌𝑡

given 𝑌𝑡−1, . . . ,𝑌𝑡−𝐻 ,𝑌𝑡+1, . . . ,𝑌𝑡+𝐻 . It has the form of a logit model with interactions.
ii) When 𝐻 = 1, the filtering distribution is symmetric in 𝑌𝑡−1 and 𝑌𝑡+1.
Proof: Let us consider 𝐻 = 1.
i) This is a consequence of the Markov property that the past and future are independent given

the present. In general the result can be derived following the same approach as in the proof of
Proposition 4 i).

ii) It is easily checked that:

𝑃 (𝑌𝑡 = 1 | 𝑦𝑡−1, 𝑦𝑡+1 ) = exp(𝛼∗ + 𝛽1 (𝑦𝑡−1 + 𝑦𝑡+1 ) )/(1+exp(𝛼∗ + 𝛽1 (𝑦𝑡−1 + 𝑦𝑡+1 ) ) ) ,

with
𝛼∗ = 𝛼 − log

(
1+exp(𝛼+ 𝛽)

1+exp(𝛼)

)
.

The result follows.□

17.5 Concluding Remarks

The aim of this paper was to extend the static log-linear probability model considered by Nerlove
and Press (1973) to the dynamic analysis of qualitative processes with two or three alternatives. The
introduction of interactions of small orders allows for solving the curse of dimensionality, whereas
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the structure (architecture) of the model facilitates the statistical inference and the numerical cost of
training.

For a stationary (ergodic) Markov process (𝑌𝑡 ) of order 𝐻, it is equivalent to specify the
conditional distribution of 𝑌𝑡 given 𝑌𝑡−1, . . . ,𝑌𝑡−𝐻 , or the joint distribution of 𝑌𝑡 ,𝑌𝑡−1, . . . ,𝑌𝑡−𝐻 .
Recursive machine learning techniques have been introduced in the literature to approximate
recursively such joint distributions. They are known under the name of Normalizing Flows (see, e.g.,
Papamakarios, Nalisnick, Rezende, Mohamed & Lakshminarayanan, 2021 for a survey). However
they have some drawbacks in our framework: i) They are not able to introduce the constraint of
stationarity; ii) They are mainly defined for continuous multivariate variables (𝑌𝑡 ) , with no real
analogue for discrete or qualitative processes (see Papamakarios et al., 2021, Section 5.3, and
Kobyzev, Prince & Brubaker, 2020, Section 5.2.2).
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3681-01 and ANR-17-EURE-0010, for financial support. The second author would also like to thank
for financial support the Institut Universitaire de France (IUF).

Appendix 1: Ergodicity

Let us consider the log-linear probability model with interactions for a binary process (the proof for
process with three alternatives is similar), and the process 𝑌 ∗𝑡 = (𝑌𝑡 ,𝑌𝑡−1, . . . ,𝑌𝑡−𝐻+1 ) ′ obtained
by stacking H consecutive observations of 𝑌𝑡 . The process 𝑌 ∗𝑡 is also a Markov chain and due to
the conditional logit expression all the transition probabilities for 𝑌 ∗𝑡 are strictly positive. Thus this
Markov chain is irreducible aperiodic and then necessarily ergodic (Norris, 1998, Chapter 1). In
particular, there is no transient state and a unique class of recurrence. In addition, there exists a
unique stationary distribution for 𝑌 ∗𝑡 (resp. 𝑌𝑡 ) obtained as the limit of the predictive distribution at
infinite horizon.

Appendix 2: Log-Linear Probability Models with Interactions

We provide a brief review of the (static) log-linear probability model with interactions (Nerlove &
Press, 1973, Bishop et al., 1975, Schmidt & Strauss, 1975, Lee, 1981, Liang & Zeger, 1989), with
special attention to the case of binary variables.

2.1 The Models

Let us consider n binary variables 𝑋1, . . . , 𝑋𝑛, where 𝑋𝑖 can take values in {0, 1}. The log-linear
probability models with interactions provide parametric specifications for their joint distribution.
We will essentially consider models with interactions up to order 2, or up to order 3.

The model with interactions up to order 2 assumes that the elementary probabilities 𝑃 [𝑋 = 𝑥 ] =
𝑃 [𝑋1 = 𝑥1, . . . , 𝑋𝑛 = 𝑥𝑛 ] ≡ 𝑝 (𝑥1, . . . , 𝑥𝑛 ) are of the form:

log 𝑝 (𝑥1, . . . , 𝑥𝑛 ) = 𝜇 +
𝑛∑︁
𝑖=1
𝛼𝑖𝑥𝑖 +

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝛽𝑖 𝑗 𝑥𝑖𝑥 𝑗 .
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The coefficients 𝛼𝑖 (resp. 𝛽𝑖 𝑗 ) define the marginal effects (resp. the interaction effects at order 2).
The parameter 𝜇 is fixed by the unit mass restriction and then is a (complicated function) of the 𝛼𝑖’s
and 𝛽𝑖 𝑗 ’s. Whereas the unconstrained joint distribution depends on 2𝑛 − 1 parameters, the log-linear
probability model with pairwise interactions depends on 𝑛+𝑛(𝑛− 1)/2 = 𝑛(𝑛+1)/2 parameters,
that are the 𝛼𝑖’s and 𝛽𝑖 𝑗 ’s.

The model above can be extended to allow for interactions of higher order, such as three-wise
interactions. Then, it is defined as:

log 𝑝 (𝑥1, . . . , 𝑥𝑛 ) = 𝜇 +
𝑛∑︁
𝑖=1
𝛼𝑖𝑥𝑖 +

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝛽𝑖 𝑗 𝑥𝑖𝑥 𝑗 +
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑛∑︁
𝑘= 𝑗+1

𝛾𝑖 𝑗𝑘𝑥𝑖𝑥 𝑗 𝑥𝑘 ,

where the 𝛾𝑖 𝑗𝑘 are the threewise interaction coefficients. This parametric specification depends on
𝑛+𝑛(𝑛− 1)/2+𝑛(𝑛− 1) (𝑛− 2)/6 = 𝑛(𝑛2 +2)/6 independent parameters.

When 𝑛 is large, these models can still encounter the curse of dimensionality. It is usual in
applications to constrain the interactions by assuming that they depend on a ‘distance’ between the
pairs or triplets of individuals:

𝛽𝑖 𝑗 = 𝑑2 (𝑧𝑖 , 𝑧 𝑗 ;𝛽) , 𝛾𝑖 𝑗𝑘 = 𝑑3 (𝑧𝑖 , 𝑧 𝑗 , 𝑧𝑘 ;𝛾) ,

where the 𝑧𝑖’s are characteristics of the individuals and 𝛽, 𝛾 are hyperparameters.

2.2 Conditioning and Logit Models

As noted above the parameter 𝜇 has a complicated expression in terms of marginal and interaction
effects. This parameter can be easily eliminated by conditioning. Moreover the conditional models
are logit models with interaction effects (see e.g., Liang & Zeger, 1989, Section 2). Let us for
instance consider the conditional distribution of 𝑋1 given 𝑋2, . . . , 𝑋𝑛. We have

log 𝑝 (𝑥1 | 𝑥2 . . . , 𝑥𝑛 ) = 𝜇1 (𝑥2, . . . , 𝑥𝑛 ) + 𝛼1𝑥1 +
𝑛∑︁
𝑗=2
𝛽1 𝑗 𝑥1𝑥 𝑗

= 𝜇1 (𝑥2, . . . , 𝑥𝑛 ) + 𝑥1
©«𝛼1 +

𝑛∑︁
𝑗=2
𝛽1 𝑗 𝑥 𝑗

ª®¬ ,
for the model with pairwise interactions, and

log 𝑝 (𝑥1 | 𝑥2 . . . , 𝑥𝑛 ) = 𝜇1 (𝑥2, . . . , 𝑥𝑛 ) + 𝑥1
©«𝛼1 +

𝑛∑︁
𝑗=2
𝛽1 𝑗 𝑥 𝑗 +

𝑛∑︁
𝑗=2

𝑛∑︁
𝑘= 𝑗+1

𝛾1 𝑗𝑘𝑥 𝑗 𝑥𝑘
ª®¬ ,

for the model with threewise interactions.
These conditional models are simply dichotomous logit models with 𝑥 𝑗 , 𝑗 = 2, . . . , 𝑛 (resp. 𝑥 𝑗 ,

𝑥 𝑗 𝑥𝑘) as explanatory variables introduced in a linear score function for the model with pairwise
interactions (resp. threewise interactions).
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2.3 Aggregation of Interaction Effects

Pairwise interactions

Let us consider a model with pairwise interactions and denote 𝐼 , 𝐽 , a partition of {1, . . . , 𝑛}. The
joint distribution can be written as:

𝑝 (𝑥𝐼 , 𝑥𝐽 ) = exp(𝜇)×

exp

[∑︁
𝐼

𝛼𝑖𝑥𝑖 +
∑︁
𝐽

𝛼𝑗 𝑥 𝑗 +
∑︁
𝐼

∑︁
𝐼

𝛽𝑖 𝑗 𝑥𝑖𝑥 𝑗 +
∑︁
𝐽

∑︁
𝐽

𝛽𝑖 𝑗 𝑥𝑖𝑥 𝑗 +
∑︁
𝐼

∑︁
𝐽

𝛽𝑖 𝑗 𝑥𝑖𝑥 𝑗

]
.

We deduce the conditional distribution:

𝑝 (𝑥𝐼 | 𝑥𝐽 ) = exp(𝜇 (𝑥𝐽 ) ) exp
[∑︁
𝐼

𝑥𝑖

(
𝛼𝑖 +

∑︁
𝐽

𝛽𝑖 𝑗 𝑥 𝑗

)
+
∑︁
𝐼

∑︁
𝐼

𝛽𝑖 𝑗 𝑥𝑖𝑥 𝑗

]
,

which is also a log-linear probability model with pairwise interactions that depend on the conditioning
variables. In particular, if the partition is 𝐼 = {1, 2}, 𝐽 = {3, . . . , 𝑛}, we get

log 𝑝 (𝑥1, 𝑥2 | 𝑥𝐽 ) = 𝜇 (𝑥𝐽 ) + 𝑥1𝛼1 (𝑥𝐽 ) + 𝑥2𝛼2 (𝑥𝐽 ) + 𝛽12𝑥1𝑥2,

with clear notations. This is the conditional distribution of a log-linear probability model with
pairwise interactions. The we can apply the result derived for a bivariate binary variable in Appendix
3).

Proposition 6: 𝛽12 is the Kullback measure of dependence between 𝑋1 and 𝑋2 conditional on
{𝑋3, . . . , 𝑋𝑛 }. This measure does not depend on the values of the conditional variables.

We have a similar interpretation of any 𝛽𝑖 𝑗 parameter as a Kullback measure of partial dependence.
We deduce the following Corollaries:

Corollary 1: In a pairwise log-linear probability model, the binary variables are independent if
and only if 𝑋𝑖 and 𝑋 𝑗 are independent given {𝑥𝑘 , 𝑘 = 1, . . . , 𝑛, 𝑘 ≠ 𝑖, 𝑘 ≠ 𝑗 }, for any pair (𝑖, 𝑗 ) ,
𝑖 ≠ 𝑗.

Next consider a saturated log-linear probability model with 𝐼 = {1, 2}, 𝐽 = {3, . . . , 𝑛}. We easily
deduce that:

log 𝑝 (𝑥1, 𝑥2 | 𝑥𝐽 ) = 𝜇 (𝑥𝐽 ) + 𝑥1𝛼1 (𝑥𝐽 ) + 𝑥2𝛼2 (𝑥𝐽 ) + 𝛽12 (𝑥𝐽 )𝑥1𝑥2.

Corollary 2: A saturated log-linear probability model reduces to a log-linear probability model
with pairwise interactions if and only if 𝛽𝑖 𝑗 (𝑥𝐽 ) , 𝐽 = {𝑘 = 1, . . . , 𝑛, 𝑘 ≠ 𝑖, 𝑘 ≠ 𝑗 } ≡ {𝑖, 𝑗 }𝑐 is
independent of 𝑥𝐽 for any pair (𝑖, 𝑗 ) .

Three-wise interactions

Let us now consider a model with three-wise interactions and the partition 𝐼∗ = {1, 2, 3} and
𝐽∗ = {1, 2, 3}𝑐 . By aggregation we get:

log 𝑝 (𝑥1, 𝑥2 | 𝑥3, 𝑥𝐽∗ ) = 𝜇 (𝑥3, 𝑥𝐽∗ ) + 𝑥1𝛼1 (𝑥3, 𝑥𝐽∗ ) + 𝑥2𝛼2 (𝑥3, 𝑥𝐽∗ )
+ 𝑥1𝑥2 (𝛽12 (𝑥𝐽∗ ) + 𝛾123𝑥3 ) .
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Let us denote 𝐾12 (𝑥3, 𝑥𝐽∗ ) the Kullback measure of dependence between 𝑋1 and 𝑋2 given 𝑥3, 𝑥𝐽∗ .
We have:

𝐾12 (𝑥3, 𝑥𝐽∗ ) = 𝛽12 (𝑥𝐽∗ ) + 𝛾123𝑥3,

and then:
𝛾123 = 𝐾12 (1, 𝑥𝐽∗ ) −𝐾12 (0, 𝑥𝐽∗ ) .

We get the following interpretation of the three-wise interaction parameter.

Proposition 7: In the log-linear probability model with threewise interactions, 𝛾123 measures
the effect on the conditional measure of dependence between 𝑋1 and 𝑋2 of a shock on 𝑥3 (going
from 𝑥3 = 0 to 𝑥1 = 1).

Such interpretations in term of shock and impulse responses are related to different notions
of causality between binary variables (see Mosconi & Seri, 2006 for non-causality in binary time
series).

2.4 Composite Conditional Likelihood

The implementation of the standard maximum likelihood approach to estimate the 𝛼’s and the 𝛽’s
can be numerically cumbersome due to the complicated expression for 𝜇 and a number of parameters
of order 𝑛2 in the model with pairwise interactions (and even more with three-wise interactions).
However, it is seen from the expressions of the conditional distributions that the parameters can
be identified and estimated by considering the conditional distributions. More precisely, we can
apply the conditional maximum likelihood to the distribution of 𝑋1 given 𝑋2, . . . , 𝑋𝑛, i.e., estimate
the conditional logit model to get consistent estimators of 𝛼1, 𝛽1 𝑗 , 𝑗 = 2, . . . , 𝑛. Similarly we can
consider the conditional model of 𝑋2 given 𝑋3, . . . , 𝑋𝑛 to estimate 𝛼2, 𝛽2 𝑗 , 𝑗 = 3, . . . , 𝑛, and so
on. We can also put together these different conditional log-likelihood functions into a composite
conditional log-likelihood function (Besag, 1974, Varin, Reid & Firth, 2011).

A similar approach can be applied for the model with threewise interactions, based on the joint
distribution of 𝑋1, 𝑋2 given 𝑋3, . . . , 𝑋𝑛. The conditional model is a logit polytomous model with 4
alternatives, in which the number of parameters is of order n instead of 𝑛3 if the joint ML were used.

Appendix 3: The Binary AR(1) Process

3.1 Markov Chain

This is the simplest case of a Markov chain. The joint distribution of (𝑌𝑡 ,𝑌𝑡−1 ) is given by:

©«
𝑝11 𝑝01

𝑝10 𝑝00

ª®¬ = 1
1+2exp(𝛼) +exp(2𝛼+ 𝛽)

©«
exp(2𝛼+ 𝛽) exp(𝛼)
exp(𝛼) 1

ª®¬ .
The transition probabilities are:

𝑃 =
©«
𝑝1|1 𝑝0|1

𝑝1|0 𝑝0|0

ª®¬ = ©«
exp(𝛼+𝛽)

1+exp(𝛼+𝛽)
1

1+exp(𝛼+𝛽)
exp(𝛼)

1+exp(𝛼)
1

1+exp(𝛼)

ª®¬ .
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The transition matrix has the eigenvalues 1 and 𝑝1|1+ 𝑝0|0−1≡𝜆. We see that 2> 𝑝1|1+ 𝑝0|0⇔𝜆 < 1.
Therefore the Markov chain is ergodic. Its stationary distribution is deduced from the joint distribution
as:

𝜋 = 𝑃 (𝑌𝑡 = 1) = 𝑃 (𝑌𝑡−1 = 1) = exp(2𝛼+ 𝛽) +exp(𝛼)
1+exp(2𝛼+ 𝛽) +2exp(𝛼) .

For 𝐻 = 1, the conditional logit model is just identified and provides an equivalent parametrization
of the transition matrix assuming that all transition probabilities are strictly positive.

3.2 Linear AR(1) Representation

An alternative parametrization is 𝜋, 𝜆, where 0 < 𝜋 < 1, −1 < 𝜆 < 1. Since

𝑃 (𝑌𝑡 = 1 | 𝑌𝑡−1 ) = 𝐸 [𝑌𝑡 | 𝑌𝑡−1 ] = 𝜋 +𝜆(𝑌𝑡−1 − 𝜋 ) , (17.14)

the transition matrix can also be written as

𝑃 =
©«
𝜋 + (1− 𝜋 )𝜆 (1− 𝜋 ) (1− 𝜆)
𝜋 (1− 𝜆) (1− 𝜋 ) + 𝜋𝜆

ª®¬ = ©«
1

1
ª®¬ (𝜋, 1− 𝜋 ) +𝜆©«

1− 𝜋
−𝜋

ª®¬ (1, −1) .

The recursive equation (17.14) provides the interpretation of parameters 𝜋 and 𝜆. 𝜋 is the marginal
expectation of 𝑌𝑡 and has a long run interpretation, whereas 𝜆 measures the serial correlation and
has a short run interpretation. In fact, (17.14) is a linear AR(1) representation of the binary process.

This alternative parametrization is appropriate for deriving the term structure of predictions.
Indeed the autoregressive equation (17.14) can be iterated to get:

𝑃 (𝑌𝑡+𝑘−1 = 1 | 𝑌𝑡−1 ) = 𝜋 +𝜆𝑘 (𝑌𝑡−1 − 𝜋 ) ,

and

𝑃𝑘 =
©«
𝜋 + (1− 𝜋 )𝜆𝑘 (1− 𝜋 ) (1− 𝜆𝑘 )
𝜋 (1− 𝜆𝑘 ) (1− 𝜋 ) + 𝜋𝜆𝑘

ª®¬ .

3.3 Measure of Dependence

Let us now compute the first-order autocorrelation. We directly deduce from (17.14) and the
stationarity that:

𝜌(1) =𝐶𝑜𝑟𝑟 (𝑌𝑡 ,𝑌𝑡−1 ) = 𝜆 =
exp(𝛼) (exp(𝛽) − 1)

(1+exp(𝛼) ) (1+exp(𝛼+ 𝛽) ) .

Even if 𝜌(1) = 0 if and only if 𝛽 = 0, the pairwise interaction 𝛽 cannot be interpreted as an
autocorrelation. Instead, it is a Kulback-Leibler measure of dependence:

𝛽 = log

(
𝑝1|1𝑝0|0
𝑝0|1𝑝1|0

)
= log

(
𝑝11𝑝00
𝑝01𝑝10

)
.

This measure is more appropriate in a nonlinear dynamic framework where the qualitative feature of
the observed series has to be taken into account.
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